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Abstract

Bone marrow failure syndromes and MDS represent a heterogenous group of diseases, characterized by ineffective
myelopoiesis, the risk of clonal evolution and a generally poor response to chemotherapy-based treatment regimen.
Nitrostyrene derivatives have been studied as protein phosphatase inhibitors in various tumor models. Pharmacological
studies have identified nitrostyrene as the structural core underlying a pro-apoptotic effect in tumor cells, yet their effects
on normal cells, including those of the hematopoietic system, are largely unknown. In this study, utilizing umbilical cord
blood-derived myeloid progenitor cells, patient-derived bone marrow cells, and a (BALB/c) mouse model; we investigated
the effects of treatment with two nitrostyrene derivatives (NTS1 and NTS2) on myeloid development. We demonstrate that
these compounds stimulate the expansion and differentiation of myeloid progenitors in vitro and improve myeloid
reconstitution after chemotherapy-induced bone marrow depletion in vitro and in vivo. These effects were accompanied by
increased C/EBPa expression and activity and inhibition of the p38MAPK signalling pathway. Together, our data suggest
that nitrostyrenes improve myelopoiesis and represent potential new treatment strategies for patients suffering from bone
marrow failure syndromes, hypocellular myelodysplastic syndrome and chemotherapy-induced aplasia.
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Introduction

Hematopoiesis is a carefully orchestrated process involving self-

renewal and differentiation of primitive pluripotent stem cells and

resulting in the formation of blood cells [1–4]. Differentiation of

common myeloid progenitors (CMP) generates cells of both the

granulocyte/macrophage lineage, leading to the formation of

granulocytes, monocytes and macrophages, as well as the

megakaryocyte/erythroid lineage, leading to the formation of

megakaryocytes, platelets and erythrocytes. Neutrophil and

monocyte/macrophage development is tightly regulated by key

transcription factors including C/EBPa and PU.1 [5–7] and in

recent years it has become clear that the expression and function

of such proteins is regulated by post-translational modifications,

including phosphorylation by members of the c-Jun N-terminal

kinases (JNK), extracellular signal-regulated kinases (ERK) and

p38-mitogen activated protein kinases (MAPK) pathways, which

has resulted in increased understanding of the regulation of

normal and aberrant myelopoiesis over the past decade [8],[9].

In the search for new cancer therapies, the effects of nitrostyrene

derivatives have been investigated in various human and non-

human tumor models. Mechanistic studies of these compounds in

tumor cells have demonstrated that nitrostyrenes have pro-

apoptotic effects based serine/threonine phosphatase (PP2A)

inhibition [10],[11], while other studies have proposed that

nitrostyrenes can function as telomerase inhibitors [12], phospho-

lipase (A2) inhibitors [13], tyrosine phosphatase inhibitors (PTP1B,

SHP1, Yop) [14], or tyrosine kinase inhibitors (Src, Syk, FAK)

[15]. Recently, we have studied the effects of the nitrostyrene

derivatives NTS1 and NTS2 on tumor growth and survival in the

Ehrlich ascites tumor (EAT) model [16] in vivo (unpublished data).

Here, in addition to the effects of NTS1 and NTS2 on tumor

survival, we observed an increase in the formation of myeloid

colony forming units (CFU) from isolated bone marrow (BM)

mononuclear cells, suggesting that NTS1 and NTS2 stimulate

myeloid regeneration following bone marrow suppression. Based

on these results, the mechanistic studies with nitrostyrenes and the

knowledge concerning the functional role of MAPK signalling

pathways, we hypothesized that the effects of NTS1 and NTS2 on

myelopoiesis could involve modulation of serine/threonine phos-

phatase, or kinase (MAPK) activity and their substrates.
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In this study, utilizing an ex vivo myeloid differentiation system

as well as a mouse model, we demonstrate that treatment with

NTS1 and NTS2 induces a dramatic increase in myeloid

progenitor expansion and differentially regulates granulocyte/

macrophage lineage development in vitro and in vivo. These effects

were accompanied by increased C/EBPa expression and reduced

C/EBPa phosphorylation, which can at least in part be explained

by inhibition of p38MAPK activity. Together our data illustrate a

potential role for nitrostyrene derivatives in the development of

new treatment strategies in myeloid disorders, including bone

marrow failure (BMF), myelodysplastic syndrome (MDS) or

chemotherapy-induced aplasia.

