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A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is
employed to build optimal network topologies to favor or to suppress synchronization. The approach is based
in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit
of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the
maximization of the quadratic function ωT Lω, where ω stands for the vector of the natural frequencies of the
oscillators, and L for the network Laplacian matrix. Many recently obtained numerical results can be re-obtained
analytically and in a simpler way from our maximization condition. A computationally efficient hill climb
rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can
be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again
many recent numerical results can be rederived in a simpler and clearer analytical manner.

PACS numbers: 89.75.Fb, 05.45.Xt, 89.75.Hc

I. INTRODUCTION

Synchronization [1] is present in a myriad of natural and
synthetic systems, ranging from metabolic processes in popu-
lations of yeast [2] to power grids [3], and its abundant pres-
ence has stimulated in the last decades a very active area of
research. The Kuramoto model [4–7] has been used as one
of the most versatile tools to understand the different scenar-
ios where a population of heterogeneous units can develop a
common rhythm through mutual interaction, despite the in-
trinsic tendency of each element to oscillate with its own nat-
ural frequency when uncoupled from the network. In general,
the units in question are located on the vertices of a complex
undirected network [8], which is described by its adjacency
matrix Ai j, with binary entries Ai j = 1 if there is an edge be-
tween vertices i and j and Ai j = 0 otherwise. The Kuramoto
model is then defined by the nonlinear system of differential
equations [9]

dθi

dt
= ωi + λ

N∑
j=1

Ai j sin(θ j − θi), (1)

where the phase θi(t) corresponds to the state of the ith unit,
which would oscillate with its natural frequency ωi if uncou-
pled from the network. The interaction between connected
units is governed by the sine of their phase difference, and
the strength of the coupling is determined by the parameter λ.
Typically, in order to mimic the inherent differences between
the elements of real systems, the natural frequencies ωi are as-
sumed to be random variables with a distribution g(ω), which
we will consider here to be symmetric and unimodal.

A convenient way to describe the global state of the Ku-
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ramoto oscillators (1) is to use the order parameter defined as

reiψ =
1
N

N∑
j=1

eiθ j , (2)

where r is assumed to be real, which corresponds to the
centroid of the phases if they are considered as a swarm of
points moving around the unit circle. For incoherent mo-
tion, the phases are scattered on the circle homogeneously and
r ≈ N−1/2, while for a synchronized state they should move in
a single lump and, consequently, r ≈ 1. The Kuramoto model
is known to exhibit a second order phase transition from the
incoherent to the synchronized regime at a critical value λc of
the coupling strength. For λ ≥ λc, the order parameter r is an
increasing function of λ. A very natural question to set forth
here is: given N vertices with natural frequencies {ωi}

N
i=1 and

m edges, what is the best way to connect the vertices (form-
ing a connected network) in order to optimize synchronization
(maximize r)? In the last years, it has become clear [10–13]
that optimal (in the synchronization sense) networks of Ku-
ramoto oscillators typically have a strong negative correlation
between the natural frequencies of adjacent oscillators, and a
positive correlation between the frequency magnitude |ωi| and
the degree ki =

∑N
j=1 Ai j of the vertex where the i oscillator

lies. This situation favors some heterogeneity in the degree
distribution: vertices with large positive (negative) natural fre-
quencies tend to have higher degrees and to be surrounded by
vertices with negative (positive) natural frequencies. These
properties are also observed [14] in the optimized networks
for the Kuramoto model with inertia [15], although in this
case the optimization has more severe consequences, as it also
changes the nature of the phase transition: optimized networks
typically possess a first order transition instead of the usual
second order one.

