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Turing patterns and apparent competition in predator-prey food webs on networks
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Reaction-diffusion systems may lead to the formation of steady-state heterogeneous spatial patterns, known
as Turing patterns. Their mathematical formulation is important for the study of pattern formation in general and
plays central roles in many fields of biology, such as ecology and morphogenesis. Here we show that Turing
patterns may have a decisive role in shaping the abundance distribution of predators and prey living in patchy
landscapes. We extend the original model proposed by Nakao and Mikhailov [Nat. Phys. 6, 544 (2010)] by
considering food chains with several interacting pairs of prey and predators distributed on a scale-free network
of patches. We identify patterns of species distribution displaying high degrees of apparent competition driven
by Turing instabilities. Our results provide further indication that differences in abundance distribution among
patches can be generated dynamically by self organized Turing patterns and not only by intrinsic environmental
heterogeneity.
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I. INTRODUCTION

Reaction-diffusion systems in which two or more species
interact locally and diffuse through the medium have long
been focus of studies in many different fields, such as physics,
chemistry, and biology. Part of the interest in these systems is
related to their potential to form self-organized spatiotemporal
patterns, like traveling and spiral waves [1] or stationary
patterns, called Turing patterns [2].

Since Turing’s classic work on morphogenesis [3], a large
number of models and applications of reaction-diffusion
systems in chemistry and biology have been studied. These
include theoretical [4–9], experimental [10–14] and, more
recently, empirical [15]. A key theoretical contribution was
given by Mimura and Murray [6], who applied Turing’s idea
to understand patchiness in continuously distributed predator-
prey populations.

Recently, Nakao and Mikhailov [16] proposed a discrete
version of the prey-predator model of Mimura and Murray
[6] in which the species are organized in patches, instead of
being continuously distributed in space. The patches can be
represented as nodes of a complex network such that predators
and prey interact locally in each patch and diffuse through
connected nodes. The patterns obtained in Ref. [16] display
significant differences when compared to the patterns obtained
in continuously distributed species.

In the present work we extend of the model of Nakao and
Mikhailov [16] by considering food chains with more than
two species. We study the dynamics of several pairs of prey
and predators that interact by consuming common prey. We
show that the Turing patterns of population density displayed
by the system present nontrivial correlations in the abundance
distributions. In particular, we observe the emergence of strong
competition between prey of adjacent species in the food chain,
despite the fact that no direct competition between them is
included in the equations. These correlations are strictly related
to diffusion and correspond to a new mechanism of apparent
competition, driven by Turing instabilities instead of local
interactions. We characterize these patterns using numerical
simulations and mean-field approximations. We also discuss

the relevance of these results to patterns of species distribution
in real trophic systems.

II. DYNAMICAL MODEL

The reaction-diffusion system studied by Mimura and
Murray [6] describes the interaction between one species of
prey and one species of predator that interact locally and
diffuse through a continuous physical environment. If the
diffusion coefficient of the predators is sufficiently larger than
that of the prey, the solution corresponding to the uniform
distribution of individuals through space becomes unstable to
spatial perturbations and patterns of density develop. As shown
by Nakao and Mikhailov [16], this scenario persists when the
medium is replaced by a network of patches, although the
qualitative nature of the patterns change considerably.

Here we extend the model of Nakao and Mikhailov by
considering larger food chains, composed of several species of
prey and predators. We assume that each prey species has a pri-
mary predator associated to it, forming a pair. The pairs in the
food chain are hierarchically coupled by secondary predation
relations. Thus, the prey in the first pair is consumed by its main
predator and also by the predator in the second pair, though
with the lower intensity γ . Similarly, the prey of the second
pair is consumed primarily by its associated predator and also
by the predator of the third pair, and so on. Only the last species
of prey in this ordered chain is consumed exclusively by its
main predator, as illustrated in Fig. 1. Although the resulting
food chain is greatly simplified, predators in the top layers can
represent larger predators, which are known to feed from a
wider range of body size prey than smaller ones [17]. Links
connecting prey to tertiary predators up the chain could also
be added but do not result in qualitatively different patterns.
These links, therefore, were not included.

The environment where these interactions take place con-
sists of a network of patches. Species-species interactions,
as described by the food chain, take place locally in each
patch and the coupling between patches occurs exclusively via
diffusion, which is possible if the patches are connected in the
network.
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FIG. 1. (Color online) Hierarchical food chain with three pairs
of prey and predators. Each predator is linked to the previous prey
(secondary predation) with strength γ .