Materials and Methods

Nitrostyrene compounds
The nitrostyrenes 1-((E)-2-nitrovinyl) benzene (NTS1) and 1-

nitro-3-((E)-2-nitrovinyl) benzene (NTS2) were synthesized by

Villar et al. by procedures described in literature [13] and kindly

donated. NTS1 and NTS2 were selected out of ten nitrostyrene

derivatives based on the results in the EAT model (unpublished

data), stored in dimethyl sulfoxide (DMSO) and diluted 1000x in

Isocove’s Modified Dulbecco’s Medium (IMDM) before usage.

Mice
Male BALB/c mice, 6–8 weeks old, were bred and maintained

under specific pathogen-free (SPF) conditions at the University

Central Animal Facilities (Centro de Bioterismo, Universidada

Estadual de Campinas, Campinas, SP, Brasil). Mice were

maintained in cages (4 mice per cage) on shavings in a conditioned

room with a light/dark cycle of 12 hours, a temperature of 25uC,

standard chow (Nuvilab) and filtered water freely available.

Anaesthesia was performed utilizing Xylazine (10 mg/kg) and

Ketamine (80 mg/kg) (Sigma-Aldrich, Seelze, Germany) and mice

were euthanized through deep anaesthesia. Animal experiments

were performed in accordance with institutional protocols and

guidelines of the Institutional Animal Care and Use Committee, in

agreement with the recommendations of the Canadian Council on

Animal Care. Approval was obtained from the Committee on the

Ethics of Animal Experiments of the State University of

Campinas. All efforts were made to minimize suffering.

Patients
Bone marrow specimens were collected during a yearly control

visit and bone marrow examination (patient 1) or during control

bone marrow examination four weeks after chemotherapy

treatment for AML (patient 2 and 3). Written informed consent

was obtained from patient 1 and all parents (patient 1–3)

according to the Declaration of Helsinki. Protocols were approved

by the ethics committee of the University Medical Center Utrecht.

Isolation and culture of human CD34+ cells
Mononuclear cells (MNC) were isolated from human umbilical

cord blood by density centrifugation over a Ficoll-Paque solution

(density 1.077 g/mL). MACS immunomagnetic cell separation

(Miltenyi Biotech, Auburn, CA, USA) using a hapten-conjugated

antibody against CD34, which was coupled to beads, was used to

isolate CD34+ cells. 5.06104 CD34+ cells were cultured in

Iscove’s modified Dulbecco’s medium (Gibco, Paisley, United

Kingdom) supplemented with 8% fetal calf serum (FCS) (Hyclone,

South Logan, Utah, USA), 50 mmol/L of b-mercaptoethanol, 10

units/mL of penicillin, 10 mg/mL of streptomycin, and 2 mM

glutamine at a density of 0.36106 cells/mL. Cells were

differentiated towards neutrophils in 17 days upon addition of

stem cell factor (SCF) (50 ng/mL), FLT-3 ligand (50 ng/mL),

granulocyte macrophage colony-stimulating factor (GM-CSF)

(0.1 nmol/L), interleukin 3 (IL-3) (0.1 nmol/L), and granulocyte

colony-stimulating factor (G-CSF) (30 ng/mL). Every 3 days, cells

were counted with trypan blue, and fresh medium was added to a

density of 5.06105 cells/mL. After 3 days of differentiation only

G-CSF was added to the cells. NTS1 and NTS2 (0.5–5 mM) were

added to the fresh medium every 3 days. The NTS concentrations

were selected based on the results in the EAT model (unpublished

data). Umbilical cord blood and bone marrow was collected after

written informed consent was provided according to the Decla-

ration of Helsinki. Protocols were approved by the ethics

committee of the University Medical Center Utrecht.

Flowcytometric analysis
Cells were isolated after 3, 7 and 10 days of neutrophil

differentiation and washed with PBS. Samples were subsequently

incubated for 15 minutes with AnnexinV-FITC (Bender MedSys-

tems, Vienna, Austria) in binding buffer (10 mmol/L HEPES-

NaOH (pH 7.4), 150 mmol/L NaCl, 2.5 mmol/L CaCl2). Cells

were washed and resuspended in binding buffer containing 1 mg/

mL propidium iodide (Bender MedSystems, Vienna, Austria).

