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Fullerenes in asphaltenes and other carbonaceous
materials: natural constituents or laser artifacts+

Vanessa G. Santos,*@ Maira Fasciotti,®° Marcos A. Pudenzi,? Clécio F. Klitzke,?
Heliara L. Nascimento,® Rosana C. L. Pereira,” Wagner L. Bastos® and
Marcos N. Eberlin*®

The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser
artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and
reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic
aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed C,, ring
fullerenes are not natural constituents but they are formed as common and often as predominant artifacts
upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous
materials seems unfortunately to have been made. When the present results are evaluated also in the light
of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems par-
ticularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably
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Introduction

The characterization of the myriad of molecules that form
most complex chemical mixtures such as those found in crude
oils,"* bitumen,’ carbonaceous rocks*® and eventually even in
extra-terrestrial bodies such as meteorites’ has been a most
challenging task for the analytical chemist. Sample manipula-
tions such as solvent or thermal extractions or derivatization
reactions are always a great concern due to eventual contami-
nation, whereas the applied technique should be robust and
extensively investigated for each type of matrix so as to avoid
incomplete sample description or misleading information
from artifacts. Mass spectrometry (MS), due to its superior
speed, selectivity and sensitivity as well as the increasingly
reduced need for sample manipulation and the power to deal
with mixtures via concomitant ion separation and measure-
ment has been increasingly used for complex mixture
analysis.®® For instance, for the comprehensive characteri-
zation of crude oil, arguably the most complex chemical
mixture found on earth, MS has become the central technique
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high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam.

able to characterize thousands of its constituents* with little
manipulation.

Among crude oil constituents, asphaltenes form an impor-
tant class, but this fraction of petroleum is curiously not
defined in terms of its structural features but a solubility cri-
terion is used.'® That is, asphaltenes are defined as the frac-
tion of petroleum insoluble in low MW n-paraffin, such as
n-pentane or n-heptane.'* The composition and structure of the
asphaltenes have been for decades, and still remain a topic of
considerable debate in crude oil chemistry. In general, studies
have suggested that asphaltenes comprise molecules with a
vast range of functional groups, including alkyl rings and
chains, aromatic and poly heteroaromatic rings, carboxylic
acids, basic nitrogen groups and porphyrins.’*** A major
controversy is also related to the predominance of either archi-
pelago or island-like structures'™” such as the two model
molecules of Fig. 1, but numerous experiments using a vast
array of techniques such as time-resolved fluorescence depolar-
ization, laser desorption laser ionization (tandem) mass spectro-
metry, optical spectroscopy, molecular orbital calculations,
NMR spectroscopy, and atomic force microscopy seem to have
established that asphaltene molecules consist predominantly
of single aromatic cores with alkyl side chains in molecules
with an average weight around 700 Da."®

As for crude oils, asphaltene composition has indeed been
shown to be extremely complex and difficult to characterize."
To make its characterization even more challenging, as-
phaltene composition also varies as a function of the crude
oil origin, the type of residuum from which it has been
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Island Model Compound

Archipelago Model Compound

Fig. 1 Examples of compounds with island (A) and archipelago
(B) structures assigned to asphaltene constituents.

precipitated, either from atmospheric or vacuum distillation,
the precipitant used as for instance n-pentane or n-heptane
and/or the precipitation conditions such as sample-to-precipi-
tant ratio, addition of solvents, temperature, agitation and
digestion time.>°

MS characterization of asphaltenes has employed different
ionization methods including field ionization (FI),>* field
desorption ionization (FDI),** electrospray ionization (ESI),*®
atmospheric pressure chemical ionization (APCI),>* atmo-
spheric pressure photoionization (APPI),>® LDI,***® two-step
laser desorption laser ionization (L*MS),”° and SALDIL'®
Although challenging, comprehensive knowledge of asphalt-
ene composition has been highly pursued in geochemistry
studies since these molecules have been the source of major
problems associated with crude oil processing.***' Another
longstanding controversy is the actual range of MW distri-
bution of asphaltenes and predictions of which vary from less
than 1000 Da to as high as 100 000 Da,** but nowadays this
question seems to have been settled and asphaltenes are
believed to display an average MW of ca. 700 Da."®

