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INTRODUCTION
Glaucoma is a neuropathy characterized by visual field loss with 

gradual thinning of the retinal nerve fiber layer (RNFL) and cupping 
of the optic nerve head (ONH)(1). The diagnosis of glaucoma is cur-
rently based on the appearance of the ONH and standard automated  
perimetry (SAP) testing results. Recent randomized clinical trials 
including the Ocular Hypertension Treatment Study and the European 
Glaucoma Prevention Study reported that the first detectable damage 
in patients with glaucoma can be either structural or functional(2,3). 

This suggests that using structural and functional testing in combi-
nation may improve glaucoma detection.

Optical coherence tomography (OCT), first described in 1991 by 
Huang et al.(4), is a noncontact, high-resolution technique using a 
scanning interferometer to produce cross-sectional images of the 
re   tina and peripapillary RNFL in vivo(4,5). Previous reports have shown 
that time domain (TD) OCT (Stratus, Carl Zeiss Meditec, Inc., Dublin, 
CA) has high sensitivity and specificity for diagnosing glaucoma, and 
has good correlation with VF findings detected with SAP(5-8).
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ABSTRACT
Purpose: To evaluate the sensitivity and specificity of machine learning classifiers 
(MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard 
automated perimetry (SAP). 
Methods: Observational cross-sectional study. Sixty two glaucoma patients and 
48 healthy individuals were included. All patients underwent a complete ophthal-
mologic examination, achromatic standard automated perimetry (SAP) and retinal 
nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec 
Inc., Dublin, California). Receiver operating characteristic (ROC) curves were 
obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the 
following MLCs were tested using parameters from the SD-OCT and SAP: Bagging 
(BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), 
Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada 
Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Ma-
chine Gaussian (SVMG). Areas under the receiver operating characteristic curves 
(aROC) obtained for isolated SAP and OCT parameters were compared with MLCs 
using OCT+SAP data. 
Results: Combining OCT and SAP data, MLCs’ aROCs varied from 0.777(CTREE) to 
0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly 
larger the best single OCT parameter (p<0.05), but was not significantly different 
from the aROC obtained with the best single SAP parameter (p=0.19). 
Conclusion: Machine learning classifiers trained on OCT and SAP data can suc-
cessfully discriminate between healthy and glaucomatous eyes. The combination 
of OCT and SAP measurements improved the diagnostic accuracy compared with 
OCT data alone.

Keywords: Glaucoma/diagnosis; Diagnostic techniques, ophthalmological/classifi-
cation; Tomography, optical coherence/instrumentation; Sensitivity and specificity

RESUMO
Objetivo: Avaliar a sensibilidade e especificidade dos classificadores de aprendizagem 
de máquina no diagnóstico de glaucoma usando Spectral Domain OCT (SD-OCT ) e 
perimetria automatizada acromática (PAA). 
Métodos: Estudo transversal observacional. Sessenta e dois pacientes com glaucoma 
e 48 indivíduos normais foram incluídos. Todos os pacientes foram submetidos a 
exa   me oftalmológico completo, e perimetria automatizada acromática (24-2 SITA; 
Humphrey Field Analyzer II, Carl Zeiss Meditec, Inc., Dublin, CA) e exame de imagem 
da camada de fibras nervosas utilizando SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec 
Inc., Dublin, California). Curvas ROC (Receiver operator characteristic) foram obtidas 
para todos os parâmetros do SD-OCT e índices globais do campo visual (MD, PSD, 
GHT ). Subsequentemente, os seguintes classificadores de aprendizagem de máquina 
(CAMs) foram testados usando parâmetros do OCT e CV: Bagging (BAG), Naive-Bayes 
(NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), 
Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA), Support 
Vector Machine Linear (SVML) e Support Vector Machine Gaussian (SVMG). Áreas 
abaixo da curva ROC (aROC) obtidas com os parâmetros isolados do campo visual 
(CV) e OCT foram comparados com os CAMs usando dados associados do OCT e CV. 
Resultados: Combinando os dados do OCT e do CV, aROCs dos CAMs variaram entre 
0,777(CTREE) e 0,946 (RAN). A maior aROC dos CAMs OCT+CV obtida com RAN (0,946) 
foi significativamente maior que o melhor parâmetro do OCT (p<0,05), mas não houve 
diferença estatística significativa com o melhor parâmetro do CV (p=0,19). 
Conclusão: Os classificadores de aprendizagem de máquina treinados com dados 
do OCT e CV podem discriminar entre olhos normais e glaucomatosos com sucesso. 
A combinação das medidas do OCT e CV melhoraram a acurácia diagnóstica com-
parados aos parâmetros do OCT.