Percentages of early apoptotic (Annexin V-positive, propidium

iodide- negative) and late apoptotic (Annexin V- and propidium

iodide-positive) cells were determined by FACS analysis (FACS

Canto, Becton Dickinson, Alphen a/d Rijn, The Netherlands).

To analyze the percentage of CD34+ cells, cells were isolated

after 3, 7 and 10 days of differentiation, subequently washed and

resuspended in PBS/5% FCS (Hyclone, South Logan, Utah,

USA). Next, cells were incubated for 30 min on ice with a

phycoerythrin conjugated CD34 antibody (Becton Dickinson,

Alphen a/d Rijn, the Netherlands). After incubation, cells were

again washed and the percentage of CD34-positive cells was

determined by FACS analysis.

Lactoferrin staining was used to analyze neutrophil differenti-

ation after 17 days. Cells were isolated, fixed in 100 mL 0.5%

formaldehyde for 15 minutes at 37uC, followed by permeabiliza-

tion in 900 mL of ice-cold methanol for 30 minutes on ice. Cells

were subsequently washed with PBS, and incubated with

phycoerythrin (PE)-conjugated lactoferrin antibody (Immunotech,

Marseille, France) for 25 minutes. Cells were again washed and

FACS analysis was performed.

CFU assay with CD34+ cells from UCB or BM
CD34+ cells after isolation (500 cells per condition) and after

three days of differentiation (1000 cells per condition) were isolated

and plated in IMDM (Gibco, Paisley, United Kingdom) supple-

mented with 35.3% FCS (Hyclone, South Logan, Utah, USA),

44.4% methylcellulose-based medium (Methocult, StemCell

Technologies, Vancouver, Canada), 11.1 mmol/L of b-mercapto-

ethanol, 2.2 units/mL of penicillin, 2.2 mg/mL of streptomycin,

and 0.44 mmol/L of glutamine. CFU assays were performed in

the presence of SCF (50 ng/mL), FLT-3 ligand (50 ng/mL), GM-

CSF (0.1 nmol/L), IL-3 (0.1 nmol/L), G-CSF (60 ng/mL) and

EPO (6IE/mL). NTS1 and NTS2 were added to the medium in a

single dose. CFU-GM, CFU-G, CFU-M and CFU-E colonies

were scored after 11 days of culture.

Cytochemical staining of myeloid cells
May-Grunwald Giemsa staining was used to analyze myeloid

differentiation. Cytospins were prepared from 5.06104 differen-

tiating granulocytes and were fixed in methanol for 3 minutes.

After fixation, cytospins were stained in a 50% eosin methylene

blue solution according to May-Grunwald (Sigma Aldrich, Seelze,
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Germany) for 15 minutes, rinsed in water for 5 seconds, and nuclei

were counterstained with 10% Giemsa solution (Merck kGaA,

Darmstadt, Germany) for 20 minutes. Neutrophil differentiation

can be characterized by distinct stages from myeloblast, promy-

elocyte I, promyelocyte II, myelocyte and metamyelocyte towards

neutrophils with banded or segmented nuclei. Mature neutrophils

were characterized as cells containing either banded or segmented

nuclei. Micrographs were acquired, after staining with May-

Grunwald Giemsa solution, with an Axiostar plus microscope

(Carl Zeiss, Sliedrecht, the Netherlands) fitted with a 100x/1.3 NA

EC Plan Neofluor oil objective using Immersol 518F oil (Carl

Zeiss), a Canon Powershot G5 camera (Canon Nederland,

Hoofddorp, the Netherlands), and Canon Zoombrowser EX

image acquisition software. Photoshop CS3 was used for image

processing (Adobe Systems Benelux, Amsterdam, The Nether-

lands).

Western blot analysis
Western blot analysis was performed using standard techniques

utilizing antibodies directed against phosphorylated ERK1/2

(Thr202/Tyr204), ERK1/2, phosphorylated p38, p38, phosphor-

ylated C/EBPa (Ser21) (all from Cell Signalling Technology,

Beverly, MA, USA), or C/EBPa (Santa Cruz Biotechnology,

Santa Cruz, CA, USA). An antibody directed against tubulin

(Sigma-Aldrich, Seelze, Germany) was used as a loading control.