We notice also that many recent works have been devoted
to the optimization of the synchronization for the case of iden-
tical oscillators with diffusive coupling in a complex network.
For such a case, the configuration where all the oscillators be-
have identically is a solution of the equations of motion, al-
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beit not necessarily a stable one. In order to guarantee the
stability of this synchronized state [16, 17], one finds that
the ratio R = $N/$2 between the largest eigenvalue $N and
the smallest non-zero eigenvalue $2 of the Laplacian matrix
Li j = δi jki − Ai j must be smaller than a certain value, which,
on the other hand, is uniquely determined by the internal dy-
namics of the vertices (independent of the network topology,
see also [18–20]). Moreover, the smaller the ratio R, the bet-
ter is the stability of the synchronized state. There has been a
great amount of work in studying the properties of networks
obtained from the minimization of the ratio R trough some
kind of rewiring [21], including in the case of multiplex net-
works [22]. We note, however, that these approaches are not
suitable when the natural frequencies are random variables as
in the cases considered here.

In this work, we revisit the issue of optimization of syn-
chronization in Kuramoto networks, but employing the di-
mensional reduction approach recently proposed by Gottwald
[23], which explores some tools of the theory of solitary waves
by introducing a collective coordinate for the time evolution of
the phase locked oscillators, in the spirit of the Ott-Antonsen
ansatz [24, 25]. Thanks to this dimensional reduction, we
are able to derive analytically a simple condition for optimiz-
ing the network topology to favor synchronization in the Ku-
ramoto model (1). We will show that the optimal synchro-
nization of (1) for λ > λc demands the minimization of the
quadratic function

f ′(0) =

N∑
i=1

N∑
j=1

Ai jωiω j −

N∑
i=1

kiω
2
i = −ωT Lω, (3)

where ω is the vector formed by the natural frequencies of
the oscillators, and L the Laplacian matrix. Many previously
known results can be readily obtained from the minimization
of (3) or, in other words, from the maximization of ωT Lω.
Moreover, our condition can be adapted into a hill climb al-
gorithm to produce optimal networks in a very efficient way,
since it is not necessary the integration of any differential
equation or the computation of any matrix eigenvector and our
condition involves only only plain matrix multiplications. We
will also apply Gottwald’s dimensional reduction approach
[23] to study the optimal networks for the Kuramoto model
with attractive and repulsive interactions [26]

dθi

dt
= ωi +

N∑
j=1

Ai jλ j sin(θ j − θi), (4)

where the coupling strengths λ j can now be either positive
or negative, encoding not only the strength, but also the sign
of the influence of oscillator j on its neighbors. Positive
values of λ j promote in-phase relationships between neigh-
bors, whereas negative values do anti-phase ones. For this
kind of model, we also show that optimal synchronization de-
mands the maximization of a quadratic function involving the
Laplacian matrix associated to the weighted adjacency matrix
A = AΛ , with Λi j = δi jλ j. Our results in this case are also
compatible with those ones recently discussed in [27–29].

In the next section, we will derive our results for the Ku-
ramoto model (1), introduce our main algorithm, and discuss

an explicit example. Section III is devoted to the extension of
our approach to Kuramoto models with attractive and repul-
sive interactions (4), while the last section is left to some final
remarks.

II. OPTIMAL SYNCHRONIZATION IN THE KURAMOTO
MODEL

Since the Kuramoto model (1) has rotational invariance, we
can change, without loss of generality, to a new reference
frame θi → θi + Ωt such that the distribution g(ω) is cen-
tered at ω = 0 (which, in our case, implies 〈ω〉 = 0). Several
well known results suggest that for the Kuramoto model (1),
the time evolution of the phase locked oscillators may be well
approximated by using the collective parametrization [23]

θi(t) = α(t)ωi. (5)

By using such ansatz in the equations of motion (1) in the
reference frame for which 〈ω〉 = 0, and demanding that a
certain error function is minimal, Gottwald end up with a one-
dimensional differential equation for α [23]

α̇ =
λ

σ2 f (α), (6)

with σ2 =
∑N

i=1 ω
2
i , and

f (α) =
σ2

λ
+

N∑
i=1

ωi

N∑
j=1

Ai j sin(α(ω j − ωi)). (7)

With the ansatz (5), synchronized solutions correspond to
stable fixed points α∗ of (6), as the difference of phases
α(t)