Descritores: Glaucoma/diagnóstico; Técnicas de diagnóstico oftalmológico/classi-
ficação; Tomografia de coerência óptica; Sensibilidade e especificidade
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Recently, several companies have developed newer versions of 
OCT employing spectral domain (SD) technology. SD-OCTs have 
higher axial resolution and scan speed than conventional TD-OCTs. 
The Cirrus HD-OCT (Carl Zeiss Meditec, Inc.) has an axial resolution of 
5 microns and a scan speed of 27,000 A-scans per second, whereas 
the Stratus OCT has an axial resolution of 8 to 10 microns and a scan 
speed of 400 A-scans per second. The higher sampling rates of the 
newer OCTs allow more data to be collected at shorter scan times. 
Studies comparing these two technologies have demonstrated that 
the sensitivity and specificity of various RNFL parameters using the 
Cirrus OCT are excellent and equivalent to the Stratus OCT(9-13). 

 Since 1990 (Goldbaum MH, et al. IOVS 1990;31; ARVO Abstract 503), 
machine learning classifier (MLC) techniques have been applied to 
optical imaging and visual function measurements to improve glau-
coma detection, with results suggesting that these techniques are as 
good as or better than currently available methods at classifying eyes 
as glaucomatous or healthy(14-24). Classifiers usually employ a form of 
supervised learning, where the program learns from positive and 
ne    gative training examples, representing cases where, for example, 
there are signs of glaucoma on data obtained by examination of the 
visual field (positive examples) or not (negative examples). The trai-
ning is repeated several times with the provision of various training 
data, with the positive or negative classification previously performed 
by an ophthalmologist, until the concept (identification of signs of 
glaucoma in one test) can be properly learned by the system. 

To the best of our knowledge, there is no study in the literature 
evaluating the use of MLCs with combined SD-OCT and SAP for the 
diagnosis of glaucoma. The purpose of this study was to investigate 
the sensitivity and specificity of MLCs for the diagnosis of glaucoma 
combining structural and functional parameters, using data obtained 
with SD-OCT and SAP.

METHODS
SubjectS

This observational cross-sectional study included 110 eyes of 
110 participants (62 patients with glaucoma and 48 healthy control 
subjects) older than 40 years and enrolled in the Glaucoma Service 
of the University of Campinas, Campinas, Brazil, between August 
2008 and November 2010. All subjects underwent a comprehensive 
ophthalmic evaluation, including review of medical history, best 
corrected visual acuity, slit lamp biomicroscopy, intraocular pressure 
measurement with Goldmann applanation tonometry, gonioscopy, 
dilated slit lamp fundus examination with a 78-D lens, SAP using the 
24-2 Swedish Interactive Threshold Algorithm (SITA; Humphrey Field 
Analyzer II, Carl Zeiss Meditec, Inc., Dublin, CA) and RNFL imaging 
with Cirrus HD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, 
California). To be included in the study, participants had to have a 
best-corrected visual acuity better than or equal to 20/40, spherical 
refraction within ± 5.0 D, cylinder correction within ± 3.0 D, open 
angles on gonioscopy, and a reliable SAP with false-positive errors  
<33%, false-negative errors <33% and fixation losses <20%. Eyes with 
coexisting diabetes, retinal disease, uveitis, nonglaucomatous optic 
neuropathy, pseudophakia or aphakia, significant cataract according 
to the criteria of Lens Opacification Classification System III (defined 
as the maximum nuclear opacity (NC3, NO3), cortical (C3) and sub-
capsular (P3)), were excluded. One eye was randomly selected if both 
eyes were found to be eligible.