LDI techniques have perhaps been the most extensively
applied but are those that have also generated the most
controversy, since a diverse range of MW including high MW
have been predicted.>” It has been determined, however, that
the high MW was due to formation of gaseous asphaltene
aggregates.”® A seminal controversy also arose when Buseck
and co-workers**® used LDI-FT-ICR-MS, thermal desorption
ionization-MS and electron ionization, in conjunction with
high resolution transmission electron microscopy (HRTEM),
to analyse shungite — a carbon-rich Precambrian rock from
Russia - and fulgurite**” - a glassy rock formed by lightning
striking the ground - concluding on the natural occurrence
of fullerenes Cq, and C5, in these specific carbon-rich rocks.
In other seminal work that has attracted considerable atten-
tion, Becker and co-workers,®® using LDI-MS as well, have
also concluded for the presence of fullerenes in meteorites,
reporting the presence of Cqy and Cs, as well as a unique dis-
tribution of remarkably stable clusters of Cioo to Cygo
separated all by m/z 24 units in the mass spectra. In all, the
authors concluded that “these large extraterrestrial
carbon clusters are either the first indication of higher fuller-
enes or are an entirely new range of aromatic carbon-rich
molecules”.
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m/zX m/z X + 24 Da

Fig. 2 Structures proposed by Traldi and coworkers®® for the homo-
logous series of ions separated by m/z 24 units and detected during
LDI-MS of asphaltenes.

More recently, Traldi and co-workers®® used LDI-MS to
analyse asphaltenes from crude oils and detected a Gaussian-
like homologous ion series separated as well by m/z 24 units,
which has been interpreted by them as well as later by others®”
as evidence not for fullerenes but for PAH, that is, more
specifically a series of polycondensed aromatic compounds
with varying numbers of condensed rings with additional
C=C bonds (Fig. 2). MS measurements with high resolution
and accuracy would have allowed the authors to characterize
the +24 m/z series distinguishing all-carbon species (fuller-
enes) from PAH with their characteristic mass defects from the
H atoms, but such data was not reported. For asphaltenes, con-
trolled conditions such as laser power, surface concentration
and pulsed ion extraction, have been reported to avoid aggre-
gation whereas LDI-based techniques have been reported to
provide consistent and reliable results for asphaltene MW and
composition.>”*%3%

The initial goal of this work was to perform a petroleomic
investigation via (MA)LDI-MS of asphaltenes from crude oils
with contrasting levels of thermal evolution hence with
expected contrasting compositions. But surprisingly, we
observed very similar (MA)LDI-MS profiles for all samples with
a well behaved Gaussian-like series of ions separated by m/z 24
units.’® As discussed below, contrasting interpretations for
such profiles were found in the literature, not only for asphalt-
enes but also for samples ranging from coal, rocks, bitumen
and meteorites. We decided therefore to perform, as this paper
reports, a systematic evaluation of the LDI-MS reliability in
asphaltene analysis and to re-evaluate the substantial body of
literature data on LDI-MS of asphaltene and other carbon-
aceous materials in the light of our results to conclude on the
natural presence of fullerenes or their formation as laser
artifacts.

Experimental
Samples and reagents

Samples of crude oil from different reservoirs in Brazil were
provided by CENPES/ PETROBRAS. For the asphaltene precipi-
tation approximately 80 mg of crude oil were stirred in glass
flasks over 24 hours in 5 mL of 40:1 (v/v) mixture of heptane
(HPLC grade, Honeywell Burdick) and crude oil.*® In total,
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20 different samples were evaluated. The insoluble asphaltenes
were filtered using a Millipore 0.45 pm pore diameter PTFE
filter and dissolved in toluene (HPLC grade, J.T Baker, Mexico
City, Mexico) at concentrations of ca. 0.2 mg mL™". These solu-
tions were spotted onto a steel target plate (MTP 384 polished
steel target; Bruker Daltonics, Bremen, Germany) and allowed
to air-dry. For MALDI, a saturated solution of DHB (98%,
Sigma-Aldrich Co., St Louis, MO, USA) was used as the matrix
and spotted upon the sample. For LDI, the asphaltene solu-
tions in toluene were spotted and directly analyzed after
toluene evaporation and asphaltene crystallization. A synthetic
standard of fullerene Cg, (Aldrich, MO, USA) and a standard
polycyclic aromatic hydrocarbon (PAH) mixture (AccuStandard,
CT, USA) containing the 16 EPA target PAHs (acenaphthene,

acenaphthylene, anthracene, benz(a)anthracene, benzo(b)
fluoranthene,  benzo(k)fluoranthene,  benzo(ghi)perylene,
benzo(a)pyrene, chrysene, dibenz(ah)anthracene, fluor-

anthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phe-
nanthrene and pyrene) were also subjected to LDI-MS and
spotted using 1 pg mL~" toluene solutions.