Analysis of myelopoiesis in BALB/c mice following 5-
fluorouracil (5FU)–induced bone marrow depletion

BALB/c mice were treated intraperitoneally with 150 mg/kg 5-

FU (Sigma, St.Louis, MO, USA) at day 0 according to Rich [17].

Mice were treated intraperitoneally with 1 mg/kg NTS1 or NTS2

once a week until day 21 after 5-FU treatment. Mice treated with

5FU only were used as controls. After 2, 5, 9, 15 and 21 days, mice

were sacrificed, bone marrow MNC were isolated by flushing both

femurs, followed by CFU assays with 56104 MNC per condition.

CFU-G and CFU-M were scored after 7 days.

Statistics
Statistical analysis was performed using a one-way ANOVA test

followed by a Dunnet multiple comparison test to compare the

differences between the control and NTS-treated cells in all

experiments (Prism GraphPad Software). P-values of 0.05 or less

were considered significant (*p = ,0.05, **p = ,0.01*).

Results

NTS1 and NTS2 have concentration dependent effects on
neutrophil progenitor expansion and survival

The nitrostyrene derivatives NTS1 and NTS2 were synthesized

by procedures previously described (13) (Figure 1A). To investigate

the effects of nitrostyrene derivatives on human myeloid develop-

ment, we utilized an ex vivo differentiation system, in which UCB-

derived CD34+ hematopoietic progenitor cells were differentiated

towards neutrophils in the presence of G-CSF. To determine the

effects of NTS treatment on neutrophil progenitor expansion and

viability, we cultured cells in the absence or presence of NTS1 or

NTS2 (0.5–5.0 mM). Treatment of neutrophil progenitors with

0.5 mM NTS1 and NTS2 resulted in a significant increase in

progenitor expansion, while treatment with 5.0 mM NTS2 resulted

in a significant decrease in progenitor expansion (Figure 1B).

Compared to the control and treatment with 0.5 mM NTS1 or

NTS2, the effects of higher concentrations of NTS compounds, in

particular NTS2, were accompanied by a significant increase in

the percentage of apoptotic cells at day 10 of differentiation

(Figure 1C). Together, these data demonstrate that NTS1 and

NTS2 have concentration dependent effects on neutrophil

progenitor proliferation and survival of neutrophil precursors,

and suggest that treatment with lower concentrations of NTS1 and

NTS2 stimulates myeloproliferation.

NTS1 and NTS2 differentially stimulate myeloid
progenitor expansion and granulocyte/macrophage
lineage development

In order to characterize the effects of NTS1 and NTS2

treatment on CD34+ myeloid progenitors specifically, CD34+ cells

were differentiated towards neutrophils in the absence or presence

of NTS1 or NTS2. At day 3 and 7 of differentiation, the

percentage and absolute number of CD34+ progenitor cells were

analyzed by FACS. No significant effects at day 3 (data not shown)

were observed, while treatment with NTS1 (0.5 mM) resulted in a

significant increase in both the percentage and absolute number of

CD34+ cells at day 7, suggesting that NTS1 stimulates myeloid

progenitor expansion. Treatment with NTS2 (0.5 mM) also

induced a significant increase in the number of CD34+ cells at

day 7 (Figure 2A). To further investigate the effects of NTS

treatment on the expansion and functional capacity of myeloid

progenitors, CFU-assays were performed. In advance, CD34+
cells were cultured in the presence of SCF, FltL3, IL3, GM-CSF

and G-CSF and treated with NTS1 or NTS2 (0.5 mM or 5.0 mM)

for 3 days. After this time, cells (1000 per condition) were isolated

from the suspension cultures and plated in methylcellulose in the

presence of the previously mentioned cytokines, without additional

treatment with NTS1 and NTS2. The total number of colonies

was scored after 11 days. Treatment with 5.0 mM NTS1, 0.5 mM

NTS2 and 5.0 mM NTS2 induced a significant increase in the

number of colonies, suggesting that the isolated cell populations

pretreated with both compounds contained an increased number

of progenitors with myeloid colony forming potential (Figure 2B).