(
ω j − ωi

)
are constants if α̇ = 0. Hence, the fixed points

α∗ must satisfy the condition f (α∗) = 0, and its stability is de-
termined by the sign of f ′(α∗). Figure (1) shows f (α) for two
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FIG. 1. (Color online). The graphics show the function f (α) (7) for
an Erdos-Renyi network with N = 1000 vertices, mean degree 〈k〉 =

10 and natural frequencies drawn from the uniform distribution in
the interval (−1, 1), for two different values of the coupling strength
λ.

different values of λ, λ → ∞ and λ = 0.6, for an Erdos-Renyi
network with N = 1000 vertices, mean degree 〈k〉 = 10 and
natural frequencies drawn from the uniform distribution in the
interval (−1, 1). For the first case, we clearly see that there is
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a stable fixed point α∗ = 0, as one would expect. The curve
for λ = 0.6, however, is the same one for λ → ∞, but shifted
upwards, displacing the stable fixed points towards right.

This scenario allows us to devise a method to optimize the
synchronization for finite values of λ. We want to have r as
large as possible for a given finet value of λ > λc. In order to
increase the order parameter r, we must assure that the phase’s
difference in the synchronized state are as small as possible,
i.e, α∗ must be minimal, so that every oscillator is close to
each other accordingly to (5). If we linearize the function f (α)
around α = 0 and demand that it crosses the abscissa as close
as possible to the origin, we obtain the condition that f ′(0)
must be minimal, which, according to (3) implies that ωT Lω
must be maximal. Notice that, interestingly, this conditions
does not depend on the value of λ. It is clear also that optimal
synchronization for the Kuramoto model demands a negative
correlation of the natural frequencies of adjacent oscillators
and a positive correlation between the degrees ki and the val-
ues of |ωi|, which are precisely the results obtained previously
by different and more intricate numerical approaches [10–13].

A hill climb rewiring algorithm can be easily set up to find
the maximum of ωT Lω and, hence, to produce optimal syn-
chronization networks. The strategy is roughly the following.
A randomly selected edge connecting two vertices is removed
if it does not disconnect the network, and two randomly cho-
sen disconnected vertices are then connected. After this step,
the new value of ωT Lω is evaluated. If the rewiring results in
a higher value, one keeps the modification or, otherwise, one
discharges the rewiring and returns the network to its previous
configuration. This procedure is repeated until ωT Lω attains
a minimum value, what of course will guarantee a minimal
value for f ′(0). In practice, our algorithm limits the maxi-
mum number of iterations (up to 2 × 104 times in our simula-
tions). These edge swaps preserve the average degree of the
initial network since the number of edges is kept the same,
but not the degree distribution. It is clear that this kind of hill
climb algorithm works by performing a local search of the op-
timal state by incrementally changing the structure of the net-
work, and it is indeed the simplest algorithm to perform the
maximization of ωT Lω. Compared with more complex algo-
rithms such as simulated annealing [30], for instance, our hill
climb algorithm has proved to be much faster and extremely
reliable. However, there are some potential issues, as for in-
stance, the algorithm might get stuck in a local minimal state
far from the global minimum. Nevertheless, our numerical
simulations show that this is very rare and we can indeed get
networks with pronounced enhancement of the synchroniza-
tion capacity from this simple algorithm, which is indeed the
most used one in the literature of optimization of synchroniza-
tion in complex networks (see, for instance, [10–12]).

As an explicit example, we apply this algorithm for a net-
work built with the Barabasi-Albert method [31] (which cre-
ates scale free networks with degree distribution p(k) ∝ k−3)
with N = 103 vertices and mean degree 〈k〉 = 6. The natu-
ral frequencies were drawn from the unit normal distribution.
The synchronization diagram for this network is shown as red
squares in Fig. 2, where the usual smooth monotonically in-
creasing behavior for r over all the range of coupling strength
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FIG. 2. (Color online). Synchronization diagrams for the initial and
optimized networks for the Kuramoto model (1). The diagram for
the initial network, a Barabasi-Albert network with N = 103 vertices
and 〈k〉 = 6, is the curve with the red squares. The natural frequen-
cies were drawn from the unit normal distribution. The optimized
network, shown as the curve with blue circles, was obtained from the
maximization of ωT Lω by using the hill climb algorithm described
in the text. The inset shows the region around the phase transition for
the rewired network, confirming that is of the second order type.

