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Abstract

Background: Lower levels of cytosine methylation have been found in the liver cell DNA from non-obese diabetic (NOD)
mice under hyperglycemic conditions. Because the Fourier transform-infrared (FT-IR) profiles of dry DNA samples are
differently affected by DNA base composition, single-stranded form and histone binding, it is expected that the methylation
status in the DNA could also affect its FT-IR profile.

Methodology/Principal Findings: The DNA FT-IR signatures obtained from the liver cell nuclei of hyperglycemic and
normoglycemic NOD mice of the same age were compared. Dried DNA samples were examined in an IR microspectroscope
equipped with an all-reflecting objective (ARO) and adequate software.

Conclusions/Significance: Changes in DNA cytosine methylation levels induced by hyperglycemia in mouse liver cells
produced changes in the respective DNA FT-IR profiles, revealing modifications to the vibrational intensities and frequencies
of several chemical markers, including nas –CH3 stretching vibrations in the 5-methylcytosine methyl group. A smaller band
area reflecting lower energy absorbed in the DNA was found in the hyperglycemic mice and assumed to be related to the
lower levels of –CH3 groups. Other spectral differences were found at 1700–1500 cm21 and in the fingerprint region, and a
slight change in the DNA conformation at the lower DNA methylation levels was suggested for the hyperglycemic mice. The
changes that affect cytosine methylation levels certainly affect the DNA-protein interactions and, consequently, gene
expression in liver cells from the hyperglycemic NOD mice.
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Introduction

Non-obese diabetic (NOD) mice are a useful experimental

model in which an expressive amount of females spontaneously

develop a form of autoimmune diabetes that closely resembles

human diabetes [1]. In NOD mice, a combination of apparently

normal alleles at numerous recessive loci is associated with insulin-

dependent diabetes. Each of these alleles contributes a small

degree of susceptibility to the disease [1,2]. In the NOD

hyperglycemic mouse liver, gene expression-profiles and cellular

metabolism are also affected [3–6].

Lower cytosine methylation levels have been found in DNA

from liver cells in NOD mice under hyperglycemic conditions

when the bulk genome is considered [7]. This epigenetic change

may be associated with increased chromatin accessibility to MNase

digestion and decreased chromatin compactness in hyperglycemic

NOD mice [8]. Because Fourier transform-infrared (FT-IR)

profiles of dry DNA samples are affected differently by certain

DNA characteristics, such as base composition, single-stranded-

ness and histone binding [9], the methylation status of DNA from

NOD mice is expected to affect the DNA FT-IR profile. The FT-

IR notation indicates that a Fourier transform algorithm is

necessary to convert the raw data into a spectrum, which is

performed using modern technology for IR microspectroscopy,

wherein a beam of IR light is passed through a sample at all

wavenumbers, thus revealing specific absorption peaks.

The effects of methylation on the backbone structure of DNA

sequence models in solution at different levels of methylation have

been investigated with FT-IR, wherein the spectral regions that

are sensitive to the base-sugar conformation were emphasized

[10]. Dry synthetic oligonucleotide samples with different meth-

ylation patterns were studied using FT-IR in the 1700–800 cm21

spectral range and Raman spectroscopy, which revealed gradual

changes as a function of differing methylation content [11].

However, FT-IR data have not been collected from dry DNA

samples at different levels of methylation and analyzed in the

3600–2800 cm21 spectral range, which is sensitive to –NH and –

NH2 group stretching vibrations [12–16], nas and ns C-H

stretching vibrations in the 5-methylcytosine methyl group

[14,17], and general -CH3 and –CH2 groups [12,17–19] and

may include hydrogen bonds [12].
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In the present study, differences in the FT-IR signatures of liver

DNA previously demonstrated with different methylated cytosine

levels [7] were investigated in NOD mice that were of the same

age and under normoglycemic as well as hyperglycemic condi-

tions.

