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ABSTRACT
PURPOSE: To investigate the osseointegration properties of prototyped implants with tridimensionally interconnected pores made of 
the Ti6Al4V alloy and the influence of a thin calcium phosphate coating.
METHODS: Bilateral critical size calvarial defects were created in thirty Wistar rats and filled with coated and uncoated implants in a 
randomized fashion. The animals were kept for 15, 45 and 90 days. Implant mechanical integration was evaluated with a push-out test. 
Bone-implant interface was analyzed using scanning electron microscopy.
RESULTS: The maximum force to produce initial displacement of the implants increased during the study period, reaching values 
around 100N for both types of implants. Intimate contact between bone and implant was present, with progressive bone growth into the 
pores. No significant differences were seen between coated and uncoated implants.
CONCLUSION: Adequate osseointegration can be achieved in calvarial reconstructions using prototyped Ti6Al4V Implants with the 
described characteristics of surface and porosity. 
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Introduction

Cranioplasty is one of the oldest performed surgical 
procedures. Archeological evidence suggests that ancient 
civilizations attempted to perform cranioplasties with materials 
such as gold, shells and gourds. Since then different materials have 
been employed, with variable success1. In present times, despite 
the development of better implantable materials, surgeons are still 
challenged by the need for safer and more precise reconstructions, 
especially in terms of recreating as normal a cranial tridimensional 
contour as possible.

Titanium and its alloys have been widely used in the 
field of surgery for the construction of implantable devices. Their 
biocompatibility has been extensively demonstrated, especially 
related to bone, both experimentally2–5 and clinically6–9 with 
variable implant designs and methods of construction.

In an attempt to improve bone contact and integration 
with the reconstruction material, ceramics have been employed 
either as single constituent of implants or mainly as coating 
materials. The ceramic coating of metallic implants functions as 
a transition layer between bone tissue and the non-physiological 
metal surface, enhancing the contact and conducting bone growth 
along the surface of the implant10. Calcium phosphate coatings are 
reported to increase contact between bone and implant11, and to 
enhance implant fixation, including a facilitation of bone growth 
over gaps between the two surfaces12.

Rapid prototyping methods have been employed for a 
long time in fields where precise building of complex structures 
was necessary, such as aerospace engineering and racing cars 
development5. These properties were more recently found useful 
in medical sciences, especially regarding biomaterials research, 
giving rise to studies of complex geometry implant construction13. 
There is also some evidence of good osseointegration of titanium 
implants built by rapid prototyping in facial bone14.

The goals of this study were to evaluate the 
osseointegration properties of porous prototyped implants with 
tridimensionally interconnected pores made of the Ti6Al4V alloy 
in the setting of cranial reconstruction, and possible influences of 
a thin layer of calcium phosphate coating, using a model of critical 
size cranial defect in rats.

Methods

The study protocol was fully approved by the Committee 
for Ethics in Animal Research of the University of Campinas - 
UNICAMP, under the number 2252-1, and complied with the 

Council for International Organization of Medical Sciences 
(CIOMS) ethical code for animal experimentation.

Implant design and construction

Implants were designed in a round shape, with a diameter 
of 5 mm. Two interconnected porous layers were built, with each 
pore having a diameter of 500 µm (Figure 1). Construction was 
performed using titanium-aluminum-vanadium (Ti6Al4V) alloy 
powder (EOS Titanium Ti64, EOS GmbH – Electro Optical 
Systems; Munich, Germany), which was processed by direct metal 
laser sintering (DMLS) using an EOSINT M 270 (EOS GmbH) 
equipment.

FIGURE 1 - SEM images of prototyped Ti6Al4V scaffold, depicting the 
porosity and surface roughness obtained (Magnification: x40 left; x65 right).

Ceramic coating

Coating of the implants with β-tricalcium phosphate 
(β-TCP) was performed using radiofrequency assisted physical 
vapor deposition. The used parameters were 30W source power 
and a pressure of 4x10-2 Torr, with a duration of 25 minutes.  This 
resulted in a coating thickness of 100 nm.