For healthy individuals, inclusion criteria were: IOP ≤21 mmHg, 
with no history of elevated IOP, 2 consecutive and reliable normal 
visual fields and normal appearance of the optic nerve. Glaucoma-
tous eyes were defined as those with 2 or more IOP measurements  
>21 mmHg, a glaucomatous VF defect confirmed by 2 reliable and 
consecutive VF examinations and with glaucomatous appearance of 
the optic disc. Eyes with glaucomatous VF defects were defined as 

those fulfilling at least two of the following criteria: (1) cluster of 3 
points with a probability of <5% on a pattern deviation map in a sin-
gle hemifield including ≥1 point with a probability of <1%; (2) glau-
coma hemifield test (GHT) outside 99% of the age-specific normal 
limits; and (3) pattern standard deviation (PSD) outside 95% of the 
normal limit. Glaucomatous appearance of the optic disc was defined 
as the presence of at least 2 of the following findings: cup-disc ratio 
greater than 0.6, focal defects of the neuroretinal rim, acquired pit of 
the optic nerve and peripapillary hemorrhage. 

The severity of glaucomatous damage was determined accor-
ding to the following criteria: a) early damage: mean deviation (MD) 
≥-6 dB; b) moderate damage: MD between -6 dB and -15 dB; c) ad-
vanced damage: MD ≤-15 dB. Only patients with early or moderate 
damage were included in the study.

Informed consent was obtained from all participants before en -
rollment. All procedures conformed to the Declaration of Helsinki 
and the study was approved by the University of Campinas Medical 
Institutional Review Board.

Optical cOherence tOmOgraphy

Participants underwent ocular imaging with the commercially 
available Cirrus HD-OCT (software version 3.0, Carl Zeiss Meditec, 
Inc.), which uses spectral domain technology. The optic disc cube 
mode consists of 200 A-scans that are derived from 200 B-scans 
and covers a 6-mm2 area centered on the optic disc. After creating 
a RNFL thickness map from the 3-dimensional cube data set, the 
soft   ware automatically determines the center of the disc and ex-
tracts a circumpapillary circle (1.73-mm radius) for RNFL thickness 
measurement. All images were acquired with undilated pupils by a 
single, well-trained ophthalmologist (VGV), who was masked to the 
diagnosis. The OCT technology provides RNFL thickness maps with 
17 parameters: average thickness, 4 quadrants (superior, inferior, na -
sal, and temporal) and 12 clock hour measurements. All OCT data 
were aligned according to the orientation of the right eye. Hence, 
clock hour 9 of the circumpapillary scan represented the temporal 
side of the optic disc for both eyes. Only well-centered scans, with no 
evidence of eye movement or segmentation within the area of RNFL 
analysis, and with a signal strength ≥6 were included. 

Standard autOmated perimetry

All visual fields included were obtained with the 24-2 Swedish 
interactive threshold algorithm (SITA) of the Humphrey field Analyzer 
II, Carl Zeiss Meditec, Inc., Dublin, CA). Glaucoma subjects required 
at least two reliable visual field examinations, with the most recent 
examination within 3 months of the enrollment date. SAP parameters 
included in the analysis were MD, PSD, and GHT. For the GHT results, 
we assigned within normal limits (WNL) a value of 1; borderline, 2; 
and outside normal limits (ONL), 3.

machine learning claSSifierS

Based on patient data obtained from the Cirrus OCT and SAP, 
ma   chine learning classifiers were developed using the following 
algorithms: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron 
(MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble 
Selection (ENS), Classification Tree (CTREE), Ada Boost M1 (ADA), 
Sup   port Vector Machine Linear (SVML) and Support Vector Machine 
Gaussian (SVMG). Initially, MLC training sessions were supervised 
with all 17 parameters of the SD-OCT and 3 parameters of the SAP, 
a total of 20. Subsequently, a backward feature selection was used 
to find the minimal number of features that resulted in the highest 
aROC for each classifier. The analysis started with the evaluation of 
the classifiers performance over the full-dimensional feature set con-
taining the 17 SD-OCT and 3 SAP features. Sequentially, the feature 
that presented the lowest aROC, computed over the SD-OCT data 
alone, was removed and the classifier’s accuracy was computed. This 
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process of dimension reduction, based on aROCs of the SD-OCT and 
SAP parameters sorted in descending order, was performed 19 times. 
It started with the exclusion of the parameter with the lowest aROC 
and stopped only when the parameter with the best aROC was used. 
The criterion for evaluating the algorithms involved the analysis of 
ROC curves generated from the results of several classification tasks 
for each classifier. 