Results

A comparison of the FT-IR profiles between hyperglycemic and

normoglycemic mice revealed differences in the spectral range

from 3600–2800 cm21, 1700–1500 cm21 and 1450–700 cm21

(the fingerprint region) (Fig. 1). The most elevated peak, especially

assigned to –NH and –NH2 group stretching vibrations [12–16],

and also possibly to DNA hydrogen bonding [12], occurred at

3384 cm21 for normoglycemic mice and at ,3366 cm21 for

hyperglycemic mice. The absorbance intensity at ,2987–

2849 cm21, which was assigned to the nas and ns C-H stretching

vibrations in 5-methylcytosine methyl groups [14], was more

elevated in the DNA spectral profile from hyperglycemic mice and

was confirmed using the second-derivative for this spectral window

(Fig. 2). In addition, the area under this band peak was .2-fold

smaller for hyperglycemic mouse DNA compared with normo-

glycemic mouse DNA (Table 1). Such a DNA band peak for

normoglycemic mice was resolved into nine components after

peak fitting using the FT-IR equipment software (sensitivity: low)

(Fig. 3A); the most prominent peak was estimated at 2931 cm21.

In the hyperglycemic mouse DNA, the band peak was resolved

into 12 components (Fig. 3B); the most prominent peak was

estimated at ,2944 cm21.

A shoulder at 1707 cm21 and a peak at 1661 cm21 were

notably more elevated in the DNA spectrum for the hyperglycemic

mice (Figs. 1 and 4). When the second-derivative was determined

for the 1800–730 cm21 spectral window, the peak corresponding

to 1661 cm21 shifted to 1650 cm21 for hyperglycemic mouse

DNA (Fig. 5).

The absorbance intensity at ,1564 cm21 decreased with lower

methylation (Figs. 1, 4). A small peak at 1493 cm21 was only

evident in the DNA from the hyperglycemic NOD mouse liver

cells, but an absorption peak at 1294 cm21 was not clearly evident

in the DNA from either the normoglycemic or hyperglycemic mice

(Figs. 4 and 5). Studies have reported that peaks at the 1493 and

1294 cm21 frequencies are contributed by cytosine only [20] or by

both cytosine and guanine [21] (or the band at 1492 cm21 is

specifically assigned to cytosine and guanine [22]).

In the spectral regions related to PO2
2 antisymmetric (1220–

1226 cm21) and symmetric (1090–1080 cm21) stretching, pentose

ring vibrations and the main S-type sugar markers [10,21], the

vibrational intensities increased with the decreasing methylation

observed in the hyperglycemic mice (Figs. 4 and 5). The peak that

corresponds to the vibration intensity of the antisymmetric

stretching in the DNA PO2
2 groups was lower than the groups’

symmetric stretching in both normoglycemic and hyperglycemic

NOD mice, which has been extensively reported for several other

material types. The second derivative fitted to the IR profile

revealed that the frequencies related to the DNA PO2
2

antisymmetric stretching in the normoglycemic and hyperglycemic

mice slightly differ (1222 cm21 and 1230 cm21, respectively

(Fig. 5). For the PO2
2 symmetric stretching frequency, the DNA

from the normoglycemic mice exhibited a peak at ,1081 cm21

(Figs. 4 and 5), and the DNA peak from the hyperglycemic mice

appeared at 1092 cm21 in the original profile (Fig. 4), but was

resolved from second-derivative spectra at ,1100 cm21 (Fig. 5).

An elevated peak at 1047 cm21 and a low peak at 839 cm21

were evident in the normoglycemic mouse DNA spectral profile

(Figs. 4 and 5). At the spectral region with frequencies

,900 cm21, absorptivity was more intense for the hyperglycemic

mouse DNA.

Discussion

The findings herein reveal that the hyperglycemia-induce

changes in the methylation status of DNA from mouse liver cells

produced differences in the corresponding DNA FT-IR profiles

obtained using microspectroscopic procedures. Further, the

vibrational intensities and frequencies of several chemical markers

are modified, including nas and ns C-H stretching vibrations from

5-methylcytosine methyl groups of [14,17]. Based on reports that

the area under an absorption band peak in IR spectroscopy is

related to the absorbed energy [16,18,23], this study showing a

smaller band area for the hyperglycemic NOD mouse DNA –CH3

groups suggests a lower abundance of cytosine methylation in the

liver cell nuclei of these mice, which is consistent with a report by

Damasceno et al. [7]. The different number of peaks and the

position of the most prominent peak resulting from the peak-fitting

Figure 1. FT-IR spectral profiles for the liver DNA from NOD
mice. Normoglycemic mice (N), red line; hyperglycemic mice (H), black
line; spectral range: 3600–700 cm21. X axis, wavenumbers in cm21; Y
axis, absorbances (A).
doi:10.1371/journal.pone.0102295.g001