Surgical procedure

Thirty male, three month-old, Wistar rats were operated. 
The procedure was performed under general anesthesia with 
intraperitonially administered xylazine (Xilazin®, Syntec do 
Brasil Ltda., Cotia, Brazil) and ketamine (Cetamin®, Syntec do 
Brasil Ltda., Cotia, Brazil). The animals were immobilized using a 
stereotaxic surgery frame. A median incision was made in the scalp 
and periosteum, which was laterally dissected from the calvarium 
using an elevator. Two parallel, full-thickness craniotomies with 
5mm diameter was then performed on the parietal bones using a 
low-speed drill under saline irrigation, according to the critical size 
defect proposed by Bosch15. Each animal received one Ti6Al4V 
and one Ti6Al4V+β-TCP implant. The position of the implants was 
randomized between left and right sides using a list of randomized 
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positions for the Ti6Al4V+β-TCP implant provided by an online 
random number generator (available at www.randomization.com). 
Then, periosteum and scalp were separately sutured using 5-0 
nylon sutures. Each animal was numbered and separated into three 
groups that would be kept for different periods before euthanasia, 
i.e. 15, 45 and 90 days.

Animal sacrifice and material retrieval

The animals were euthanized in groups after the assigned 
postoperative periods, using a carbon dioxide inhalation chamber.

The scalp over the operated region was removed and 
after careful macroscopic observation and periosteal dissection, the 
uppermost part of the cranium was cut off at the levels of temporal, 
occipital and frontal bones, including both implants fully surrounded 
by uninjured bone. Specimens were initially kept in saline solution 
and refrigerated to preserve fresh tissue characteristics.

Push-out tests

Push-out tests were performed using a mechanical essay 
equipment, model DL 2000 (EMIC Equipamentos e Sistemas de 
Ensaio LTDA, São José dos Pinhais, Brazil), with a 500 N probe 
model CCE500N (EMIC). Acquired data were processed with 
TESC version 3.04 software (EMIC).

The tests were performed in an up to 24-hour period 
following obtainment of the samples. The cranial bone containing 
the implants was carefully positioned over a centrally perforated 
stand, with the convex outer face down. The stand hole had a 
larger diameter than the one of the implant in order not to restrain 
its downward movement during the test. Each implant was tested 
separately after proper positioning over the stand. The test was 
conducted in a nondestructive fashion. The execution of each essay 
was followed in real time through a force x time graph exhibited 
by the software. Once the maximum force (Fmax) was reached 
and its values constantly decreased, the test was interrupted.

Samples preparation and cutting

After the push-out tests, samples were fixed in 
formaldehyde solution and embedded in resin. Cutting of the samples 
was performed using a Model 650 Low Speed Diamond Wheel Saw 
(South Bay Technologies, Inc., San Clemente, USA) and a four inch 
diamond waffering blade (Buehler, Lake Bluff, USA). The blocks 
were cut with a coronal plane orientation, initially tangential to the 
anterior edges of both implants. Two sequential 1mm-thick cuts 

were made starting from the anterior edge in a posterior direction, in 
order to analyze the interior of the implants.

Scanning electron microscopy analyses

Microscopic analyses were always performed on the 
occipital face of the cuts. Samples were coated with gold using a 
Sputter Coater Model SC7620 (Quorum Technologies Ltd., Ashford, 
United Kingdom). Scanning electron microscopy (SEM) images 
and energy-dispersive X-ray spectroscopy (EDS) were obtained 
with a Leo 440i microscope coupled with a EDS detector model 
6070 (LEO Electron Microscopy, Cambridge, United Kingdom).

EDS dot mapping images were obtained using the following 
parameters: magnification of 50x, beam acceleration of 20 kV and 
acquisition time of three minutes. The chosen elements for image 
construction were Titanium (red dots) and Calcium (green dots).

All SEM and EDS images analyzed correspond to the 
occipital (posterior) surface of the second 1mm cut, i.e. 2mm from 
the frontal (anterior) edge of the implants.

