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The present work aims to apply a recently proposed method for estimating Lyapunov exponents to

characterize—with the aid of the metric entropy and the fractal dimension—the degree of

information and the topological structure associated with multiscroll attractors. In particular, the

employed methodology offers the possibility of obtaining the whole Lyapunov spectrum directly

from the state equations without employing any linearization procedure or time series-based

analysis. As a main result, the predictability and the complexity associated with the phase

trajectory were quantified as the number of scrolls are progressively increased for a particular

piecewise linear model. In general, it is shown here that the trajectory tends to increase its

complexity and unpredictability following an exponential behaviour with the addition of scrolls

towards to an upper bound limit, except for some degenerated situations where a non-uniform grid

of scrolls is attained. Moreover, the approach employed here also provides an easy way for

estimating the finite time Lyapunov exponents of the dynamics and, consequently, the Lagrangian

coherent structures for the vector field. These structures are particularly important to understand

the stretching/folding behaviour underlying the chaotic multiscroll structure and can provide a

better insight of phase space partition and exploration as new scrolls are progressively added to the

attractor. VC 2013 AIP Publishing LLC [http://dx.doi.org/10.1063/1.4802428]

Multiscroll attractors for low-dimensional dynamical sys-

tems exhibit an interesting trade-off between regularity

and randomness in phase space exploration. This particu-

lar topological solution follows from state equations that

leads to a challenging scenario from the standpoint of

estimation of invariant measures, which, up to now, has

been solved in the context of a laborious piecewise analy-

sis of phase space or in terms of the time series analysis of

the obtained solutions. In the present work, a practical

method for informational and topological characteriza-

tion of such attractors based on the estimation of the

Lyapunov spectrum is extensively employed, providing a

better insight of the phase space exploration. In addition

to that, the employed methodology also offers the possi-

bility of computing the Lagrangian Coherent Structures

(LCS) for the vector field and, consequently, to reveal

how the mixing process underlying the chaotic multi-

scroll behaviour is organized around crucial geometrical

objects (represented by fixed points of index-1).

I. INTRODUCTION

Classically, dynamical systems with chaotic behaviour

can be described in terms of a deterministic state mapping

that originates aperiodic solutions with strong dependence on

the initial conditions.36,38 Solutions of this kind establish an

interesting trade-off between apparent randomness and regu-

larity in the exploration of their possible states, giving rise to

potentially useful information-processing features.35,40,46

This oscillatory versatility has been systematically

investigated in the context of complex systems, i.e., in terms

of mappings composed of several elementary dynamics con-

nected by means of some neighbourhood relationship.36 In

fact, such complex dynamical systems exhibit several

degrees of freedom, which implies an interesting oscillatory

flexibility at the expense of the need for employing a map-

ping difficult to handle in practical terms (e.g., for control or

even for general engineering purposes2,26,27,52).

In contrast with this paradigm, dynamical systems capa-

ble of generating multiscroll attractors can offer the advant-

age of requiring a relatively small number of state variables

to exhibit an oscillatory versatility related to a chaotic attrac-

tor that visits the phase space with a specific “organized”

scroll structure. This particular propriety of multiscroll

attractors has already been explored within the engineering

framework as, for instance, for mobile robot navigation

purposes.7

In general, multiscroll attractors can be obtained from

non-smooth piecewise linear dynamics (e.g., variants of the

classical Chua’s system11,49), where the number of scrolls

is associated with the number of different linear domainsa)Electronic mail: fazanaro@dca.fee.unicamp.br
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exhibited by the dynamics. Furthermore, the insertion of new

scrolls is given by the addition of new state equation solu-

tions, which implies in new linear intervals and, conse-

quently, in the division of the phase space into new

partitions that are visited through the scrolls.6,31,32,51

Although such systems are composed of a low number of

state variables, they still define a challenging scenario insofar

as the estimation of the invariant measures is concerned.

This is an issue of major relevance for characterizing their

solutions and, consequently, the way that the phase space is

“explored” by the various trajectories. To accomplish this

task, the Lyapunov spectrum—the set of all Lyapunov expo-

nents classically defined as the mean rate of divergence (or

convergence) of initially close trajectories—is commonly

used to infer the amount of information generated by the dy-

namics (or lost by an external observer) and the topological

structure of the attractor, which is done by means of the frac-

tal dimension obtained via the Kaplan-Yorke conjecture.1,36,50

Within this context, the classical calculation of the

Lyapunov spectrum in non-smooth piecewise linear models

would require a laborious analysis in order to obtain the suit-

able set of variational equations38,50 for each linear interval

defined by the dynamical system.37 In fact, this could be vir-

tually impossible in practical terms when the number of

intervals increases too much. Another possible approach

would be to rely on estimating the Lyapunov spectrum based

on time series analysis, which would also introduce some

unnecessary uncertainties (as that related to the estimation of

embedding dimensions or the lag between the time series

samples in order to reconstruct the attractor1,3,4,42,50) since

the state equations are fully known.