The equations describing this dynamical system are given
by
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where u
(l)
i (t) and v

(l)
i (t) represent the populations of prey and

predators at time t , respectively. The label l = 1,2,3, . . . ,

index the prey-predator pair.
The functions f and g describe the local interaction

between prey and predators of each pair (also called reaction
functions). The terms proportional to γ represent the secondary
predation relations between adjacent pairs and the parameter
φ accounts for the ratio between predator gain and prey loss
in the secondary interaction.

The parameters ε and σ are, respectively, the prey mobility
and the ratio between predator and prey mobilities. The
matrix L stands for the Laplacian matrix and accounts for the
diffusion of populations across connected sites. For undirected
networks, L is symmetric with Lij = Aij − kiδij , where A is
the adjacency matrix and ki the degree of node i. The adjacency
matrix defines the topology of the network and is given by
Aij = 1 if nodes i and j are connected and Aij = 0 if they are
not. The degree ki = ∑

j Aij is the number of connections of
node i.

The term
∑

j Liju
(l)
j in Eq. (1) controls the diffusion of prey

u(l). It gives the difference between the total population of prey
u(l) in the sites connected to i and ki times the population in
the site i. If u(l) is the same in all sites the sum adds to zero
and there is no diffusion. A similar term controls the diffusion
of predators in the equation for v(l).

As a simplification, we consider that the intrinsic growth
rate of all prey species are the same, as is the intrinsic death
rate of all predator species. In that manner, the functions f and
g and the parameters associated to these functions are the same
for all pairs. The more general case in which the parameters
for each pair differ is discussed in Sec. VII.

The functions f and g are chosen according to the model
of Mimura and Murray [6],

f (u,v) =
(

a + bu − u2

c
− v

)
u,

(2)
g(u,v) = [u − (1 + dv)]v,

where a, b, c, and d are positive parameters that will be fixed to
a = 35, b = 16, c = 9, and d = 0.4 throughout this paper [6].

Both the prey-per-capita growth rate and the pradator-per-
capita death rate are density dependent. The hump effect
that can be noted in the prey growth in f represents what
in biology is called the Allee effect [23–25], describing a
positive correlation between population density and per capita
growth rate in small populations. The linear function related
to the predator per capita death rate accounts for intraspecific
competition in the predator population.

The possibility of observing Turing patterns for these
equations must be evaluated via linear analysis. Here we show
the analysis for the case of a single prey-predator pair and
of two prey-predator pairs. The general case with n pairs is
slightly more complicated but can be done following the same
lines.

III. LINEAR STABILITY ANALYSIS

In this section we briefly review the stability analysis of
network organized systems. For simplicity we consider only
up to two pairs of prey and predator, since the methodology
generalizes immediately to the case of higher numbers of pairs.

For the case of only one pair, the equilibrium populations
in the absence of diffusion, (ū,v̄), are the positive solution of

f (ū,v̄) = 0, g(ū,v̄) = 0. (3)

Diffusion-driven instability occurs when the equilibrium is
stable against perturbations in the absence of diffusion (ε =
0.0) but is unstable when diffusion is considered.

Let

(ui,vi) = (ū,v̄) + (δui,δvi) (4)

be small perturbations to the fixed point (ū,v̄) at site i.
Substituting (4) in Eq. (1) and linearizing, we obtain

d

dt
δui = fuδui + fvδvi + ε

N∑
j=1

Lij δui,

(5)
d

dt
δvi = guδui + gvδvi + σε

N∑
j=1

Lij δvi,

where the derivatives are evaluated at the equilibrium.
Since we are dealing with network-organized systems, it

is convenient to expand the perturbations in the basis formed
by the eigenvectors of the Laplacian matrix, { ��α} [16]. Here
α = 1, . . . ,N represent different modes, in direct analogy with
the Fourier modes that appear in continuous systems where the

TABLE I. Homogeneous fixed points for different values of γ for
the four-species system.

γ u(1) v(1) u(2) v(2)

0.002 4.989 9.973 4.993 9.995
0.01 4.945 9.863 4.966 9.977
0.05 4.726 9.314 4.837 9.889
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FIG. 2. Linear growth rates, λα , as a function of the eigenvalues of the Laplacian, 
α , for a Barabási-Albert network with N = 200 and
〈k〉 = 10, for (a) one prey-predator pair and (b) two pairs. In all the cases ε = 0.06 and three different values of σ are shown for comparison.
Modes with λα > 0.0 are observed for σ above the critical value in each case.