λ is observed. The synchronization diagram of the optimized
network that results from the algorithm is shown in Figure 2
as blue circles. It is evident the considerable enhancement
of the network synchronization capacity over a large range of
coupling strengths. We stress that the phase transition is now
much more abrupt, but still of second order, since the zoom
around the critical region shown in the inset has a continuous
behavior, and no hysteresis loop seems to be present. Figure
3 shows the positive correlation between natural frequencies
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FIG. 3. (Color online). The graphics shows in the left panel the posi-
tive correlation between natural frequencies |ω| of the oscillators and
degrees k of the vertices where they lie. The negative correlation be-
tween natural frequencies of adjacent vertices, measured here by the
average natural frequency 〈ωi〉N =

∑N
j=1 Ai jω j/ki of the neighbours

Ni of a vertex i as a function of its natural frequency ωi, is depicted
in the right panel.

|ω| and degrees k for the optimized networks (left panel), as
well as the negative correlation between the natural frequen-
cies of adjacent oscillators (right panel). We can give yet an-
other measure of this strong negative correlation noticing that
the fraction of links connecting oscillators with positive and
negative frequencies jumps from 0.5 to 0.87 in this particular
run of the optimization procedure.

The condition of maximal ωT Lω allows us also to attack
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another related problem considered recently in the literature.
The Laplacian matrix L of an undirected network is symmet-
ric, so that all its eigenvalues are real. Furthermore it can be
demonstrated [8] that for a connected network it has only one
eigenvalue $1 = 0 and all the other N − 1 are positive. Sup-
pose that the topology of the network is fixed and we want
to obtain the set of natural frequencies to be allocated to each
vertex such that it optimizes the synchronization properties,
subjected to the constraint σ2 =

∑N
i=1 ω

2
i = N (in fact, any

positive constant). By writing ω as a linear combination of
the eigenvalues vi of L, ω =

∑N
i=1 αivi, where

∑N
i=1 α

2
i = N to

assure the validity of constraint, we have that in order to max-
imize ωT Lω one must set ω proportional to the eigenvector of
largest eigenvalue of L (α1 = ... = αN−1 = 0 and αN =

√
N), a

result recently found in [13] by using more intricate methods.

III. THE KURAMOTO MODEL WITH ATTRACTIVE AND
REPULSIVE INTERACTIONS

For the Kuramoto model with attractive and repulsive inter-
actions (4), we will take advantage of the rather unexpected
result that for both kinds of oscillator, those with positive and
negative couplings, the collective parametrisation of the phase
locked oscillators can be taken to be the same, see, for in-
stance, Figure 3 of [26]. Hence, we can employ the same
ansatz (5) also in this case. We will consider the situation
with two kinds of units: the attractive and repulsive ones, for
which the coupling strength are, respectively, λ+ and λ−. Let
p be the fraction of attractive oscillators, and, consequently,
1− p the fraction of repulsive ones. As the coupling strengths
are properties of each oscillator, it is possible that an oscillator
with positive coupling strength is connected to an oscillator
with negative strength, causing in this way a kind of frustra-
tion effect in the network. Without loss of generality, one can
rescale the time variable in order to have λ+ = 1. An issue
that arises here is that the frequency of rotation of the locked
oscillators is not equal to the average value of the natural fre-
quencies 〈ω〉, as it happens for the Kuramoto model (1). By
changing to a new reference frame θi → θi + Ωt, one has from
(4)

dθi

dt
= ωi −Ω +

N∑
j=1

Ai jλ j sin(θ j − θi). (8)

Multiplying both sides by λi and then summing with respect
to the index i, the term

∑N
i=1

∑N
j=1 Ai jλiλ j sin(θ j − θi) cancel

out, and we have that a synchronized state must have

Ω =

∑N
i=1 λiωi∑N

i=1 λi
. (9)