To deal with problems of this nature, it was previously

developed a method called Cloned Dynamics (ClDyn)

approach48 for estimating the Lyapunov spectrum based on

the divergence (or the convergence) of small disturbed cop-

ies of the original trajectory. This approach does not require

the construction of the tangent space associated with the

variational equations and, as a consequence, it is attractive

for being employed in non-smooth dynamical systems or

even for models with a hard mathematical description.

Therefore, the present work aims to exploit the ClDyn

features for characterizing the topological and the informa-

tional aspects for models capable of engendering multiscroll

attractors. It is shown here, by means of the estimation of

quantitative measures (such as the metric entropy and the

fractal dimension) that, in general, the insertion of scrolls

tends to lead to more “complex” attractors (i.e., attractors

that are more unpredictable and with a higher fractal dimen-

sion), except for some degenerated situations, where the

phase space is not filled with scrolls and exhibits a non-

uniform visiting frequency. The obtained results also show

that, for a grid of scrolls, the amount of generated informa-

tion and the fractal dimension do not linearly increase with

the addition of scrolls. This increasing behaviour actually

seems to obey an exponential behaviour and points towards

an upper bound for the trajectory predictability, something

that is explained by a simple fit proposed here.

In addition to the topological and the informational

characterization of multiscroll attractors for particular initial

conditions in the phase space, this work also aims to charac-

terize the mixing process underlying state equations capable

of engendering such attractors. This is also done here with the

aid of the ClDyn approach for evaluating the Finite-Time

Lyapunov Exponents (FTLE) and the LCS, which are related

to geometric objects in the phase space that maximize a mea-

sure of hyperbolicity within a finite time interval, acting as

crucial “organizers” of the flux.18–24,29,43 In the multiscroll

context, it was shown that the insertion of fixed points

of index-1 leads to separatrices (clearly located with the aid of

the LCS), which is illustrated for the first time for this class of

attractors in the present work. In fact, the LCS provide a better

insight of the mechanism of phase space exploration for multi-

scroll attractors as time evolves, and it seems valid to expect

that this information be relevant for engineering purposes.

This work is structured such as follows: Sec. II presents

a brief review of the Cloned Dynamics approach for

Lyapunov spectrum calculation. Section III brings a presen-

tation of the multiscroll attractor model studied here, which

is exposed in detail by L€u et al.32 Section IV contains the

results concerning Lyapunov spectrum, fractal dimension,

and Kolmogorov-Sinai (KS) estimation for multiscroll

attractors. Section V brings the estimation of Lagrangian

Coherent Structures for one- and two-dimensional arrays of

such scroll attractors. The article is closed by Sec. VI, which

provides discussions and conclusions about the work.

II. THE CLONED DYNAMICS APPROACH: A BRIEF
OVERVIEW

Lyapunov spectrum estimation has classically been per-

formed in the context of the tangent map approach (i.e., by

evaluating the divergence of close states in terms of the

underlying linear system subjacent to the dynamics for each

time step), which is best represented by the methodologies

developed by Benettin et al.,8 Eckmann and Ruelle,15

Shimada and Nagashima,44 and Wolf et al.50 On the other

hand, perturbation theory—that also has been used for esti-

mating the largest Lyapunov exponent in different scenar-

ios—has not been suitably employed to calculate the whole

Lyapunov spectrum, specially in the case of non-smooth and

complex dynamical systems.

To fulfil this gap, a specific methodology, called Cloned

Dynamics (ClDyn) approach, was proposed by Soriano

et al.47 This strategy is based on the idea of analysing the

evolution of the difference state vectors defined as the dis-

tance between the fiducial trajectory, and the copies (or

“clones”) of these motion equations initially disturbed by

small values in the orthogonal directions. This methodology

was developed in order to characterize nonlinear dynamical

systems with a very general description (including, for

instance, non-smoothness, as mentioned above), avoiding

the construction of the tangent map or the use of procedures

based on time series analysis. This methodology was suc-

cessfully tested for a number of classical nonlinear dynami-

cal systems and also for discontinuously excited neuronal

models for stability analysis purposes.47,48

Formally, given an N-dimensional dynamical system

described by _x ¼ Fðx; tÞ, with x0 being the initial condition,

023105-2 Fazanaro et al. Chaos 23, 023105 (2013)
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the first step to compute the Lyapunov spectrum is to define

N “clones” of the dynamics in the form

_xci ¼ Fðxci; tÞ; (1)

being xci the ith clone of the state vector, with i¼ 1, 2,…, N.