Mass spectrometers

The MALDI-MS and LDI-MS analysis was performed in a
Bruker Autoflex III MALDI-TOF(/TOF)-MS operated in the
linear mode and equipped with a smart beam laser using Flex
Control 3.3 software (Bruker Daltonics). The MS were collected
within the mass range of m/z 100 to 3500 in the positive ion
mode. The instrument settings were as follows: ion source 1 at
18.99 kV, ion source 2 at 16.64 kV, lens at 7.19 kV, and a
pulsed ion extraction of 40 ns. The instrument was externally
calibrated with the peptide standard supplied by Bruker Dal-
tonics. The laser power was tested in a range of 10-90% to
evaluate the optimal conditions.

FT-ICR-MS analyses were performed in a Thermo Scientific
7.2 T Fourier transform ion cyclotron resonance mass spectro-
meter (Thermo Scientific, Bremen, Germany). A scan range of
m/z 200-1000 was used, and 100 microscans (transients) were
collected in each acquisition. The average resolving power (Rp,)
was 400 000 at m/z 400. Time-domain data (ICR signal or tran-
sient signal) were acquired for 3000 ms. Microscans were co-
added using Xcalibur version 2.0 (Thermo Scientific).

The molecular formulas of the APPI(—) ion peaks in the
mass spectrum of asphaltene samples were assigned using the
Xcalibur 2.0 software as well and verified by its isotopic
pattern of **C. Then, excel spreadsheets were used to sort and
group the formulas and compounds to build class diagrams
(ESIT). All the interpretations and data treatment were made
using homemade software for petroleomics.

Results and discussion

First, both MALDI-MS using DHB as the matrix as well as
matrix-free LDI-MS data were acquired. Note that the presence
of polycondensed aromatic molecules has been shown to
make asphaltenes work as a “self-matrix” for LDI-MS and
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indeed, for the samples tested herein, an auxiliary matrix was
unnecessary. Fig. 3 shows, as an example and for comparison,
a characteristic MALDI and an LDI mass spectrum of a typical
asphaltene sample. Surprisingly for all the spectra were all very
similar regardless of the level of thermal evolution of the
crude oil from which the asphaltene samples had been
precipitated.

Note that both spectra in Fig. 3 show very similar and con-
tinuous Gaussian-like profiles but the ion of m/z 720 clearly
shows up. This well behaved m/z 24 (24 Da for singly charged
ions) apart ion series is also quite in contrast with those of the
typically much packed continuous ion series commonly dis-
played by crude oil samples, which are often centered around
m/z 400.* See Fig. S1f for a full range LDI mass spectrum
within the m/z 200-2500 range.

Next, to investigate the nature of such homologous ions in
Fig. 3, MS/MS data were acquired. Fig. 4 shows, as examples,
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Fig. 3 (A) MALDI(+)-MS using DHB as matrix and (B) LDI(+)-MS of a
typical asphaltene sample.
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Fig. 4 LDI-MS/MS of the ions of (A) m/z 720 (Cgp) and (B) m/z 840 (Co)
(C) m/z 1008 and (D) m/z 1176 sampled for a typical asphaltene sample.
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the MS/MS for the ions of m/z 720, m/z 840, m/z 1008, and m/z
1176. Their fragmentation patterns were dominated by frag-
ment ions separated by 24 m/z units due to C, losses, a most
typical pattern that firmly points to fullerenes.***?

Next, we investigated the effect on the LDI-MS data of
varying the fluency (intensity) of the laser beam (Fig. 5). With
the laser at 60% fluency or less (Fig. 5A), only a noise spectrum
was obtained. When the laser power was increased to 70% or
even better 80%, high ion abundances were attained and then
the typical +24 m/z Gaussian distribution was formed (Fig. 5B
and C). Note that a similar behavior during LDI-MS was
recently described elsewhere.**

Next, to investigate the effect of the laser beam in creating
artifacts for (MA)LDI-MS analysis, asphaltene samples were
analyzed by APPI(—) in an FT-ICR mass spectrometer. APPI is a
very mild photon ionization technique using ca. 10 €V photons
and is known to work quite efficiently for fullerenes particu-
larly in the negative ion mode.**

First, the APPI(—)-MS of the same asphaltene sample was
acquired (Fig. 6A) and a rather typical and complex ion profile
of crude oil mixtures centered around m/z 400 was observed.
Note also the absence of the fullerene ion series, more specifi-
cally of the Cg, ion of m/z 720 which is an abundant ion under
LDI-MS. The main classes detected and attributed in the mass
spectrum in Fig. 6A were the NO (75.3%), NO, (21.3%) and
NO; (3.3%) classes (see the ESIT). Fig. 6B shows then the APPI
(=)-MS of a Cg solution from which an abundant molecular
anion of Cg, fullerene was detected. This result demonstrates
the efficiency of APPI(—) for fullerenes under the chosen
conditions.