Repeating here the same steps of Gottwald [23], we will have
that α(t) must obey, in this case, the ordinary differential equa-
tion α̇ = h(α), where

h(α) = 1 +
1
σ2

N∑
i=1

ωi

N∑
j=1

Ai jλ j sin(α(ω j − ωi)). (10)

In the same manner as for the Kuramoto model, to obtain the
stable synchronized solutions we must seek values of α∗ such
that h(α∗) = 0 with h′(α∗) < 0. Two examples of the func-
tion h(α) are shown in Figure 4 for an Erdos-Renyi network

0 1 2 3 4 5
α

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

h
(α

)

p=0.8

p=0.65

FIG. 4. (Color online). The graphics show the function h(α) (10) for
an Erdos-Renyi network with N = 103 vertices and natural frequen-
cies drawn from the unit normal distribution, for two different values
of the fraction p of vertices with positive coupling strength. For both
curves, λ− = −0.5.

with N = 103 vertices, mean degree 〈k〉 = 10 and natural fre-
quencies drawn from a unit normal distribution. The curves
correspond to two different values of the fraction p of oscilla-
tors with positive coupling strengths (and λ− = −0.5). From
the overall shape of the function h(α), the condition for the
optimization, either to favor or to suppress synchronization,
depends on the value of the derivative of h(α) at α = 0,

σ2h′(0) =

N∑
i=1

N∑
j=1

Ai jλ jωiω j −

N∑
i=1

N∑
j=1

Ai jλ jω
2
i = −ωTLω,

(11)
where L is the Laplacian matrix associated to the weighted
adjacency matrixA = AΛ,

Li j = δi j

N∑
k=1

Aik −Ai j, (12)

with Λi j = δi jλ j. Clearly, when λi = λ for all oscillators, we
recover the previous optimization condition. In contrast with
the previous case, the Laplacian matrix L is not symmetrical
here, rendering the spectral analysis much more complicate in
this case.

However, the overall scenario is very similar to that one
found for the standard Kuramoto model, and we will proceed
in the same manner to optimize the network structure either to
favor or to suppress synchronization. Of course, for the first
case, we must maximize ωTLω, whereas for the second case
we must minimize it. It is interesting that we also have here
a rather clear interpretation of the characteristics of the opti-
mized network in terms of correlations between microscopic
properties. Inspecting equation (11), we see that if we are op-
timizing the network to favor synchronization, there must be
a negative correlation between the natural frequency ωi of the
oscillator placed at vertex i and the average value of the prod-
uct ω jλ j over its neighbors, as well as a positive correlation
between |ωi| and the average value of coupling strengths of
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its neighbors. If we are optimizing the network to suppress
synchronization, the correlations must be reversed. The same
hill climb rewiring algorithm can be implemented to minimize
or maximize condition ωTLω and produce networks with the
desired properties.

We apply our algorithm to build the optimal network
topologies, both to favor and to suppress synchronization, us-
ing as seed an Erdos-Renyi network with 103 vertices and
mean degree 〈ω〉 = 5. The natural frequencies were drawn
from the unit normal distribution and a fraction p = 0.8 of
the vertices have positive strengths λ+ = 1, while 0.2 of the
vertices have λ− = −0.5. The natural frequencies and cou-
pling strengths for each vertex were randomly assigned and
were kept fixed during the optimization procedure, the algo-
rithm only performs the rewiring of the network connections.
The results are shown in Figure 5. Panel (a) shows the time
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FIG. 5. (Color online). Panel (a) shows the time evolution of r(t)
for the original network (the red dashed line), for the optimized net-
work in order to favor synchronization (the blue continuous line) and
for the optimized network in order to suppress synchronization (the
dash-dotted green line). Panel (b) shows the behavior of function
h(α) for the three cases depicted in panel (a). Panels (c) and (d) show,
respectively, the negative correlation between the natural frequency
ωi of the oscillator at vertex i and the mean value of the product 〈ωλ〉
over its set of neighbors Ni and the positive correlation between ω2

i
and the mean value of the coupling 〈λ〉 of Ni for the optimized net-
work to favor synchronization shown in panel (a).