In this case, each clone is used to estimate the mean diver-

gence (or convergence) rate of a small disturbance applied in

a specific direction of the vector field, which is completely

spanned by an orthogonal basis when all the clones are con-

sidered. To accomplish this purpose, each copy receives the

original initial condition of the fiducial trajectory with a

small perturbation such as described by,

x
ð0Þ
0ci ¼ x0 þ d

ð0Þ
ix : (2)

Here, the superscript index denotes the current iteration of

the algorithm, and fdð0Þ1x ; d
ð0Þ
2x ;…; d

ð0Þ
Nxg represents an ortho-

normal basis initially defined by dx0IN , being IN the N � N
identity matrix and dx0 a constant that establishes the magni-

tude of the perturbation.

In the sequence, the whole system (the original motion

equations and all clones) is allowed to evolve for T time

units, and the difference state vectors can be evaluated using

the following relation:

d
ð1Þ
ix ¼ xðTÞ � xciðTÞ: (3)

After the set of difference state vectors has been determined,

the Gram-Schmidt Reorthonormalization (GSR) proce-

dure38,48,50 can be applied in order to separate the contribu-

tion of the most expansive direction of the dynamics from

the remaining ones, which also avoids the collapse of the

clones into a single (i.e., the most expansive) direction. This

procedure leads to a set of vectors v1; v2;…; vN that corre-

spond to corrected versions of the difference state vectors.

Then, the GSR procedure establishes the corrected vectors

for all directions as shown in the following equation:

v
ð1Þ
1 ¼ d

ð1Þ
1x ;

u
ð1Þ
1 ¼

v
ð1Þ
1

kvð1Þ1 k
;

v
ð1Þ
2 ¼ d

ð1Þ
2x � hd

ð1Þ
2x ; u

ð1Þ
1 iu

ð1Þ
1 ;

u
ð1Þ
2 ¼

v
ð1Þ
2

kvð1Þ2 k
;

�

v
ð1Þ
N ¼ d

ð1Þ
Nx � hd

ð1Þ
Nx ; u

ð1Þ
1 iu

ð1Þ
1 �…

…� hdð1ÞNx ; u
ð1Þ
N�1iu

ð1Þ
N�1;

u
ð1Þ
N ¼

v
ð1Þ
N

kvð1ÞN k
;

(4)

where ha; bi denotes the inner product between vectors a and

b. Before starting another algorithm iteration, the clones

receive an infinitesimal disturbed initial condition related to

the fiducial system along the orthogonal directions, i.e.,

x
ð1Þ
0ci ¼ xðTÞ þ dx0u

ð1Þ
i : (5)

After iterating the algorithm K times, the ith finite time

Lyapunov exponent can be computed using the following

equation:

ki ¼
1

KT

XK

k¼1

ln
v
ðkÞ
i

dx0

�����
�����; (6)

and, for K large enough to capture the average behaviour of

the whole attractor, the classical definition of the global

Lyapunov exponent is obtained.

It is important to remark that the ClDyn approach does

not require the construction of the tangent map, being an

interesting procedure, for instance, with respect to the char-

acterization of non-smooth models such as exposed in

Sec. III. More details about the method can be found in

Soriano et al.48

III. THE MULTISCROLL MODEL

In general, multiscroll attractors can be obtained from

dynamical systems based on piecewise linear functions, such

as the step51 and saturated32 functions, and also can be

related to the analysis of switched systems,31 for instance, in

accordance with the one related to the Unstable Dissipative

Systems (UDS).12 Particularly, the dynamical system ana-

lysed by L€u et al.32 can exhibit chaotic behaviour with a

number of scrolls varying according to the number of piece-

wise linear intervals and, furthermore, is capable to generate

one-, two-, and three-dimensional multiscroll attractors (see

Fig. 1 for a clearly picture of one- and two-dimensional

arrays of such attractors). In this case, the dynamical system

can be described by the following state equations:

_x ¼ y� d2

b

� �
f ðy; k2; h2; p2; q2Þ

_y ¼ z

_z ¼ �ax� by� czþ d1f ðx; k1; h1; p1; q1Þ
…þ d2f ðy; k2; h2; p2; q2Þ;

(7)

being the function f(x; k; h; p; q) responsible for controlling

the number of piecewise intervals and, consequently, the

number of scrolls. This function assumes the form described

in the following equation:

f ðx; k; h; p; qÞ

¼

ð2qþ 1Þk; if x> qhþ 1

kðx� ihÞ þ 2ik; if jx� ihj � 1

�p� i� q

ð2iþ 1Þk; if ihþ 1< x < ðiþ 1Þh� 1

�p� i� q� 1

�ð2pþ 1Þk; if x<�ph� 1:

8>>>>>>>><
>>>>>>>>:

(8)

Note that an one-dimensional multiscroll attractor can

be understood as a particular case of a two-dimensional grid

by setting d2 ¼ 0. Just as a matter of illustration, Fig. 1

023105-3 Fazanaro et al. Chaos 23, 023105 (2013)
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shows the phase portrait obtained when the parameter vector

p ¼ ½p1 q1 p2 q2� is changed in order to increase the number

of scrolls. In this case, parameters p1 and q1 are related to the

number of scrolls that are added, respectively, to the left and

to the right sides of the fundamental double scroll attractor

(obtained when p¼ 0 and d2 ¼ 0), producing an one-

dimensional array of scrolls (Fig. 1(a), with a ¼ b ¼ c
¼ d1 ¼ 0:7; d2 ¼ 0; k1 ¼ 10; h1 ¼ 20, and p1 ¼ q1 ¼ 1).

Similarly, p2 and q2 add pairs of scrolls in the negative and

in the positive directions of the y-axis, producing a two-

dimensional grid (Fig. 1(b), with a ¼ b ¼ c ¼ d1

¼ d2 ¼ 0:7; k1 ¼ k2 ¼ 50; h1 ¼ h2 ¼ 100, and p1 ¼ p2

¼ q1 ¼ q2 ¼ 0), which exhibits a kind of organized partition

of the phase space that is explored by a chaotic motion.

From the state Eqs. (7), it can be observed that the addi-

tion of new scrolls is accompanied by an increase in number

of linear intervals, which can render the task of obtaining of

the variational equations for each interval quite laborious for

the classical Lyapunov spectrum estimation methodologies.

This situation indicates a typical instance where the ClDyn

approach is extremely convenient, as it is shown for the

extensive characterization performed in Sec. IV.

IV. MULTISCROLL ATTRACTOR ANALYSIS
EMPLOYING LYAPUNOV EXPONENTS

A. About the employed invariant measures

Phase space exploration is a major information process-

ing task performed by a chaotic solution. In the multiscroll

context, this process of phase exploration can be controlled

by the introduction of saddle points of indexes-1 and �2 (see

Refs. 13, 34, and 45) in the vector field, which is associated

with the addition of plateaus and slopes in the saturated func-

tions series described by (8).

The introduction of index-1 saddle points gives rise to

separatrices in the vector field which organize the motion

over different regions,5 which may cause the trajectory more

“complex” as the number of scrolls rises. Here, to become

“complex” means that the predictability of the dynamical

system9 tends to decrease, since the introduction of separatri-

ces implies in the insertion of “decision regions” in the phase

space, i.e., regions of critical divergence rate between dis-

turbed trajectories. In order to study this phenomenon in a

quantitative way for one- and two-dimensional multiscroll

attractors, the Kolmogorov-Sinai entropy and the fractal

dimension of the system (7) were calculated by means of

their relationship with the Lyapunov spectrum as estimated

using the ClDyn approach.

The KS entropy (or metric entropy) quantifies the aver-

age information rate produced by the dynamical system (or

lost by an observer).17,36 The KS entropy is related to the

Lyapunov spectrum by the Pesin formula25,36 which, in this

case, leads to

KS ¼
XNp

i

ki; (9)

where Np is the number of positive Lyapunov exponents of

the spectrum.

Additionally, the relation between the Lyapunov

spectrum and the fractal dimension of the underlying attrac-

tor is given by the Kaplan-Yorke conjecture, which can be

expressed in terms of the Kaplan-Yorke dimension (DKY),

defined as1,36,50

DKY ¼ jþ

Xj

i¼1

ki

jkjþ1j
: (10)

In this case, j is considered as the highest integer such that

Xj

i¼1

ki > 0: (11)

Thus, both the metric entropy and the fractal dimension

can be estimated by means of the Lyapunov spectrum, which

can be directly obtained for multiscroll attractors when the

ClDyn approach is employed, as done in the following.

B. Characterization of an one-dimensional array of
scrolls

As mentioned earlier, an one-dimensional array of

scrolls can be achieved by taking d2 ¼ 0 in (7) and changing

parameters p1 and q1 for adding scrolls, respectively, in the

positive and in the negative x-direction of the phase space.