Figure 2. Savitzky-Golay’s second-derivative spectra for the
liver DNA from NOD mice. Detail for the IR spectral window in the
3100–2800 cm21 range. Normoglycemic mice (N), red line; hyperglyce-
mic mice (H), black line; X axis, wavenumbers in cm21; Y axis, second
derivative. Software: Grams/AI 8.0; 2nd derivative degree: 2, points: 31.
doi:10.1371/journal.pone.0102295.g002
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procedure indicate changes in the chemical environment energy

levels due to changing DNA methylation levels, which occur with

increasing glycemia levels in NOD mice.

The literature has assigned a band peak such as that exhibited

by the NOD mouse DNA FT-IR signature in the ,2987–

2849 cm21 spectral range to the nas of –CH3 and –CH2 groups,

especially in proteins [9,19]. However, in the present case this

peak is assumed to be primarily due to nas and ns C-H vibrations in

the 5-methylcytosine –CH3 group [14,17]. A peak in this IR

spectral region, although not as evident as in the presently studied

NOD mouse DNA samples, has also been observed in commer-

cially available, protein-free pure DNA samples, examined with an

all-reflecting objective (ARO) [16]. In addition, the 260/280 nm

absorbance ratio obtained using a spectrophotometer and the

protocol for isolating DNA from the NOD mouse liver indicates

that protein contaminants were not present in these samples [24].

For DNA analysis in the lower frequency FT-IR region, it may

be considered that ARO may be not as adequate as an ATR

objective [16]. Additionally, most DNA vibrational group data

from the literature that was used for comparison are from samples

in solution environments. However, when studying the DNA

spectral profiles for the hyperglycemic and normoglycemic mice,

results obtained at lower FT-IR frequencies were consistent with

data reported in the literature. For example, the shoulder at

1707 cm21, which is especially evident in the DNA spectral profile

of the hyperglycemic mice, may be due to a guanine band shifted

from 1717 cm21 [21,22]. The absorptivity at this spectral region

may also indicates that the DNA samples analyzed here were not

denatured [13,20,25,26].

The peak at ,1661 cm21 in the normoglycemic mouse DNA

shifted to 1650 cm21 in the second-derivative spectra for the

hyperglycemic NOD mouse DNA has been attributed to thymine

[20–22] as well as an adenine peak [20,22], also observed in an

unpublished study by one of us (BCV). A peak in this spectral region

has been observed in FT-IR spectral profiles from AT-biased DNA

samples studied using an ARO [16]. In the NOD mouse liver cell

DNA spectral profile, this peak may be due to pericentromeric

heterochromatin satellite DNA, which contains AT-rich sequences

[27]. On the other hand, according to Banyay and Gräslund [10], the

upshift of cytosine n C2 = O (Fig. 6) from 1652 to 1656 cm21 may be

‘‘assigned to vibrational effects due to the presence of a 5-methyl

group in cytosine’’. The downshift detected herein from ,1661 to

1650 cm21 with decreasing DNA methylation in the hyperglycemic

NOD mice may be supported by this proposition [10].

The band peak at 1493 cm21, which is a more evident DNA

peak in the hyperglycemic mice and is presumably assigned to

cytosine only [16], may have resulted from an increase in

unmethylated cytosine molecules for this DNA [7].

According to Taillandier and coworkers [apud 20], the PO2
2

antisymmetric stretch frequency (1225 cm21) is more sensitive to

the DNA molecule geometry than the symmetric stretch

(1088 cm21). In the present investigation, a frequency change

that affected the PO2
2 vibrations from DNA with lower cytosine

methylation involved symmetric rather than antisymmetric

stretching. The DNA from hyperglycemic and normoglycemic

mouse livers were obtained using the same protocol and examined

under the same ambient relative humidity. Thus, if conformational

changes were introduced in the DNA molecule, they were due to

methylation status changes that result from the different mouse

Figure 3. FT-IR spectral profiles after peak fitting for the liver DNA from NOD mice. Normoglycemic mice, A; hyperglycemic mice, B.
Spectral range: 2990–2850 cm21. Software: Grams/AI 8.0; function: Gaussian; sensitivity: low.
doi:10.1371/journal.pone.0102295.g003

Table 1. Numerical statistics for the FT-IR –CH3 band peak in the DNA from NOD mouse liver cell nuclei.