evolution of the order parameter r(t) for the original network
(the red dashed line), for the optimized network in order to
favor synchronization (the blue continuous line) and for the
optimized network in order to suppress synchronization (the
dash-dotted green line). The overall behavior of the three
cases are independent of the initial conditions. The method
works very well for both cases, the synchronization proper-
ties are clearly enhanced for the optimal synchronization net-
work, while the network optimized to suppress synchroniza-
tion shows only a noise-like behavior of the order parameter r.
The panel (b) shows the functions h(α) for the three cases de-
picted in panel (a). We can see that for the optimized network
to suppress synchronization, the derivative h′(0) reversed its
sign, destroying the stable synchronized solution. Panels (c)
and (d) show, for the network optimized to favor synchroniza-
tion, the presence of the correlations discussed earlier, respec-
tively, the negative correlation between the natural frequency

ωi of the oscillator at vertex i and the mean value

〈ωλ〉N =

∑N
j=1 Ai jω jλ j∑N

j=1 Ai jλ j
(13)

over its set of neighbors Ni, and the positive correlation be-
tween |ωi| and the mean value of the coupling 〈λ〉 of its neigh-
bors Ni. We have found also a positive correlation between
the magnitude of the natural frequencies and degrees for the
optimized network to favor synchronization, see Figure 6,
whereas no correlation (either positive or negative) is seem
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FIG. 6. (Color online). The graphics show the positive correlation
between the magnitude of the natural frequencies and degrees for the
optimized network to favor synchronization, panel (a), whereas there
is no correlation for the network optimized to suppress synchroniza-
tion, panel (b). Both results correspond to the networks depicted in
figure 5. The insets show, for both cases, the distribution of the cou-
plings as function of the degrees.

for the optimized network to suppress synchronization. An-
other interesting result is that for the optimal synchronization
case, the positive and negative coupling strengths are equally
distributed in a large range of degrees, while for the case of
optimized network to suppress synchronization, most of the
oscillators with negative coupling are located at large degree
vertices (see the insets of Figure 6). Notice that the optimized
network to favor synchronization does not show r ≈ 1, it in-
stead saturates at the lower value r ≈ 0.9 due to the already
commented frustrating effects associated with the combina-
tion of attractive and negative units.

IV. CONCLUSIONS

We have shown that the dimensional reduction approach re-
cently proposed by Gottwald [23] for the Kuramoto model can
be adapted to obtain a simple analytical condition to optimize
the network topology to favor or to suppress synchronization.
Our condition allowed us to rederive analytically some recent
results [10–13] obtained numerically. Our approach was also
extended to the Kuramoto model with attractive and repulsive
interactions, leading also to simple analytical condition to op-
timize the networks, complementing in this way some recent
works [27–29] which considered the optimization of synchro-
nization in these models numerically. In both cases, the opti-
mal synchronization condition corresponds to the maximiza-
tion of the quadratic funcion ωT Lω, where where ω stands for
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the vector of the natural frequencies of the oscillators, and L
for the pertinent network Laplacian matrix. The optimization
condition involves only the microscopic properties of the net-
work, enlightening in this way many correlations observed nu-
merically for optimal synchronization networks. We could in-
troduce a hill climb rewiring algorithm to produce optimized
networks in a very efficient way, since it is not necessary the
integration of any differential equation or the computation of
any matrix eigenvector, only plain matrix multiplications are
used in each step. As common for this kind of algorithm, one
cannot assure in principle that the procedure will stop effec-
tively in a global minimum. However, since the algorithm is
computationally simple, on can run the procedure for several
initial networks in order to seek for a global minimum. In
all tests we have performed, our algorithm returned, with lit-
tle computational effort, networks with greatly enhanced syn-
chronization properties. An important open problem is the

optimization of other kinds of oscillators as, for example, the
Winfree model [32]. It would be interesting to investigate if
the Gottwald approach [23], or some variant of it, could be
applied to these cases, and if an analysis analogous to the
presented here could be indeed used to optimize the network
topology to favor synchronization or other kinds of collective
behaviors that might emerge in these more complicated mod-
els.
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