For this sort of multiscroll attractor, Table I describes the

values of the parameter vector p used in the saturated

FIG. 1. Phase portrait for the state

Eqs. (7). (a) One-dimensional and (b)

Two-dimensional multiscroll attractors.
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function series (8) to obtain the one-dimensional array of

scrolls, the respective number of obtained scrolls, the esti-

mated Lyapunov spectrum, and the Kaplan-Yorke dimen-

sion. In all simulations, the same conditions applied to

obtain the phase portrait presented in Fig. 1(a) were adopted.

From Table I, it can be noted that the introduction of

separatrices and, consequently, of new scrolls increases the

largest exponent according to a nonlinear rule. For instance,

the addition of 2 new scrolls (e.g., p ¼ [1 1 0 0]) to the

fundamental double scroll (p¼ 0) increases the largest

Lyapunov exponent and the fractal dimension by, approxi-

mately 37% and 1.8%, respectively, while the addition of

2 new scrolls (i.e., when the 4-scroll attractor becomes a

6-scroll attractor) increases k1 ðDKYÞ by almost 9.17%

(0.57%). This kind of saturation in the value of the largest

exponent and in the fractal dimension is confirmed by a pro-

gressive increase of the number of scrolls along the x-axis

positive and negative directions individually and jointly, as

illustrated in Fig. 2.

In fact, it is clear from Fig. 2(a) that the number of

scrolls defines the informational and the topological charac-

teristics of the attractor and not its position in the phase

space. Thus, it does not matter if scrolls are added in the pos-

itive or in the negative (or in both) direction of x-axis: it is

the number of scrolls that defines the invariant measures of

the attractor. This fact suggests an interesting isomorphism

property,9 where scrolls located at different places in the

phase space leads to approximately the same way of

“trajectory navigation,” which can be of major relevance for

information processing purposes.7

In addition to that Fig. 2(a) also reveals a kind of expo-

nential increase for k1 (and, consequently, the KS entropy)

as the number of scrolls increases, which clearly indicates an

informational asymptotic limit. For instance, this exponential

behaviour for the KS entropy (or for k1) can be well

described by the following fit:

jðnÞ ¼ jlim þ jð2Þ � jlimð Þ exp½�sðn� 2Þ�; (12)

being jlim the informational asymptotic limit for the KS

entropy, n is the number of scrolls (with n � 2), jð2Þ the

Kolmogorov-Sinai entropy for the double scroll attractor,

and s the informational-scroll constant. It can be noted by

(12) that, for n¼ 2, the expression provides approximately

the value for the KS entropy for the double scroll attractor

and, for n!1, provides the informational asymptotic

limit. Both jlim; jð2Þ and s can be estimated by (12), which

is shown in Fig. 2(b) for the data given in Table I. In

such a case, the values jlim ¼ 0:1632; jð2Þ ¼ 0:1017, and

s ¼ 0:4385 are obtained, providing a Root Mean Squared

Error (RMSE) of 0.0025, which is indicative of the validity

of the model. Table II also contains the coefficients for

(12) when scrolls are added along the x-axis positive

(increasing parameter p1) and negative (increasing parame-

ter q1) directions.

C. Characterizing a two-dimensional multiscroll
attractor

For a two-dimensional array of scrolls, the same expo-

nential behaviour for the invariant measures is obtained

under some considerations. In such a model, it can be

observed that a pair of scrolls are added to the y-direction of

the fundamental double scroll structure by means of the

parameters p2 and q2 increase.32 This fact can produce

degenerated multiscroll attractors, i.e., solutions that are not

covered by scrolls and exhibit a high non-uniform visiting

frequency of the phase space, but still remain chaotic. These

degenerated cases usually happen when pairs of scrolls are

added only to the y-axis, without adding scrolls to the x-axis.

TABLE I. For system (7), the KS entropy is equal to k1, since it is the sole

positive exponent. The number of scrolls can be computed using the relation

ðp1 þ q1 þ 2Þ.32

½p1 q1 p2 q2� Scrolls k1 k2 k3 DKY

[0 0 0 0] 2 0.1012 0.0000 �0.8013 2.1264

[1 1 0 0] 4 0.1386 0.0001 �0.8387 2.1654

[1 2 0 0] 5 0.1485 0.0001 �0.8486 2.1751

[2 2 0 0] 6 0.1513 0.0001 �0.8514 2.1778

[3 3 0 0] 8 0.1577 0.0000 �0.8577 2.1838

[4 4 0 0] 10 0.1572 0.0001 �0.8573 2.1835

[5 5 0 0] 12 0.1622 0.0002 �0.8625 2.1884

[6 6 0 0] 14 0.1651 0.0000 �0.8651 2.1908

[7 7 0 0] 16 0.1598 0.0001 �0.8600 2.1860

[8 8 0 0] 18 0.1686 0.0000 �0.8686 2.1941

[9 9 0 0] 20 0.1640 0.0001 �0.8642 2.1900

[10 10 0 0] 22 0.1627 �0.0001 �0.8626 2.1885

[11 11 0 0] 24 0.1627 0.0000 �0.8627 2.1886

[12 12 0 0] 26 0.1634 0.0005 �0.8639 2.1897

FIG. 2. (a) The positive Lyapunov expo-

nent (k1) values for a progressive increase

of scrolls. (b) Exponential curve fit for

the relation between the largest Lyapunov

exponent and the number of scrolls in

both direction in x-axis.
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On the other hand, when the number of scrolls rises in both