Statistical analysis

Statistical analysis was performed using Bioestat 5.0 
software (Instituto de Desenvolvimento Sustentável Mamirauá, 
Tefé, Brazil). The continuous variable “Force” obtained from push-
out tests was analyzed for normal distribution within groups using 
the Shapiro-Wilk test. Intragroup comparisons between the different 
types of implants were done by using two-tailed Student´s t-test for 
paired samples. Comparisons between different time groups were 
performed by using single-factor Analysis of Variance (ANOVA) test.

Results

All animals had an uneventful postoperative course and 
exhibited normal behavior and no discernible deficits, except for one 
pertaining to the third operated group (15 days), which died minutes 
after the surgical procedure, probably due to anesthetic prolonged effect.

Macroscopic evaluation

Wound healing was considered satisfactory and no 
noticeable scalp scars were seen at the time of necropsies. After 
scalp removal, complete periosteal healing was observed in all 
animals, with no gross signs of inflammation. Also, during periosteal 
elevation from the calvarium, a firm adhesion of the former to the 
upper surface of the implant was invariably present (Figure 2 – Left).
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Once the bone specimens were retrieved, it was observed 
that the implants were surrounded by bone of normal appearance, 
with no signs of interposed fibrous tissue. On the inner surface of 
the specimens, bone ingrowth towards the implant pores could be 
seen, especially in those pertaining to the animals of 45-day and 
90-day groups (Figure 2 - Right). By applying gentle pressure over 
the implants no visible movement ensued.

SEM and EDS analyses

Standard SEM images better evaluated growth of bone 
into the pores, especially the more centrally located ones as seen on 
the coronal cuts of the implants. A progressive filling of the pores 
by bone was observed between the groups, with the 90-day one 
exhibiting the highest occupation. This tendency was equally present 
in both types of implants (Figures 3 and 4). Also, intimate contact 
between newly formed bone and the inner surface of the channels 
could be observed and confirmed by EDS spectra (Figure 5).

FIGURE 2 - Dissection performed after animal sacrifice showing firm 
periosteal adhesion to the surface of the implant (left). Inner surface of 
the specimen recovered exhibiting growth of bone into the pores of the 
implant (right).

Push-out tests

The mean Fmax required to disrupt the implant-bone 
interface was progressively higher from the 15-day to the 90-day 
groups and this tendency was observed for both types of implants. 
Comparison of the values among the groups revealed that forces 
needed to displace either type of implant after 45 and 90 days were 
significantly higher than those needed at 15 days. Differences 
between values for each type of implant at 45 and 90 days groups 
did not reach statistical significance. No significant differences 
were observed between the mean maximum forces within groups 
between Ti6Al4V and Ti6Al4V+β-TCP implants (Table 1).

15 days 45 days 90 days
Ti6Al4V 21.3 98.7* 97.3*

Ti6Al4V+β-TCP 12.4 83.6# 93.4#

TABLE 1 - Mean results of push-out tests for type of implant 
and groups (Fmax values in Newtons). 

*p<0.05 compared to mean value for Ti6Al4V at 15 days. 
#p<0.05 compared to mean value for Ti6Al4V+β-TCP at 15 days. FIGURE 3 - SEM images of Ti6Al4V implants at 15-day (upper), 45-

day (center) and 90-day (lower) stages, showing progressive increase in 
pores occupation by bone ingrowth (Magnification x50).
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FIGURE 4 - SEM images of Ti6Al4V+β-TCP implants at 15-day (upper), 
45-day (center) and 90-day (lower) stages, showing progressive increase 
in pores occupation by bone ingrowth (Magnification x50).

FIGURE 5 - Close-up of the internal wall of a pore of a Ti6Al4V implant 
belonging to the 90-day group. EDS spectra demonstrating the presence 
of bone (Region L2 – right spectrum) in intimate contact with the scaffold 
surface (Region L1 – left spectrum) (Magnification x350).

FIGURE 6 - EDS dot map images of Ti6Al4V implants at 15-day 
(upper), 45-day (center) and 90-day (lower) stages, showing progressive 
enhancement of bone contact with the lateral surface of the implants and 
growth of bone into the pores (Red dots: Titanium; Green dots: Calcium. 
Magnification x50).