To further test whether the natural polycyclic aromatic
hydrocarbons present in asphaltenes were being indeed trans-
formed into fullerene-artifacts upon laser irradiation, a stan-
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Fig. 5 LDI-MS of a typical asphaltene sample acquired by varying the
laser fluencies from 60% to 80%. (A) 60%, (B) 70% and (C) 80%.
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Fig. 6 APPI(-)-MS of (A) an asphaltene sample and (B) of a Cgq fuller-
ene synthetic standard.

dard mixture containing 16 PAH molecules (Fig. 7) was
subjected to LDI(+)-MS. As expected, indeed a similar profile
as that of Fig. 3 of fullerene ions separated by m/z 24 units was
clearly observed. Note that Boorum and co-workers*” have
reported formation of Cg, fullerene from LDI(+)-MS of selected
CeoHjzo and CgoH,o PAH molecules but not from C,gH,,. This
observation led the authors to conclude that the major mech-
anism for fullerene formation upon laser irradiation is
H-removal followed by ring closure and not by ring conden-
sation. Since the constituents of the standard mixture used
were PAH with C;¢ (pyrene) or lighter molecules, and since
fullerenes with MW up to 3000 Da or more were detected
(Fig. 7), it seems that under our LDI conditions substantial
ring condensation indeed occurred.

It seems therefore that fullerenes are not major natural con-
stituents of asphaltenes but photochemical reactions favored
by laser radiation are transforming the natural PAH asphaltene
molecules into ring C,, fullerenes which are detected as pre-
dominant artifacts during LDI(+)-MS.

Reviewing the literature about the detection of fullerenes in
geological material using LDI-MS or related techniques, many
studies were found. For example, as already mentioned,
Buseck,* and Jehlicka and co-workers*® have concluded on
the presence of Cg, fullerene in carbonaceous rocks and
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Fig. 7 LDI(+)-MS of a standard mixture containing 16 different PAH
molecules.
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bitumen. But such a conclusion as reported by Buseck and co-
workers®® has been the subject of a large debate since later it
was argued that the detected fullerenes were not endogenous
but indeed formed as LDI artifacts.”” As the present results
indicate, an erroneous conclusion for the natural occurrence
of fullerenes in shungite rocks has indeed been made. Becker
and coworkers®® may also have erroneously concluded using
LDI-MS on the presence of fullerenes in meteorites, since a
Gaussian distribution of fullerenes very similar with that seen
in the spectrum of Fig. 3 was reported. But we note that Zare*®
and coworkers have correctly interpreted such a series due to
fullerenes formed as LDI-MS artifacts from insoluble organic
matter present in meteorites.

Yacaman and co-workers®® have also been able to form
fullerenes from asphaltenes by electron radiation. Using high
resolution transmission electron microscopy, the authors were
able to produce fullerene onions by electron beam irradiance
onto an asphaltene sample. They proposed that electron irradi-
ance kicks off aliphatic chains (and hydrogen atoms) leaving
the aromatic rings free to accommodate into new fullerene
structures. Laser irradiation could therefore produce similar
results transforming asphaltenes into fullerenes.

Incorrect structural assignments in LDI-MS of asphaltene
samples have therefore been unfortunately common.*®*” For
instance, Traldi and co-workers®® analyzed asphaltenes from
two different Italian oil fields, and observed similar LDI-MS
spectra for the same homologous ion series separated by m/z
24 units. They initially attributed this series to electrical noise
but analysis in another instrument gave the same profiles
which led them to conclude that asphaltene species differing
by 24 Da were detected. They proposed that such molecules
would be natural PAH constituents of asphaltenes differing by
additional rings formed by reactions promoting “C=C attach-
ments” (Fig. 2). Rogalski and coworkers®” also observed
similar +m/z 24 profiles during LDI-MS of asphaltenes miss-
assigning them again as natural PAH asphaltene molecules.