axes or even just in x-axis, a well-behaved grid fulfilled by

scrolls is generally obtained, and the proposed exponential

fit in (12) is valid. In fact, this is a peculiar feature of the

model that has to be carefully examined before using two-

dimensional grids of scrolls for exploring the phase space.

This feature could only be brought to light in the context of

the extensive numerical analysis performed here with the aid

of the ClDyn approach.

In order to better clarify this point, Fig. 3 shows the

exponential behaviour of k1 when scrolls are added to the x-

axis (by increasing p1 and q1) and the typical phase portrait of

the obtained grid of scrolls (panel (b)). This situation illus-

trates an instance of a well-behaved grid of scrolls, for which

the proposed fit (12) is valid. On the other hand, the same fig-

ure shows that this exponential behaviour of k1 does not hold

when scrolls are added just in the y-direction (by means of

increasing p2 and q2), and a classical example of a degenerated

two-dimensional multiscroll attractor is obtained (panel (c)).

In addition to that, Table III shows that the same fit pro-

posed for the one-dimensional case is valid for the well-

behaved two-dimensional grid. Curiously, the obtained upper

bound jlim for the two-dimensional array of scrolls is smaller

than that obtained for the one-dimensional case, which sug-

gests that the intuitive assumption that the complexity

increases according to the number of scrolls has also to take

in account the grid structure.

After characterizing multiscroll attractors, Sec. V shows

the application of the ClDyn approach in the context of a

study on the local properties of the vector field in the form of

Lagrangian Coherent Structures.

V. FINITE-TIME LYAPUNOV EXPONENTS AND
LAGRANGIAN COHERENT STRUCTURES IN
MULTISCROLL ATTRACTORS

During the last decade, research about the structures that

govern fluid flow has evolved and become increasingly im-

portant, aiming to formalize the concepts related to the fluid

transportation. The development of these concepts led to the

proposal of LCS, which have been successfully applied to

the study of many natural and engineering systems.10,30,39

Pioneering works18–24,29,43 have defined Lagrangian

Coherent Structures over a finite-time interval f as the

locally strongest repelling or attracting material surface in

f.22 These surfaces act as organizing trajectory patterns,

since they define barriers or separatrices between different

oscillatory behaviours. In their work, Shadden, Lekien, and

Marsden29,43 show that LCS can be identified by means of

the maximization of some hyperbolicity measure, like that

obtained from the FTLE field. In other words, LCS may be

explicitly extracted or visualized by the ridges of the FTLE

field.30,41 By “FTLE field,” we specifically mean the

Lyapunov exponent calculated over a finite time (tLCS) for a

grid of initial conditions that tends to cover a continuous part

of the phase space. In this context, the possibility of calculat-

ing the FTLE applying the ClDyn approach for such a model

that presents non-smoothness and several different linear

parts opens an interesting perspective of forming a clearer

view on the mixing process underlying the chaotic motion

that rules the state equations (7). Moreover, this possibility

makes feasible the analysing of how the introduction of new

equilibrium points allows the addition of scrolls by a frag-

mentation of the phase space.

When the multiscroll attractor model defined by the sys-

tem (7) is considered, the LCS are intrinsically associated

with the separatrices introduced by index-1 equilibrium

points, as shown by L€u et al.32 These points will act as a

major local divergence source and will define the global

behaviour of multiscroll attractors. This fact can be clearly

observed in Fig. 4(a), which shows the FTLE field related to

the one-dimensional 4-scroll attractor (exactly as presented

in Fig. 1(a)) for a finite-time interval tLCS ¼ 30 s (from now

on, consider T¼ 0.5 s in Eq. (6)) and initial conditions

chosen in the domain [�60, 60] for x0 and [�20, 20] for y0

(with step size of 0.05 in both cases), and fixing z0 ¼ 0:2. In

this case, the index-1 equilibrium points are located at

ð620; 0; 0Þ and (0, 0, 0), i.e., define exactly the manifolds

TABLE II. Coefficients jlim; jð2Þ and s described in (12) for the one-

dimensional multiscroll attractor case.

jlim jð2Þ s RMSE

p1 0.1601 0.1032 0.5632 0.0026

q1 0.1606 0.1059 0.4529 0.0039

p1 and q1 0.1632 0.1017 0.4385 0.0025

FIG. 3. (a) The positive Lyapunov exponent (k1) variation for a progressive

increase of scrolls when the two-dimensional multiscroll attractor is consid-

ered. (b) and (c) contain the phase portrait projected on the plane (x, y) for

system (7).