Dot map images obtained using EDS technique were 
useful to assess the morphology of the cranial bone surrounding 
the implants as well as the bone/implant interface. By comparing 
images obtained from the three groups, some enlargement of the 
native bone´s edge in contact with the implant as well as progressive 
bone penetration into the peripheral pores was noticed. Animals 
from the 15-day group exhibited thinner bone edges surrounding 
the implant and poorer contact was seen between them. Both 45 
and 90-day groups’ cuts showed similar appearances, in which 
native bone edges had greater contact with the lateral implant 
surface. Also, bone growth was seen towards both levels of pores 
and on the lower surface (which was in contact with the dura 
mater) of some implants (Figures 6 and 7).
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Discussion

Titanium and its alloys are extensively used to 
produce implants for bone reconstruction and fixation due to 
their biocompatibility10,16. Recently, the incorporation of rapid 
prototyping methods allowed the construction of more precise 
and customized implants, a great advantage in the setting of 
craniofacial reconstruction17. The aim of this study was to evaluate 
the osseointegration capability of customized Ti6Al4V implants 
produced by DMLS, with and without a thin β-TCP coating, in a 
rat cranial reconstruction model.

The experimental animal model employed in this study 
of bilateral parietal 5mm craniotomies has been frequently used 
due to its favorable characteristics, the main one being the ability 

to produce paired analysis. It also fulfills the criteria for a critical 
size defect, and allows for the evaluation of biomaterials for bone 
reconstruction15,18,19.

In macroscopic observations an invariably firm 
periosteal adhesion was seen over all outer implant surfaces. 
Moreover, surrounding bone was closely in contact with the 
implants, without any discernible mobility or interposed fibrous 
tissue. Also, the fact that the implants were slightly thicker than 
the calvarial bone allowed a clear visualization of bone ingrowth 
towards the lateral pores (Figure 2). These observations were 
confirmed by SEM images, which showed progressive centripetal 
bone filling of both levels of pores, with close contact between 
bone and implant surface.

The described findings agree with the described 
characteristics of biocompatibility exhibited by titanium and 
its alloys with bone tissue. Several studies have demonstrated 
these properties either with osteoblast cultures5,20 or with in vivo 
experiments3,4,11.

Integration between bone and implants was further 
demonstrated by push-out test results. It is accepted that such 
tests are able to estimate the mechanical interlocking between 
bone and implant21. The results of push-out tests demonstrated 
that a considerably high force was required to disrupt the bone-
implant interface, and that it was increasingly higher as the 
period elapsed between surgery and sacrifice grew, reaching 
values around 100N. These data indirectly demonstrate the 
progressive ingrowth of bone towards the implant that took place 
mainly during the period between 15 and 45 days, which was 
also demonstrated by the SEM and EDS images.

There are few studies in the literature that used push-
out tests to evaluate the strength of the bone-implant interface in 
the calvaria, although this method is widely employed in other 
experimental bone surgery models, such as those of long bones 
of the limbs22,23. In an evaluation of the influence of growth 
hormone supplementation on calvarial healing using an identical 
experimental model, a Fmax of 14.1 ± 5.1N was exerted on the 
defect of the placebo group and 35.4 ± 10.3N in the treatment 
group until a fracture ensued24. Some papers evaluating a variety of 
biomaterials for calvarial reconstruction in rats by means of push-
out tests executed similarly to what was done in our study had 
variable results. In the study of Jones et al.18 Fmax values around 
50N and 30N were obtained after 3 months of reconstruction with 
demineralized bone matrix (DBM) and bone grafts respectively. 
Two studies assessing reconstruction with scaffolds treated with 
growth factors obtained a Fmax of 130N for implants made of 
polycaprolactone and collagen treated with bone morphogenetic 

FIGURE 7 - EDS dot map images of Ti6Al4V+β-TCP implants at 15-day 
(upper), 45-day (center) and 90-day (lower) stages, showing progressive 
enhancement of bone contact with the lateral surface of the implants and 
growth of bone into the pores (Red dots: Titanium; Green dots: Calcium. 
Magnification x50).
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protein-2 (BMP-2) after 15 weeks25, and of 138N using calcium 
deficient hydroxyapatite (CDHA) implants coated with chitosan 
and treated with BMP-2 after eight weeks26.