Laplacian is the usual operator ∇2. We find

δui(t) =
N∑

α=1

cαexp[λαt]φ(α)
i ,

(6)

δvi(t) =
N∑

α=1

cαBαexp[λαt]φ(α)
i .

Substituting (6) in Eq. (5) and using
∑N

j=1 Lijφ
(α)
j =


αφ
(α)
i , we obtain, for each mode α,

λα

(
1
Bα

)
=

(
fu + ε
α fv

gu gv + σε
α

) (
1
Bα

)
. (7)

The matrix obtained in Eq. (7) is the Jacobian of the system
with diffusion. The linear growth rates, λα , of each mode are,
as expected, the eigenvalues of the Jacobian matrix. Turing
instability appears when one of the modes becomes unstable.
At the threshold, Re(λα) = 0 for some α = αc and Re(λα) < 0
for all other modes.

Above this threshold Re(λαc ) > 0 and perturbations grow in
time according to exp[λαt], eventually forming the stationary
Turing pattern. A necessary condition for this is that the
solutions of (5) are confined, otherwise the perturbed solution
diverges.

The same procedure can be used to analyze systems with
more than one pair. After linearizing the equations around
the equilibrium state [given by the fixed point of system (1)
in the absence of diffusion; see Table I] and expanding the
perturbations in the eigenvectors of the Laplacian matrix, we
obtain the Jacobian matrix. For two pairs, we obtain

⎛
⎜⎝

fu + ε
α fv 0 −γ u

gu gv + σε
α 0 0
0 0 fu + ε
α fv

φγ u 0 gu gv + σε
α

⎞
⎟⎠ . (8)

In the case of two or more pairs of species it is not possible
to obtain the eigenvalues of the Jacobian analytically (see
Appendix A for calculation with one pair), which must be
computed numerically. For each value of 
α there will be at
most four real eigenvalues of the Jacobian, but only two of
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FIG. 3. (Color online) Stationary abundance patterns for a single predator-prey pair as a function of node index i for ε = 0.12 and σ = 20.0
for (a) prey and (b) predators. The lines at ui = 5.0 and vi = 10.0 indicate the values of the homogeneous state, which is a fixed point for this
set of parameters.
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FIG. 4. (Color online) Stationary abundance patterns for u(1)

(circles) and u(2) (squares) as a function of node index i for ε = 0.12,
σ = 20.0, φ = 0.5, and γ = 0.002.

them may become positive. This is similar to the case of one
pair of species, which has at most two real eigenvalues for
each 
α , but only one can become positive.

Figure 2 shows the linear growth rates, λα , as a function of
the eigenvalues of the Jacobian, 
α for a = 35.0, b = 16.0,
c = 9.0, d = 0.4, and ε = 0.06, and a network of N =
200 nodes with power-law degree distribution constructed
according to the Barabási-Albert algorithm [18]. Figure 2(a)
shows the growth rates for the system with one pair and 2(b)
for the system with two pairs.

IV. TWO SPECIES

We first review the case of two species as a reference to
the more complex patterns we study in the following sections.
We consider a network with N = 1000 nodes, constructed
according to the Barabási-Albert model [18]. The populations
of prey, ui , and predators, vi , defined in each node i interact
locally and diffuse through the network nodes according to
Eqs. (1), with l = 1 (and u

(0)
i = v

(2)
i = 0). Equations (1) are

numerically integrated until a stationary distribution of the
species abundance is obtained.

Figure 3 shows the stationary abundance patterns of prey,
Fig. 3(a), and predators, Fig. 3(b), as a function of node index
i for ε = 0.12 and σ = 20.0. The nodes are ordered according
to decreasing degree ki .

The pattern of prey distribution is formed by two groups of
nodes presenting significant differentiation in relation to the
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FIG. 6. Stationary pattern for the difference u(1) − u(2) as obtained
from simulations (black) and from the mean-field approximation
(gray and light gray) for ε = 0.12, σ = 20.0, φ = 0.5, and γ = 0.05.
The light gray values represent unstable branches.

homogeneous state: a group with high abundance (values of
ui well above ū) and a group with low abundance (values of
ui well below ū). The pattern of predators follows directly
the pattern of the prey: nodes with large abundance of prey
(ui > ū) also have large abundance of predators (vi > v̄) and
vice versa.