TABLE III. Coefficients jlim; jð2Þ and s described in (12) for the two-

dimensional multiscroll attractor case.

jlim jð2Þ s RMSE

p1 0.1570 0.0484 0.2884 0.0030

q1 0.1565 0.0532 0.2623 0.0023

p2 0.0315 0.1068 0.0548 0.0217

q2 0.0196 0.1029 0.0381 0.0223
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that give rise to the separatrices captured by the LCS. It can

be clearly observed that these equilibrium points act as main

“organizers” of the vector field,5 introducing critical diver-

gence structures that under a finite-time condition lead to the

separatrices in the form of the LCS, which, in fact, estab-

lishes the fragmentation of the phase space. Applying the

same procedure described to obtain Fig. 4(a), in Fig. 4(b),

the FTLE field was calculated using initial conditions in the

domain [�60, 60] for x0 and [�30, 30] for z0 (defining a grid

with 2400� 1200 points) and y0 ¼ 0:1. In Fig. 4(c), fixing

x0 ¼ 0:1, it was adopted y0 2 ½�20; 20� and z0 2 ½�30; 30�
(composing a grid with 800� 1200 points). It is also quite

important to remark that the orbits do not intersect the

LCS, which could be erroneously concluded from two-

dimensional projections shown, for instance, in Figs. 1(a)

and 4(a), being the results in perfectly agreement with

Ref. 43 that states that the flux across LCS is (approxi-

mately) null.

For a two-dimensional array of scrolls (as shown in

Fig. 5(a), with tLCS ¼ 30 s), when the projection of the LCS

in the (x, y) plane is considered, it can be noticed that the

introduction of index-1 equilibria in both y-axis directions of

the phase space also gives rise to separatrices in these direc-

tions. In this case, the separatrices are defined by a thin line

that passes through the equilibrium points located at

ð650; 0; 0Þ and (0, 0, 0) and over ð0;650; 0Þ. Furthermore,

applying the same procedure to obtain Fig. 4, the FTLE field

shown in Fig. 5(a) was calculated using the initial conditions

defined by x0 2 ½�150; 150�; y0 2 ½�150; 150� (with a step

size of 0.5 in both cases, defining a grid with 600� 600

points) and z0 ¼ 0:2. Fig. 5(b) was obtained with x0 2
½�150; 150�; z0 2 ½�100; 100� (defining a grid with 600

� 400 points) and fixing y0 ¼ 0:1. In Fig. 5(c), it was

adopted y0 2 ½�150; 150�; z0 2 ½�100; 100� (composing a

grid with 600� 400 points) and x0 ¼ 0:1.

It is also important to remark that the LCS depend on the

time evolution used to calculate the local divergence. For

instance, consider the one-dimensional multiscroll attractor

and the respective projection of the LCS in the (x, y) plane,

such as illustrated in Fig. 4(a). At first, for small values of

tLCS, the LCS are defined by strong divergence regions in the

phase space related to the separatrices (Figs. 6(a) and 6(b)).

For higher values of tLCS, it becomes possible to discriminate

the structures that are related to the general mixing behaviour

promoted by the application of the motion equations (Figs.

6(c) and 6(d)). As the value of tLCS increases, the LCS become

better outlined (Figs. 6(e) and 6(f)) and, if tLCS is sufficiently

large, the FTLE tends to the global Lyapunov exponents since

the mean behaviour of the attractor is captured, i.e., the global

average divergence behaviour is achieved.

The same analysis can be extended for the two-

dimensional multiscroll attractor and the respective projec-

tion of the LCS onto the (x, y) plane (illustrated in Fig. 5(a)),

as shown in Fig. 7. It can be noticed that the introduction of

FIG. 4. Projection of the LCS on the planes (a) (x, y), (b) (x, z), and (c) (y, z). From now on, consider that the color bar represents the range of values for the

maximum local Lyapunov exponent.

FIG. 5. Projection of the LCS on the planes (a) (x, y), (b) (x, z), and (c) (y, z). It was applied the same procedure to obtain Fig. 4.
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FIG. 6. LCS time evolution projected on (x, y) plane considering the one-dimensional multiscroll attractor illustrated in Fig. 1(a). (a) tLCS ¼ 1 s. (b) tLCS ¼ 2 s.