The classifiers were developed using a machine learning envi-
ronment software called Weka(25) version 3.7.0 (Waikato Environment 
for Knowledge Analysis, The University of Waikato, New Zealand). The 
examination data and images were collected at the Department of 
Ophthalmology, University of Campinas and temporarily stored in a 
local workstation. The data was transferred to the server located at 
the Engineering Laboratory of Knowledge (KNOMA) from the Pro-
gram of Computer and Digital Systems of the University of Sao Paulo.

To maximize the use of our collected data, the 10-fold cross-va-
lidation resampling method was employed. Accordingly, all data we-
re randomly divided into 10 subsets, each containing approximately 
the same proportion of healthy and glaucomatous OCT thickness 
mea    surements. Nine subsets were used as training data, while the 
remaining subset was used as testing data. This process was perfor-
med 10 times, until each of the 10 folders had been used as a test set. 
The test results were averaged to estimate the classifier’s accuracy.

StatiStical analySiS

All analyses were performed using MedCalc software version 
11.0.1 (MedCalc Software, Mariakerke, Belgium). Continuous variables 
were compared using the Student’s T test, whereas categorical va-
riables were analyzed using the Chi-Square or the Fisher Exact test.

Receiver operating characteristic (ROC) curves were obtained for 
all SD-OCT parameters (average, 4 quadrants, and 12 clock-hours 
RNFL thickness measurements) and SAP parameters (MD, PSD e 
GHT). aROCs obtained for each SD-OCT and SAP parameter and 
each machine learning classifier, before and after optimization, were 
compared using the z test. P values <0.05 were considered to be 
statistically significant.

RESULTS
One hundred and ten eyes of 110 individuals were included in 

this study. Among the 110 individuals, 62 patients had glaucoma and 
48 were healthy control subjects. 

Table 1 demonstrates the clinical characteristics of the study po-
pulation. The mean age was 57.0 ± 9.2 years for healthy individuals 
and 59.9 ± 9.0 years for glaucoma patients (p=0.103). There was no 
significant difference between the control and glaucoma groups 
regarding intraocular pressure (IOP) (14.8 ± 2.8 mmHg and 13.8 ±  

2.5 mmHg, respectively) (p=0.062), although glaucoma patients were 
using a mean number of 2.2 ± 1.2 medications to lower IOP. Mean 
MD values were -4.1 ± 2.4 dB for glaucoma patients and -1.5 ± 1.6 dB  
for healthy individuals (p<0.001). Among the glaucoma patients, 
51 (82.3%) were classified as having early damage and 11 (17.7%) 
as having moderate damage. Among the 62 eyes with glaucoma, 5 
(8.06%) showed poor agreement between structural and functional 
measurements. In all cases, the visual field defect was more pronoun-
ced in the hemisphere opposite to the expected (based on the area 
of greater optic nerve damage). 

SAP parameters with the greatest aROCs were: PSD (0.915 - CI 
0.846-0.956), GHT (0.866 - CI 0.787-0.923) and MD (0.828 - CI 0.745- 
0.894) (Table 2).

SD-OCT parameters with the greatest aROCs were: inferior qua  -
drant (0.813 - CI 0.727-0.881), average thickness (0.807 - CI 0.721-0.876),  
7 o´clock position (0.765 - CI 0.674-0.840) and 6 o´clock position 
(0.754 - CI 0.663-0.831) (Table 2). For a fixed specificity of 80%, the best 
sensitivities were observed with 7 o’clock position (64.5%) average 
thickness (62.1%), inferior quadrant (61.3%), and superior quadrant 
(57.6%) (Table 2).

Combining all OCT and SAP data using MLCs, the aROCs varied 
from 0.777 (CTREE) to 0.933 (RAN) (Table 3). Using optimized classi-
fiers (features in peak feature set) aROCs varied from 0.879 (CTREE, 2 
features) to 0.946 (RAN, 4 features) (Table 3). The best OCT+SAP aROC 
obtained with RAN trained with 4 features (0.946) was significantly 
larger than the best single OCT parameter (0.813) (p<0.05), but was 
not significantly different from the aROC obtained with the best sin-
gle SAP parameter (0.915) (p=0.37) (Figure 1).