NOD mouse states DNA –CH3 band Normoglycemic/hyperglycemic –CH3 area ratio Band center of mass

Peak (cm21) Area units cm21

Normoglycemic 2931 7.47 2.69 2924

Hyperglycemic 2945 2.78 2930

Wavenumber edges: 2987 and 2849 cm21. Software: Grams; function: Gaussian; sensitivity: low.
doi:10.1371/journal.pone.0102295.t001
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glycemic conditions [7]. According to Franklin and Gosling’s report

[28], at the relative humidity in which the DNA samples were

examined (,75%), the DNA would acquire an A-conformation.

However, at least in crystal structures, reports describe a transition

between B-DNA and A-DNA that progresses through 13 confor-

mational steps [29,30] and demonstrated that methylated DNA

sequences form standard A-DNA only if allowed to crystallize for a

long period of time (2–3 months) [31]. DNA structures containing 5-

methylcytosine would present local perturbations and even acquire

a conformation with eccentric double helix characteristics that is

neither B-DNA nor A-DNA (E-DNA); B-DNA transition to A-DNA

would go through this intermediate DNA conformation [30,31].

One study reported that a DNA molecule with both B-DNA and

A-DNA was induced by cytosine methylation [29].

The absorptivity in the spectral region lower than ,959 cm21,

which was more prominent for DNA from hyperglycemic mouse

liver cell nuclei, is most likely associated with DNA O-P-O

bending [32], indicating a less rigid DNA conformation with

decreasing DNA methylation. Cytosine methylation has been

reported to restrict DNA backbone bending and flexibility [33].

Interestingly, in hepatocyte nuclei from hyperglycemic NOD

mice, chromatin becomes more unraveled compared with the

normoglycemic controls [8].

The 900–790 cm21 spectral region is also sensitive to the sugar

conformation [10]. The peak at 839 cm21 in the normoglycemic

mouse DNA that apparently shifted to 836 cm21 in the

hyperglycemic mouse DNA may be related to changes in the

sugar ring vibrations induced by lower cytosine methylation [10]

and higher glycemic conditions.

In conclusion, changes in the NOD mouse liver cell cytosine

methylation levels under hyperglycemic conditions, which alter

DNA structures and chemical environment, were reflected in the

corresponding FT-IR DNA signatures. The changes that affect

cytosine methylation levels certainly interfere with DNA-protein

interactions and, consequently, gene expression [10,34,35], which

is expected for NOD hyperglycemic mouse liver cells [6].

Materials and Methods

Animals
Female NOD/Unib adult mice were obtained from the

Multidisciplinary Center of Biological Investigation at the

University of Campinas. The animals were reared under standard

controlled conditions, fed extruded chow (Nuvital, Colombo,

Brazil) and received water ad libitum. Their glycemia levels were

measured through blood samples obtained by caudal puncture and

subjected to weekly analyses by an automatic Accu-Check Active

Performa glucose meter (Roche Diagnostic do Brasil, Jaguaré,

Brazil) up to 24 h before they were killed. Glycemia levels within

the range 90–100 mg/dL (5.00–5.55 mmol/L) were considered

normal; glycemia levels .500 mg/dL (27.5 mmol/L) indicate

severe hyperglycemia. The normoglycemic mice used as controls

were matched by age to the hyperglycemic animals. The protocol

Figure 4. FT-IR spectral profiles for the liver DNA from NOD
mice. Detail of the IR spectral window in the 1800–730 cm21 range.
Normoglycemic mice (N), red line; hyperglycemic mice (H), black line. X
axis, wavenumbers in cm21; Y axis, absorbances (A).
doi:10.1371/journal.pone.0102295.g004

Figure 5. Savitzky-Golay’s second-derivative spectra for the
liver DNA from NOD mice. Detail for the IR spectral window in the
1750–800 cm21 range. Normoglycemic mice (N), red line; hyperglyce-
mic mice (H), black line; X axis, wavenumbers in cm21; Y axis, second
derivative. Software: Grams/AI 8.0; 2nd derivative degree: 2, points: 31.
doi:10.1371/journal.pone.0102295.g005

Figure 6. Molecular structure of cytosine (A) and 5-methylcyt-
osine (B).
doi:10.1371/journal.pone.0102295.g006
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involving animal care and use as well as chromatin analysis was

performed in compliance with the Brazilian College of Animal

Experimentation and approved (protocol no. 1608-1) by the

Committee for Ethics in Animal Use of the University of

Campinas (Brazil).