Rogalski and co-workers,”” when investigating the for-
mation of molecular aggregates of asphaltenes by LDI-MS,
obtained again the same +m/z 24 profile with ions of m/z 720
and m/z 840 being the most abundant, but they cited the work
of Traldi and co-workers®® to support such ions due to the
detection not of fullerenes but of natural PAH asphaltene-like
molecules (Fig. 2). Romio and co-workers** recently observed
as well the formation of a +m/z 24 series of asphaltene frac-
tions during LDI-FT-ICR-MS analysis, attributing the covalently
bonded fullerene formation due to in source “clusterization
reactions”.

Martinez-Haya and coworkers® also analyzed asphaltenes
by LDI-MS. In fact, they used a combined IR and UV approach
since such an L*DI?’*' technique was believed to avoid gas
phase asphaltene aggregation which was responsible for the
erroneous high MW observed before by LDI-MS.”? Again, full-
erenes seem to have been formed but, citing Traldi and co-
workers, the +m/z 24 series of ions was incorrectly attributed to
natural PAH asphaltene constituents such as those exemplified
in Fig. 2.%°
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Apicela and co-workers™ evaluated the influence of experi-
mental parameters in LDI-MS of asphaltenes particularly with
regard to correct MW determination concluding that laser
power and surface concentration are the main parameters to
control. They also performed LDI-MS of PAH, fullerenes, and
polyacenaphthylene. For the LDI-MS of PAH, a +m/z 24 series
was also observed but two other ion series of +m/z 12 and 26
were detected. They interpreted these series as due to CH,, C,
and CH,CH, “bridges”.

Predominant fullerene formation as artifacts during
asphaltene LDI or MALDI-MS analysis seems, however, not to
be inevitable and has sometimes not been observed. For
instance, Apicela and co-workers® performed asphaltene ana-
lysis by LDI-MS using a nitrogen laser and reported spectra
with the classical crude oil-like Gaussian profile. Indeed
asphaltene ions centered around m/z 400 seem to have been
formed, with no evidence of fullerene artifacts.

What appears to be a crucial clue to understand the for-
mation or not of fullerene-artifacts during LDI-MS of asphalt-
enes comes from the work of Rogalski and co-workers.?” Their
asphaltene fraction extracted with THF displayed once again
the fullerene series mistakenly attributed to natural PAH
asphaltene constituents but, interestingly, if extractions were
performed with more polar solvents such as N-methyl-2-pyrro-
lidone, dimethylformamide and dimethyl sulfoxide, the fuller-
ene distribution was no longer seen and the LDI-MS displayed
the normal crude oil-like pattern. Fullerene formation upon
laser radiation seems therefore to depend on the actual consti-
tution of the asphaltene sample and is most likely favored
when the PAH level or certain PAH classes are highly abun-
dant. The easy ionization of fullerenes by LDI-MS can also lead
to ionization suppression of the remaining intact but un-
detected “real” asphaltene molecules.

Another crucial parameter is the type of laser used for
desorption. Zare and co-workers used a two-step laser based or
single photon lasers and reported minor artifacts from frag-
mentation, aggregation, and multiple charging for asphaltene-
model compounds.>”®! Interestingly, a recent study>* also
reported very minor fullerene formation for LDI-MS analysis of
fullerenes using an Infrared (IR) laser. Via travelling wave ion
mobility MS,*>***> both the asphaltene as well as the fuller-
ene-ion series could be separated. These results seem to indi-
cate therefore that IR lasers could also be an adequate choice
for LDI-based fullerene analysis and that fullerenes artifacts
can indeed be avoided.

Conclusions

As has been mistakably assumed and vastly reported, from
several sets of LDI-MS data on different carbonaceous
materials, neither C,, ring fullerenes nor the class of PAH pro-
posed by Traldi (Fig. 2) are natural constituents of asphaltenes.
The molecules normally detected by LDI-MS are indeed C,,
fullerenes but they are in fact formed as artifacts of the laser
radiation. Such artifacts are therefore common and seem to be
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particularly favored for asphaltene samples or other carbon-
rich materials most particularly for those with considerably
high levels of PAH. For asphaltenes, formation of fullerene
artifacts has been shown to depend on the precipitation or
extraction methods used, and this trend can now be under-
stood in terms of contrasting levels of PAH. The type of laser
and its fluency (intensity), as recently demonstrated for IR,
single photon or two-step lasers, also seems to greatly influ-
ence the extent of fullerene formation during LDI-MS analysis.
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