DISCUSSION
Our study investigated the sensitivity and specificity of MLCs 

with the new version SD- OCT. To our knowledge, this study was the 
first to use MLCs with data obtained from SD-OCT and SAP. Many 
studies have been published assessing the sensitivity and specificity 
of TD-OCT, and some compared the diagnostic ability of TD-OCT 
and SD-OCT, demonstrating that they show similar and adequate 
performances(9-13). In a previous study, we reported the results of the 
SD-OCT in the diagnosis of glaucoma(25).

The diagnosis of glaucoma requires functional and structural 
ana   lysis and the combination of structural and functional tests may 
improve glaucoma detection. Lauande-Pimentel et al.(26) showed 
enhancement of diagnostic accuracy when structural (scanning laser 
polarimetry) and functional (SAP) data were used in combination. 
Shah et al.(27) demonstrated that the combination of structural para-
meters (scanning laser polarimetry (GDX), OCT or confocal scanning 
laser ophthalmoscopy (CSLO)) with frequency doubling perimetry 

Table 1. Demographic characteristics of the study population

 Healthy (N=48) Glaucoma (N=62) p value

Age (years; mean ± SD) 57.0 ± 9.2 59.9 ± 9.0 <0.103

Range 45-82 43-78 -

Gender (Male[%]:Female[%]) 23[47.9]: 25[52.1] 31[50]: 31[50] <0.830

Race (Caucasian[%]:African american[%]) 37[77.1]: 11[22.9] 46[74.2]: 16[25.8] <0.461

VA logMAR (mean ± SD) 00.04 ± 0.09 00.1 ± 0.1 <0.003

SE (D; mean ± SD) 01.53 ± 2.15 01.2 ± 1.9 <0.467

IOP (mmHg; mean ± SD) 14.80 ± 2.80 13.8 ± 2.5 <0.062

Medications (mean ± SD) 0 02.2 ± 1.2 <0.001

MD (dB; mean ± SD)  -1.50 ± 1.60  -4.1 ± 2.4 <0.001

PSD (dB; mean ± SD) 01.80 ± 0.80 04.3 ± 2.4 <0.001

VA= visual acuity; SE= spherical equivalent; D= diopters; dB= decibels; MD= mean deviation; PSD= pattern standard deviation.
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(FDT) or short wavelength automated perimetry (SWAP) led to a sig-
nificant increase in sensitivity, which was higher than those obtained 
with structural parameters alone. 

MLC techniques have also been employed with various techno-
logies designed to perform structural and functional evaluation of 
glaucoma, including TD-OCT(15,17,19,23), HRT(18,22,24), GDx(16,20), and visual 
field(13,18,20,21). Several studies have used MLC techniques to combine 
functional and imaging data in attempt to improve diagnostic accu-
racy(19,22). Bowd et al.(19) trained MLCs (RVM and subspace Mixture of 
Gaussians) on Stratus OCT and SAP data and showed that combining 
OCT and SAP measurements using MLCs increased diagnostic per-
formance marginally compared with MLC analysis of data obtained 
with each technology alone.

Mardin et al.(22) showed better performance for combined CSLO 
and SAP data compared with CSLO alone. However, combining CSLO 
and SAP data did not improve the accuracy compared with SAP data 
alone. We have also observed that combining OCT and SAP data 
using MLCs provided aROCs significantly larger than the best single 
OCT parameter (p<0.05), but not significantly different from the aROC 
obtained with the best single SAP parameter (p=0.37). This is likely 
due to a selection bias, as healthy controls were required to have nor-
mal visual field results and glaucoma patients were required to have 
abnormal visual fields. On the other hand, the purpose of MLCs is to 
replace human judgment exploiting all the information available, 
which justifies the inclusion of SAP in this case.