To further evaluate the effects of NTS1 and NTS2 on

differentiation and lineage choice, we performed CFU-assays with

specific cytokine combinations. To investigate whether NTS1 and

NTS2 treatment has effect on myeloid lineage choice, EPO was

added to the cytokine cocktail, followed by plating of cells at day 0

in the absence or presence of NTS1 and NTS2 and colonies were

scored after 11 days. Treatment with NTS1 resulted in a

significantly decreased percentage of CFU-E, accompanied by a

significantly increased percentage of CFU-GM (Figure 2C),

suggesting that NTS1 treatment stimulates differentiation towards

the GM-lineage. In contrast, we observed no significant effects

upon treatment with NTS2. To determine the effects of NTS1 and

NTS2 specifically on the differentiation of GMP in granulocyte

colonies (CFU-G) or monocyte/macrophage colonies (CFU-M),

CD34+ cells were plated in methylcellulose in the presence of

SCF, IL-3 and IL-6. The number of CFU-G and CFU-M was

scored after 11 days and confirmed by cytospin analysis of isolated

colonies (Figure 2D). Upon treatment with NTS1 we observed a

significant increase in the percentage of CFU-G colonies, and

significant decrease in the percentage of CFU-M, while NTS2

treatment resulted in a significantly increased percentage of CFU-

M, and decreased percentage of CFU-G (Figure 2DE). Together

these data suggest that treatment with both NTS1 and NTS2

induces expansion of myeloid progenitors and stimulates differen-

tiation towards the GM-lineage. In addition NTS1 and NTS2

appear to have compound-specific effects on differentiation of

GMP towards the granulocyte or monocyte/macrophage lineage.

Nitrostyrenes Stimulate Myelopoiesis
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NTS1 and NTS2 treatment does not affect terminal
neutrophil differentiation

In order to determine the effects of treatment with NTS1 and

NTS2 on terminal neutrophil differentiation, CD34+ cells were

differentiated towards neutrophils for 17 days in the absence or

presence of NTS1 and NTS2. Neutrophil differentiation was

determined based on both cytospin analysis (Figure 3A), and

lactoferrin staining. Terminally differentiated neutrophils were

characterized as cells containing either banded or segmented

nuclei. Treatment with NTS1 and 0.5 mM NTS2 resulted in no

significant effects on neutrophil differentiation, while treatment

with 5.0 mM NTS2 resulted in a small, but significant decrease in

the percentage of mature neutrophils (Figure 3B), which was not

accompanied by decreased lactoferrin expression (Figure 3C). A

moderate increase in the percentages of mature monocytes was

also observed (Figure 3D). Together, these data suggest that

terminal neutrophil differentiation is unaffected by NTS1 and is

moderately affected by NTS2 treatment in a concentration-

dependent manner. In addition, in agreement with our results

from the CFU assays, these data indicate that NTS2 treatment

appears to favor differentiation towards mature monocytes/

macrophages.

NTS1 and NTS2 treatment stimulates myeloid colony
forming capacity in patient-derived bone marrow cells

To investigate the effects of NTS compounds on myelopoiesis in

patients suffering from myeloid disorders (one patient with RCC,

two patients with myelosuppression after chemotherapy for AML),

we cultured BM-derived CD34+ cells in the absence or presence of

NTS1 and NTS2 (0.5–1.0 mM). Patient characteristics are

summarized in Table S1. To analyze the effects on colony

forming capacity and myeloid differentiation, we performed CFU

assays utilizing myeloid progenitor cells isolated after three days of

suspension culture. We observed differential effects on the number

of CFU-GM, while NTS1 treatment increased the number of

CFU-G and NTS2 treatment significantly increased the number of

CFU-M (Figure 4A–B). Interestingly, treatment with NTS2 in cells

from patient 2 induced a 2.8-fold increase in the number of CFU-

G (Figure 4A middle lane, middle panel). While treatment with

NTS1 and NTS2 in cells from patient 3 induced a moderate

increase in CFU-G and CFU-M respectively, NTS1 treatment

induced a 2-fold increase in the number of CFU-GM (Figure 4A,

upper panel). Next, we investigated the effects of NTS1 and NTS2

treatment on neutrophil progenitor expansion and terminal

neutrophil differentiation. In contrast with the effects in UCB-

derived cells, we observed no significant effects on progenitor

expansion (Figure 4C) upon treatment with NTS1 and NTS2. In

agreement with the effects of NTS1 and NTS2 in UCB-derived

Figure 1. NTS1 and NTS2 have concentration dependent effects on neutrophil progenitor expansion and survival. CD34+ cells were
cultured in presence of G-CSF to induce neutrophil differentiation. Cells were cultured either in the absence or presence of NTS1 (0.5–5 mM) or NTS2
(0.5–5 mM) (A). Progenitor expansion was determined by counting the tryphan blue negative cell population. Data were expressed as fold expansion
(B) (N = 4). Apoptosis was determined by Annexin-V/PI staining at day 7, 10, and 14 and data were expressed as the percentage of apoptotic cells (C)
(N = 3). Error bars represent SEM (between experiments) *p = ,0.05, **p = ,0.01.
doi:10.1371/journal.pone.0090586.g001
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cells, we observed no significant effects on the percentage of