V. FOUR SPECIES

The four-species system is described by Eq. (1) with l =
1,2 (and u

(0)
i = v

(3)
i = 0). The equations have a homogeneous

equilibrium point that depends on the coupling parameter γ ,
as displayed by Table I. The populations of prey and predators
decrease as γ increases.

The stationary patterns of prey u(1) and u(2) as a function
of the node index i are shown in Fig. 4. These patterns of
abundance (and also those of v(1) and v(2)) do not differ very
much from each other or from the previous case shown in
Fig. 3. In particular, both types of prey and predators present
the separation of nodes in high-abundance and low-abundance
groups.

However, this similarity is partly an illusion, having
to do with the way the data are plotted. Indeed, a new
underlying pattern arises when the difference between the
prey abundances u

(1)
i − u

(2)
i is plotted, as shown in Fig. 5 for

different values of the coupling strength γ .
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FIG. 5. Stationary patterns for the difference u(1) − u(2) as a function of node index i for (a) γ = 0.002, (b) γ = 0.01, and (c) γ = 0.05. In
all cases ε = 0.12, σ = 20.0, and φ = 0.5.
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FIG. 7. (Color online) Stationary patterns of prey distributions as
a function of node index i for the case of three pairs for ε = 0.12,
σ = 20.0, φ = 0.5, and γ = 0.05. Here, u(1) are circles, u(2) squares,
and u(3) triangles.

In all cases, it is possible to distinguish three main branches:
the upper branch, where u(1) − u(2) ≈ 4, corresponding to
nodes where u(1) is abundant but u(2) is not; the lower branch,
where u(1) − u(2) ≈ −4 where the abundances are reversed;
and the middle branch, where u(1) − u(2) ≈ 0 and u(1) and u(2)

have similar abundances. This configuration of branches can be
derived via a mean-field approximation [26,27], as discussed
in Appendix B and displayed in Fig. 6.

As γ increases the middle branch gets less populated and
the nodes are dominated mostly by a single species of prey
and predator. This corresponds to a strong effect of apparent

competition driven by Turing instabilities. The more important
the secondary predation (which is kept weaker than the direct
predation in the each pair), the stronger the effect.

VI. SIX SPECIES

To investigate if the negative correlation between prey of
coupled pairs also occur in larger trophic chains we consider
a system with six species, again given by Eq. (1) with l =
1,2,3 (and u

(0)
i = v

(4)
i = 0). The stationary patterns of prey

distributions are shown in Fig. 7.
Once again, for each prey species, the nodes cluster into

groups of high and low abundances. The analysis of the
correlations between different prey species, however, is now
more involved. We first define the quantity

σ
(l)
i = sng

(
u

(l)
i − ū(l)

) =
{+1, if u

(l)
i > ū(l)

−1, if u
(l)
i < ū(l) , (9)

where σ
(l)
i indicates if the l-th prey population at node i has

high (σ (l)
i = +1) or low (σ (l)

i = −1) abundance with respect
to the homogeneous value.

Second, we separate the nodes in two groups: those with
σ (2) = +1 and those with σ (2) = −1. Since nodes with large
ki are not sensitive to the coupling, we restrict this analysis
to nodes with i � 250, for which the differentiation is more
evident. Finally, we focus on the value of the sum σ (1) + σ (3)

for these nodes. The three possible values of this sum indicate
the following situations: If σ (1) + σ (3) = +2, both u(1) and u(3)
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FIG. 8. Histogram of nodes with different values of σ (1) + σ (3) for σ (2) = −1 (black bars) and σ (2) = +1 (gray bars) for (a) γ = 0.0,
(b) γ = 0.002, (c) γ = 0.01, and (d) γ = 0.05.
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have high abundance in the node; if σ (1) + σ (3) = −2, both u(1)

and u(3) have low abundance and if σ (1) + σ (3) = 0, u(1) and
u(3) have opposed abundance characteristics. If the hypothesis
of negative correlation is to be valid, the group of nodes with
σ (2) = +1 must have most of its node with σ (1) + σ (3) = −2
and the group with σ (2) = −1 must have most of its nodes with
σ (1) + σ (3) = +2. The results are shown in Fig. 8 in the form
of histograms.