Sample Preparation
A modified phenol-chloroform method [24] was used for DNA

extraction from the isolated liver nuclei. Briefly, for each group,

materials from three animals were assembled into one sample.

Approximately 400 mg of DNA quantified by UV spectropho-

Figure 7. Optical anisotropy aspects of the DNA samples extracted for FT-IR analysis. Birefringence images are shown for the liver DNA
from normoglycemic (A,B) and hyperglycemic (C-E) mice. Birefringence brilliance in the outer region of DNA drops dried on slides in A and D was
compensated in B and E, respectively (arrows). The bars equal 100 mm.
doi:10.1371/journal.pone.0102295.g007
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tometry were extracted twice with phenol-chloroform-isoamyl

alcohol (25:24:1) and centrifuged at 14,000 rpm for 5 min at 4uC.

The supernatant was then extracted once with chloroform-isoamyl

alcohol (24:1) and precipitated with 4 M sodium acetate at pH 5.0

in 2 volumes of absolute ethanol at 220uC overnight. Next, the

samples were centrifuged at 14,000 rpm for 20 min at 4uC and

washed in 70% ethanol. The 260/280 nm absorbance ratio (,1.8)

was obtained for the samples using the Thermo Scientific

NanoDrop 2000 spectrophotometer (Wilmington, DW, USA)

and indicates pure DNA according to the manufacturer. The

extracted DNA was resuspended in a 0.9% NaCl solution and

stored at 220uC until use. Next, it was washed in 80% ethanol to

remove NaCl crystals, air dried and spread on gold-covered glass

slides for FT-IR analyses. The phenol-chloroform protocol used

does not affect DNA methylation patterns [36]. DNA samples that

were prepared using the same protocol as for FT-IR but were

spread on glass slides were examined for optical anisotropy in an

Olympus BX51 polarization microscope (Tokyo, Japan). Birefrin-

gence with a negative sign demonstrated that the extracted DNA

was in a helical double-stranded conformation (Fig.7). The

ambient relative humidity at which the samples were examined

for FT-IR and optical anisotropy was less than 75%.

Equipment/Software
The DNA FT-IR spectral profiles were obtained using an

Illuminat IR IITM microspectrometer (Smiths Detection, Dan-

bury, USA) equipped with a liquid nitrogen- cooled mercury-

cadmium-telluride (MCT) detector; an Olympus microscope; and

Grams/AI 8.0 spectroscopy software (Thermo Electron Co.,

Waltham, USA). The performance validation of the equipment

used a low signal-to-noise ratio (7929:1) [37]. The area for

measurements was 50 mm per side; the sample and background

absorbances were measured using 64 scans for each individual

profile. Because an all-reflecting objective (ARO) has been

especially recommended for FT-IR analyses of DNA vibrational

properties in the 3600–3000 cm21 spectral region [16], this type

of microscope objective (166magnification) was used here.

Procedures
The spectral absorption signatures were obtained at wavenum-

bers ranging from 4000 cm21 to 700 cm21 with the spectral

resolution of 4 cm21. Ten spectral profiles were obtained for each

sample. Baseline correction (using a four-point method and

positioning the first point at ,3700 cm21) and normalization to

the highest peak were performed for each spectral profile; an

average profile was then calculated for each sample. For the peak

fitting procedure using a Gaussian function a low sensitivity level

was applied to the 2987–2849 cm21 spectral region using the

same software. In accordance with the software instructions, the

area for the selected bands was calculated using the trapezoidal

rule of integration and the center of mass was defined as the X

coordinate of the point where the peak areas are equal on either

side. To confirm the frequency positions of the peaks and

differences in peak intensities at specific spectral windows,

Savitzky-Golay’s second-derivative spectra were also obtained

[19,38].
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