(c) tLCS ¼ 5 s. (d) tLCS ¼ 10 s. (e) tLCS ¼ 15 s. (f) tLCS ¼ 20 s (enhanced online) [URL: http://dx.doi.org/10.1063/1.4802428.1].

FIG. 7. LCS time evolution projected on (x, y) plane considering the two-dimensional multiscroll attractor illustrated in Fig. 1(b). (a) tLCS ¼ 1 s. (b) tLCS ¼ 2 s.

(c) tLCS ¼ 5 s. (d) tLCS ¼ 10 s. (e) tLCS ¼ 15 s. (f) tLCS ¼ 20 s (enhanced online) [URL: http://dx.doi.org/10.1063/1.4802428.2].
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index-1 equilibria in both y-axis directions of the phase space

also gives rise to separatrices in these directions. In this case,

the separatrices are defined by a thin line that passes through

the equilibrium points located at ð650; 0; 0Þ and (0, 0, 0) and

another line that passes through by ð0;650; 0Þ and (0, 0, 0).

VI. DISCUSSIONS AND CONCLUSIONS

In this work, we have extended the analysis previously

discussed in Ref. 16 aiming to address the information gener-

ation and the complexity increase process in a multiscroll

attractor model when the number of fundamental scrolls

units rises. This task was accomplished by means of the eval-

uation of the Lyapunov spectrum using a method developed

to overcome the drawbacks underlying this model48 without

the need to apply methodologies based on time series analy-

sis or laborious partition of the phase space for obtaining the

variational equation in the tangent map approach.37,38,42,50

It is also important to emphasize that there are different

ways of generating multiscroll attractors,12,14,28,33 being a

general approach to analyse all of them virtually impossible.

For instance, in Dana et al.,14 the multiscroll structure is gen-

erated by specific couplings of dynamical systems originally

operating in different steady states. This outlines a scenario

not suitable for the performed analysis, as shown, for

instance, in Fig. 2, since it would compare scrolls generated

in quite different situations. Moreover, the multiscroll attrac-

tors are also obtained by increasing the number of state vari-

ables (coupling different dynamical systems), which rapidly

increases the number of differential equations to be solved

and imposes a computational cost constraint for any method

of Lyapunov spectrum estimation. The ClDyn approach is

not an exception.

As main results obtained here, it was shown that the

addition of scrolls causes an exponential increase of the larg-

est Lyapunov exponent (and, consequently, the Kolmogorov-

Sinai entropy) and the fractal dimension towards to a upper

bound for a well-behaved grid of scrolls. This suggests that

the introduction of new separatrices does not necessarily

implies that they will be frequently visited for the trajectory.

Nevertheless, in this situation, the trajectory may be restricted

mainly to more predictable regions of the phase space, which

would justify the observed upper bound for the Kolmogorov-

Sinai entropy and the fractal dimension.

Furthermore, following the modus operandi presented by

Haller,19,21 which was extensively developed by Shadden,

Lekien and Marsden,29,43 the ClDyn approach was applied to

construct the FTLE field for a whole representative set of

initial conditions. This strategy allowed the identification of

the LCS and its correspondence to the introduction of fixed

points of index-1, providing a better geometrical picture of

how the phase space is divided and “explored.”

However, the aforementioned strategy is valid for mod-

els capable of engendering multiscroll attractors with a rela-

tively low number of state variables, since LCS are quite

difficult to interpret for dynamical systems with dimensions

higher than 3, such as discussed by Lekien, Shadden, and

Marsden.29 Notwithstanding, a quantitative characterization

of multiscroll structure generated by coupling dynamical

systems is an interesting perspective for future work, possi-

bly requiring a specific approach.

Finally, the characterization provided here by means

of invariant measures and LCS offers a clearer view on the

dynamical system for application in different contexts. For

instance, the local predictability of phase space given by the

LCS can be useful to define critical regions to be controlled

in order to stabilize unstable orbits, as proposed by Arena

et al.7 for robot navigation purposes. This could also be help-

ful in the context of designing scroll-based associative mem-

ories, specially in the definition of their basins of attraction,

which defines a natural future work. Concerning the results

related to the estimation of global invariant measures, the

authors claim that the proposed fit for information generation

in multiscroll attractors can reveal a desirable minimal num-

ber of scrolls to attain a certain trajectory “navigation behav-

iour” that is close to the informational upper bound, or

complexity limit. Overall, the reported study can be under-

stood as an investigation, from distinct theoretical stand-

points, of key aspects regarding the dynamical behaviour of

systems capable of engendering multiscroll structures.
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