mature neutrophils and monocytes after 14 days of differentiation

(Figure 4D) and no differences in intracellular lactoferrin

expression (data not shown), suggesting that NTS1 and NTS2

treatment does not affect terminal neutrophil differentiation.

Together, these data suggest NTS treatment stimulates the

expansion of myeloid CFU in patients suffering from myeloid

disorders, specifically patients with chemotherapy induced myelo-

Figure 2. NTS1 and NTS2 differentially stimulate myeloid progenitor expansion and differentiation. CD34+ cells were cultured in the
presence of G-CSF to induce neutrophil differentiation. Cells were cultured in the absence or presence of 0.5 mM or 5 mM NTS1 or NTS2. At day 7,
FACS using a PE-labelled human-CD34 antibody measured CD34+ expression. For CFU assays, CD34+ cells were cultured in the presence of G-CSF
and EPO, or IL6 to induce myeloid colony formation during 11 days. Data were expressed as the percentage and absolute number of CD34+ positive
cells (A) (N = 3), the number of colonies after exposure to NTS1 or NTS2 for 3 days (B) (N = 3), the percentage of CFU-GM and CFU-E in the absence or
presence of NTS1 or NTS2 (C) (N = 3), or the percentage of CFU-G and CFU-M in the absence or presence of NTS1 or NTS2 (D–E) (N = 2). Error bars
represent SEM (between experiments). *p = ,0.05, **p = ,0.01.
doi:10.1371/journal.pone.0090586.g002

Nitrostyrenes Stimulate Myelopoiesis

PLOS ONE | www.plosone.org 5 March 2014 | Volume 9 | Issue 3 | e90586



suppression, while terminal neutrophil and monocyte differentia-

tion is not affected,

NTS1 and NTS2 treatment stimulates myelopoiesis in vivo
and is accompanied by modulation of C/EBPa and
p38MAPK activity

To investigate whether treatment with NTS1 and NTS2 also

stimulates myeloid development in vivo, 6–8 weeks old BALB/c

mice were treated with 5FU to establish complete bone marrow

depletion, followed by treatment with NTS1 or NTS2 (1 mg/kg)

once a week. Mice (three per group) were treated 2, 5, 9, 15 or 21

days, after which they were sacrificed. Bone marrow mononuclear

cells were isolated and CFU assays were performed to analyze

colony forming capacity and myeloid differentiation (Figure 5A).

Colonies were scored after 7 days. We observed a significant

increase in the absolute number of myeloid colonies derived from

mononuclear cells from mice sacrificed at day 9 and 15 after

treatment with either NTS1 or NTS2 (Figure 5B). Treatment with

NTS1 resulted in a significant increase in CFU-M and dramatic

increase in CFU-G suggesting that NTS1 treatment favors

differentiation towards the granulocytic lineage in vivo. In contrast,

NTS2 treatment resulted in a dramatic increase in the number of

CFU-M and less pronounced increase in CFU-G, suggesting that

NTS2 favors differentiation towards the monocyte/macrophage

lineage in vivo (Figure 5C–D). Together, these data suggest that

NTS1 and NTS2 treatment stimulate myeloid recovery following

bone marrow depletion by 5FU. To investigate the underlying

molecular mechanism for the effects of NTS treatment on myeloid

development we analyzed the effects of NTS1 and NTS2 on p38

MAPK and ERK1/2 activation. We first analyzed their activation

status utilizing bone marrow derived murine (Ba/F3) cells and

subsequently utilizing UCB-derived neutrophil progenitors after 6

days of myeloid differentiation. Treatment with NTS1 and NTS2

resulted in a decrease in phosphorylation of p38MAPK (Thr180/

Tyr182) and its substrate C/EBPa (Ser21) in BaF/3 cells and

neutrophil progenitors, while we observed no effects on phos-

phorylation of ERK1/2 (Figure 5E–F). In addition we observed a

profound increase in C/EBPa expression. Since the expression of

C/EBPa is essential for granulocyte/macrophage lineage devel-

opment and dephosphorylation of C/EBPa (serine 21) results in

C/EBPa activation during neutrophil development [18], our data

suggest that NTS1 and NTS2 stimulate myeloid differentiation

through C/EBPa-dependent mechanisms. Increased C/EBPa
activation can be, at least partly, explained by inhibition of