In Fig. 8(a) γ = 0.0 and the three prey distributions
are uncorrelated. Figures 8(b) and 8(c) display cases with
increasing values of γ . As the coupling strength increases,
the number of nodes with σ (1) + σ (3) = +2 increases in the
group with σ (2) = −1 and similarly with the number of nodes
with σ (1) + σ (3) = −2 in the group where σ (2) = +1. This
separation is evident in Fig. 8(d), where γ = 0.05, where it is
clear that most of the nodes where u(2) has large abundance
display low abundances of both u(1) and u(3) and vice versa,
showing the persistence of the negative correlation between
prey of coupled pairs.

VII. DISCUSSION

We have studied the formation of Turing patterns in an
extended prey-predator system, considering trophic chains
composed of one, two, and three prey-predator pairs, coupled
by cross predation and dispersing through the connected nodes
of a complex network. We detected the emergence of negative
correlations between the populations of prey of coupled pairs
in each node, even though there are no direct competition
between prey in the equations. This effect, known in biology
as apparent competition [28,29], is triggered here by the Turing
instabilities and not by the local interactions.

The description of fragmented landscapes as complex
networks is relatively recent in ecology [19]. Although large
landscape networks have been studied [30], most of the
empirical work has dealt with a relatively small number of
patches [31] and it is not obvious that the patterns observed
here for networks with N = 1000 nodes persist in smaller sets.
We have checked that for N as low as 100 the same pattern of
apparent competition can be clearly identified but not so much
for N = 50, which seems to be a limiting size for the present
set of parameters.

Another important concern in the application of our results
to realist ecological problems is the topology of the network.
All numerical simulations presented in the previous sections
were performed for networks exhibiting power-law decay of
the degree distribution that results from the application of
the Barabási-Albert algorithm. Natural landscape networks
can exhibit significant heterogeneity in the degree distribution
[20] but are not necessarily scale free. In order to verify
the robustness of our results against changes in the network
topology, we have also simulated networks with Poisson
degree distribution, associated to random networks. We found
that the negative correlations between prey still holds for
N = 1000 and average degree 〈k〉 = 20.

The dynamical equations considered in this paper were
greatly simplified by the use of the same set of parameters

for each pair of predator-prey species. This, however, results
in a ecological model in which all prey and predators have
the same intrinsic birth and death rates, which is unrealistic
in real-world hierarchically organized food chains. In order
to investigate less symmetric equations we have fixed c = 9
and d = 0.4 for all the pairs but set c(l) = (1.1)l−1c and
d (l) = (1.1)l−1d, where l is the index of each pair. In this
manner, the prey of each pair have birth rates that are 10%
smaller than the prey of the preceding pair. Similarly, the
predators of a pair have death rates 10% larger than the
preceding predators on the chain. The results for this new
set of parameters, considering a Barabási-Albert network with
N = 1000 and 〈k〉 = 20, displayed Turing patterns for the
abundance distributions of prey and predators that were very
similar to those presented in the previous sections, including
the strong apparent competition observed between prey of
adjacent pairs.

We have also varied the diffusion rates for the case of
two pairs of species. Using the same set of parameters for
the functions f and g and the same network topology as in
Sec. V, we first fixed σ = 20.0 for both pairs and set ε1 = 0.12
and ε2 = 0.06. The resulting Turing patterns differed slightly
from the case where ε1 = ε2 = 0.12 but also displayed the
negative correlation observed in that case. Next we fixed
ε = 0.12 for both pairs and (i) σ1 = 15.0 and σ2 = 20.0
and (ii) σ1 = 20.0 and σ2 = 15.0. In both cases, Turing
patterns formed, even though σ = 15.0 is below the critical
value for pattern formation for a single isolated pair. The
negative correlation between the species of each pair was
also observed for strong coupling, confirming the robustness
of apparent competition driven by Turing instabilities in the
system.

The occurrence of Turing patterns in real ecological systems
is still an open question. This is in part due to the difficulties
in conducting controlled ecological field experiments to
distinguish between patterns related to space heterogeneity
or to intrinsic mechanisms of the interaction. However, there
is growing evidence of species distribution patterns formed by
the Turing mechanism [21,22].