No studies were found applying push-out tests to evaluate 
calvarial reconstructions with titanium implants and, to the best of 
our knowledge, this is the first one to do so. The obtained Fmax 
values demonstrate that there was progressive strengthening 
of the interface between bone and both types of scaffold during 
the studied period.  Comparing these with the previous literature 
findings, it can be noticed that they were superior to what has been 
found with traditionally employed materials such as autologous 
bone grafts, which is considered by many as the standard material 
for calvarial reconstruction, as well as with DBM and purely 
ceramic implants (in the paper by Zhao et al.26, scaffolds made 
solely with CDHA obtained a Fmax of 72N after eight weeks). 
Besides that, the Fmax values obtained with the titanium scaffolds 
in our study were close to the ones required for fracturing intact 
calvarial bones of 12-week-old rats, which were found to range 
from 80N to 100N25.

The variation of Fmax values among the experimental 
groups shows that most of bone ingrowth occurred until 45 days 
after the surgical procedure, with no significant improvement after 
this period (no statistically significant difference between 45-day 
and 90-day groups). This evolution pattern was also observed in 
other experimental in vivo studies18,27 and pointed out in a recent 
review on critical size calvarial defects in rats19.

It is generally reported in the literature that ceramic 
coatings improve the osseointegration of metallic scaffolds 
by promoting the filling of gaps between bone and implant12, 
enhancing bone contact with the implant surface11,28 and 
possessing osteoinductive properties29,30. However, the results 
of experimental studies comparing titanium implants with 
and without ceramic coatings have conflicting results, with 
evidence either of lack of benefit31–35 or superior results11,12,28,36 
with bone growth acceleration37. Taking together the results 
of push-out tests and SEM images observations, it was not 
possible to demonstrate a benefit of the β-TCP coating. It is 
possible that the employed coating characteristics were not 
adequate to promote or enhance bone ingrowth to an extent that 
was significantly different from what was observed with the 
uncoated scaffolds.

The concept that drove the design of the scaffolds used 
in this study was to obtain osseointegrated customized titanium 
implants build by rapid prototyping. This would allow for better 
results in terms of contour and symmetry, which are of vital 
importance in craniofacial reconstruction and a drawback of 

traditional methods. Besides, complications such as postoperative 
implant displacement, infections and implant exposure could be 
potentially reduced6. On other advantage would be the reduction 
of operative time, since time consuming intraoperative modeling 
would not be necessary17.

Recent reviews emphasized the pivotal role of implant 
surface physical components (mainly porosity and roughness) 
to promote adequate ossointegration38–40. Additionally, there 
is a chemical component that can be added, mainly ceramic 
coatings, in an attempt to establish a more receptive surface 
for cell adhesion by mimicking bone tissue and enabling ionic 
exchanges with host tissue10.

It has been demonstrated that the scaffold design 
and building method used in our study were able to provide 
an optimal environment for bon ingrowth, since the key 
physical elements that favor osseointegration were present, i.e. 
tridimensionally interconnected pores with adequate diameter 
and a sufficiently irregular surface to promote cell adhesion 
and osteoconduction. The lack of benefit of the ceramic coating 
in our study could be attributed either to non-ideal settings of 
the produced coating, such as its thickness, or to an already 
satisfactory enough result of the uncoated implant that could 
hinder the detection of an eventual influence. It is possible then 
that in the setting of calvarial reconstruction the addition of 
a ceramic coating would not be essential, once an adequately 
designed implant is provided.

Conclusion

Adequate osseointegration can be achieved in calvarial 
reconstructions using prototyped Ti6Al4V scaffolds with the 
described physical characteristics of surface and porosity. 
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