p38MAPK activity.

Discussion

In the present study, we have investigated the effects of the

nitrostyrene derivatives NTS1 and NTS2 on myelopoiesis. While

Figure 3. Treatment with NTS1 and NTS2 does not affect terminal neutrophil differentiation. CD34+ cells were cultured in the presence
of G-CSF to induce neutrophil differentiation during 17 days. Cells were cultured either in the absence or presence of NTS1 (0.5–5 mM) or NTS2 (0.5–
5 mM). After 17 days of neutrophil differentiation was determined by cytospin analysis (A) and FACS analysis or intracellular lactoferrin expression.
Data were expressed as the percentage of mature neutrophils (banded or segmented nuclei) (N = 3) (B) the mean lactoferrin expression (MFI) (C)
(N = 3), and the percentage of mature monocytes (C). Error bars represent SEM (between experiments). *p = ,0.05, **p = ,0.01.
doi:10.1371/journal.pone.0090586.g003
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the predicted functional differences between NTS1 and NTS2 are

small, these could involve increased protein binding of the

allosteric site by NTS2 [11]. Our data demonstrate that treatment

with NTS1 and NTS2 stimulates the expansion of myeloid

progenitors accompanied by specific effects on differentiation of

myeloid progenitors towards the granulocytic lineage (favored by

Figure 4. NTS treatment stimulates myeloid colony forming capacity in patient bone marrow cells. CD34+ cells were cultured in the
presence of G-CSF to induce neutrophil differentiation in the absence or presence of 0.5 mM (patient 1) or 1.0 mM (patient 2–3) NTS1 and NTS2. Cells
were isolated after 3 days for CFU assays in the presence of G-CSF during 11 days. Data were expressed as the number of CFU-GM (A, upper panel),
CFU-G (A, middle panel) and CFU-M (A, lower panel) for each patient and for all patients together (B). Progenitor expansion and terminal
differentiation was evaluated after 14 days, Data were expressed as fold induction (C) and the percentage of mature neutrophils and monocytes (D).
Error bars represent SEM (between patients). *p = ,0.05.
doi:10.1371/journal.pone.0090586.g004
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Figure 5. NTS1 and NTS2 treatment stimulates myelopoiesis and affects C/EBPa and p38MAPK activity. BALB/c mice were treated with
150 mg/kg 5FU at day 0, followed by treatment with 1 mg/kg NTS1 or NTS2 once a week. Mice were treated 2, 5, 9, 15, or 21 days (3 per group). Mice
only treated with 5FU were used as control (2 per group) (A). Bone marrow mononuclear cells were cultured in the presence of rmGM-CSF and rmG-
CSF to induce myeloid colony formation during 7 days. Data were expressed as the cumulative number of colonies (B) and the number of CFU-G and
CFU-M per femur at day 2, 5, 9, 15 and 21 (C–D). Error bars represent SEM (between mice). *p = ,0.05, **p = ,0.01. Data are representative for 2
independent experiments. Ba/F3 cells were starved overnight in the presence of 0.5% FCS. Cells were left untreated or treated with NTS1 or NTS2 for
30 minutes, before stimulation with 10% FCS for 15 minutes. CD34+ cells were cultured in the presence of G-CSF for 6 days in the absence or
presence of 0.5 or 5.0 mM NTS1 or NTS2. Protein lysates were prepared and Western Blot analysis was performed with an antibody against
phosphorylated ERK1/2, phosphorylated p38MAPK and phosphorylated C/EBPa. Antibodies against ERK1/2, p38MAPK, C/EBPa and tubulin were used
as controls (E–F). Data are representative for 3 independent experiments.
doi:10.1371/journal.pone.0090586.g005
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NTS1) and the monocyte/macrophage lineage (favored by NTS2)

in vitro and in vivo. These effects were accompanied by dephos-

phorylation of p38MAPK and C/EBPa, and increased C/EBPa
expression.