One way to reduce this interference would be to test the MLCs 
with structural and functional tests that are not used to define glau  -
coma. Racette et al.(28) used both SAP and stereophotographs as 
se   lection criteria, but used other devices (HRT and SWAP) to train 
and test MLCs. They have shown that the RVM classifier trained on op-
timized combinations of structural and functional parameters diffe-
rentiated between glaucomatous and nonglaucomatous eyes better 
than the RVM trained on functional or structural parameters alone.

The case control study design has almost certainly overestimated 
the diagnostic performance of the MLCs by creating two distinct 
populations of healthy and disease subjects(29). However, our series 
should be seen as a preliminary study comparing different classifiers 
and sets of variables (SAP and OCT). Another limitation of our study 
is that we trained and tested the MLCs within the same population. 
Although we employed cross validation techniques to minimize 
this source of bias, it would be interesting to test our model on an 
independent data set. The above mentioned limitations could be 
overcome by including a consecutive case series of glaucoma sus-
pects followed in a longitudinal study, allowing time to define what 
is disease. 

Table 3. aROC and sensitivities (%) at fixed specificities of 80% and 
90% obtained with OCT and SAP data using MLCs

MLC
aROC

(all 20 features)
aROC

(# features)
Specificity  

80%
Specificity  

90%

BAG 0.893 0.913(8) 91.93 74.19

NB 0.912 0.928 (5) 93.54 83.87

MLP 0.845 0.934 (5) 90.32 77.41

RBF 0.857 0.934 (4) 93.54 79.03

RAN 0.933 0.946 (4) 95.16 82.25

ENS 0.910 0.910 (20) 90.32 79.03

CTREE 0.777 0.879 (2) 82.25 56.45

ADA 0.932 0.933 (15) 93.54 83.87

SVMG 0.913 0.930 (8) 93.54 83.87

SVML 0.929 0.938 (12) 93.54 83.87

MLC= machine learning classifier; aROC= area under the ROC curve; BAG= Bagging; NB= 
Naive-Bayes; MLP= Multilayer Perception; RBF= Radial Basis Function; RAN= Random 
Forest; ENS= Ensemble Selection; CTREE= Classification Tree (J48); ADA - Ada Boost M1;  
SVMG= Support Vector Machine Gaussian; SVML= Support Vector Machine Linear.

aROC RAN=0.946; aROC PSD=0.915; aROC Inferior=0.813

Figure 1. aROCs obtained with OCT+SAP (RAN), SAP (PSD), OCT (inferior).

Table 2. Areas under the ROC curve (aROC) and sensitivities (%)  
at fixed specificities of 80% and 90% for each SAP and SD-OCT  
parameters

 aROC  
(95% CI)

Specificity 
80%

Specificity 
90%

SAP

MD 0.828 (0.745-0.894) 62.9 56.4

PSD 0.915 (0.846-0.959) 88.7 75.1

GHT 0.866 (0.787-0.923) 91.9 70.9

OCT

Average thickness 0.807 (0.721-0.876) 62.1 54.0

Quadrant

Temporal 0.675 (0.579-0.761) 50.0 33.1

Superior 0.737 (0.645-0.816) 56.4 46.7

Nasal 0.685 (0.590-0.771) 49.2 26.6

Inferior 0.813 (0.727-0.881) 61.3 53.2

Clock hour

1 0.703 (0.608-0.786) 45.2 29.8

2 0.723 (0.630-0.804) 51.6 34.7

3 0.574 (0.476-0.668) 29.8 22.6

4 0.605 (0.507-0.696) 29.0 11.3

5 0.671 (0.575-0.757) 43.5 27.4

6 0.754 (0.663-0.831) 47.6 33.9

7 0.765 (0.674-0.840) 64.5 38.7

8 0.631 (0.534-0.721) 42.7 27.4

9 0.625 (0.527-0.715) 44.3 36.3

10 0.699 (0.604-0.783) 50.8 42.0

11 0.740 (0.648-0.819) 40.3 33.9

12 0.672 (0.576-0.759) 38.7 21.0

CI = confidence interval.
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In conclusion, MLCs trained on OCT and SAP data can successfully 
discriminate between healthy and glaucomatous eyes. The combina-
tion of OCT and SAP measurements improved the diagnostic accu-
racy compared with OCT data alone. Further studies are necessary 
to investigate the accuracy of these MLCs in different populations.
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