Our results point to the possibility that, at least in part,
species abundance patterns might be related to Turing instabil-
ities and not to environmental heterogeneity. Moreover, strong
effects of apparent competition might emerge spontaneously
driven by Turing instabilities and not necessarily by local
interactions.
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APPENDIX A: CRITICAL VALUE FOR TURING
INSTABILITY

The eigenvalues of the Jacobian matrix of Eq. (7) are given
by the roots of the characteristic polynomial

λ2
α − λα(fu + gv + (1 + σ )ε
α) + (fu + ε
α)(gv + σε
α) − fvgu = 0,
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which are given by

λα = fu + gv + (1 + σ )ε
α ±
√

4fvgu + (fu − gv + (1 − σ )ε
α)2

2
. (A1)

For each mode α there are two possible values for λα ,
but only the one associated to the plus sign can become
positive, so we only need to consider this eigenvalue. Solving
d(λα)/d(
α) = 0 we obtain the critical Laplacian eigen-
value. Substituting this value in Eq. (A1) and imposing that
Re(λαc ) = 0 in the instability threshold, we obtain the critical
value σc,

σc = fugv − 2fvgu + 2
√

fvgu(fvgu − fugv)

f 2
u

. (A2)

APPENDIX B: MEAN-FIELD APPROXIMATION

The mean-field approximation consists in averaging the
heterogeneous degree distribution of the network by adjusting
the strength by which each node senses the presence of its
neighbors. Introducing the local fields

xl
i =

N∑
j=1

Aiju
(l)
j

(B1)

yl
i =

N∑
j=1

Aijv
(l)
j

and substituting in Eq. (1), we obtain

d

dt
u

(l)
i (t) = f

(
u

(l)
i ,v

(l)
i

) − γ u
(l)
i v

(l+1)
i + ε

(
xl

i − kiu
(l)
i

)
,

d

dt
v

(l)
i (t) = g

(
u

(l)
i ,v

(l)
i

) + φγu
(l−1)
i v

(l)
i + σε

(
yl

i − kiv
(l)
i

)
.

(B2)

We then consider the approximations xl
i � kiX

l and yl
i �

kiY
l , where the global fields X and Y are defined as the

weighted averages

Xl =
N∑

j=1

wju
(l)
i , Y l =

N∑
j=1

wjv
(l)
i , (B3)

with the weights

wj = kj

/ N∑
l=1

kl. (B4)

This choice gives hubs have a stronger influence in the
calculation of the global fields.

With this approximation, and introducing the parameter
β(i) = εki , the dynamical system may be written as

d

dt
u(l)(t) = f (u(l),v(l)) − γ u(l)v(l+1) + β(Xl − u(l)),

d

dt
v(l)(t) = g(u(l),v(l)) + φγu(l−1)v(l) + σβ(Y l − v(l)), (B5)

where each dynamical variable interacts only with its associ-
ated global field. Since every node now possesses the same
dynamical equation, we may drop the index i.

In order to describe the patterns for the difference of prey
populations, in the case with two prey-predator pairs, we define
the new variables,

u± = u(1) ± u(2), v± = v(1) ± v(2). (B6)

The system of Eqs. (B5), written with the new variables
(B6), is given by

du±
dt

= F±(u−,u+,v−,v+) − γ

4
(u− + u+)(v+ − v−)

+β(X± − u+),
(B7)

dv±
dt

= G±(u−,u+,v−,v+) ± φγ

4
(u− + u+)(v+ − v−)

+ σβ(Y± − v+),

where

F± = f (u(1)(u−,u+),v(1)(v−,v+))

± f (u(2)(u−,u+),v(2)(v−,v+)),
(B8)

G± = g(u(1)(u−,u+),v(1)(v−,v+))

± g(u(2)(u−,u+),v(2)(v−,v+)),

and

X± = X1 ± X2, Y± = Y 1 ± Y 2. (B9)

If the global fields for each dynamical variable are given,
the parameter β may be seen as a bifurcation parameter. It is
possible to note a saddle-node bifurcation in the system and
the appearance of new stable fixed points, when the value of
β is increased from β = 0.

We obtain the global fields (B9) by numerically integrating
equations (1) and using the stationary values of the dynamical
variables in Eq. (B3) and these in Eq. (B9). We then construct
bifurcation diagrams calculating, for each value of β, the fixed
points of the system (B7). Since each node has an associated
degree ki and, therefore, an associated β, it is possible to
project the bifurcation diagram in the stationary pattern that
resulted of the numerical integration of Eq. (1). The projection
of the bifurcation diagram relative to the variable u− on the sta-
tionary pattern for the difference u(1) − u(2) is shown in Fig. 6.
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