Regulation of neutrophil and monocyte/macrophage cell fates

largely depends on C/EBPa and PU.1 activity levels and the

presence of G-CSF. Briefly, C/EBPa activity is regulated by G-

CSF signaling, and an increased C/EBPa:PU.1 ratio favors

neutrophil over monocyte/macrophage differentiation [19–21].

The effects we observed on phosphorylation and expression of C/

EBPa in myeloid progenitor cells upon treatment with NTS1 and

NTS2, suggest a potential underlying mechanism for stimulation

of GM-lineage development by these compounds. In addition,

since neutrophil differentiation in vitro is performed in the presence

of high levels of G-CSF, this explains why we did not observe

significant effects on terminal neutrophil differentiation upon

treatment with NTS2.

The expression and function of transcription factors is regulated

by post-translational modifications, including phosphorylation by

MAPK. Phosphorylation of C/EBPa can be regulated by the

acitivities of ERK1/2 and p38MAPK [18],[22]. While we

observed no significant effects of NTS treatment on ERK1/2

activity, treatment with NTS1 and NTS2 resulted in dephosphor-

ylation of C/EBPa accompanied by decreased phosphorylation of

p38MAPK in myeloid progenitors, suggesting that the effects we

observe can at least be partly explained by p38MAPK activity.

The precise role of p38MAPK in myeloid development remains

unclear. Aberrant p38MAPK activity has been demonstrated in

bone marrow-derived myeloid progenitors from patients with

MDS or aplastic anemia, which has been explained by increased

activity of the myelosuppressive cytokines IFNc and TNFa, which

stimulate p38MAPK activity. Inhibition of p38MAPK by phar-

macological inhibitors in these cells resulted in increased erythroid

(BFU-E) and granulocyte/macrophage (CFU-GM) colony forma-

tion and inhibition of apoptosis of myeloid progenitor cells [22–

25]. In agreement with our data, this suggests that inhibition of

p38MAPK stimulates the expansion of myeloid progenitors.

While other working mechanisms of nitrostyrene derivatives

have been suggested, these compounds are best known as serine/

threonine phosphatase inhibitors (predominantly PP2A) [10],[11].

Since aberrant serine/threonine phosphatase activity plays a role

in tumor development and progression [26],[27], phosphatase

inhibitors, including nitrostyrene derivatives, are being investigat-

ed as a new group of anticancer drugs. Interestingly, treatment

with nitrostyrenes in our study in non-malignant myeloid cells

resulted in dephosphorylation of C/EBPa and p38MAPK,

suggesting either inhibition of serine/threonine kinase activity,

such as p38MAPK, or stimulation of serine/threonine phospha-

tase activity, such as wild-type p53-induced phosphatase 1 (WIP1).

Intriguingly, these findings are in contrast with the results of NTS

treatment in malignant cells, suggesting cell specific effects or

reflecting an altered balance between kinase and phosphatase

activity in normal versus malignant cells. This hypothesis is

supported by previous studies, demonstrating that regulation of

p38MAPK activity by PP2A results in differential effects on cell

survival in tumor cells and normal immune cells [28–30].

In summary we have demonstrated that the nitrostyrene

compounds NTS1 and NTS2 stimulate the expansion of myeloid

progenitors in vitro and dramatically improve myeloid recovery

after chemotherapy-induced bone marrow depletion in vivo.

NTS1 and NTS2 may regulate myeloid differentiation through

activation of C/EBPa, which could at least be partly explained by

of inhibition of p38MAPK activity. We observed moderate effects

on myeloid colony formation and differentiation in bone marrow-

derived cells from patients suffering from myeloid disorders.

Increased knowledge concerning nitrostyrene compounds might

contribute to the development of alternative therapeutic modalities

for the treatment of bone marrow failure syndromes, hypocellular

MDS/RCC or chemotherapy-induced aplasia.
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Table S1 Patient characteristics. CD34+ cells were isolated from

BM specimen of patients suffering from myeloid disorders,
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indicates refractory cytopenia of childhood, #treatment according

to the Dutch-Belgium Pediatric AML (DB-AML1) protocol.
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