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ABSTRACT. Various species of the Physalaemus cuvieri group of frogs
are difficult to distinguish morphologically, making molecular analysis
an attractive alternative for indentifying members of this group, which is
considered to be at risk because of loss of habitat. The genetic structure
of natural populations of P. ephippifer and P. albonotatus species was
investigated and analyzed, together with that of five previously studied
populations of P. cuvieri. Nine microsatellite loci were used in the
analyses. The overall G, value (0.46) revealed high genetic variation
among the populations, as expected for different species. Bayesian
analysis implemented by the STRUCTURE software clustered the
seven populations into seven groups (K = 7). All the P. albonotatus
and P. ephippifer specimens were grouped into a single cluster, both
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species showing clear differentiation from P. cuvieri. The different
grouping based on these microsatellites of some P. cuvieri individuals
from Porto Nacional and from Passo Fundo suggests that they could be a
new species, indicating a necessity for taxonomic reevaluation. Despite
the intrinsic difficulties in analyzing closely related species, the nine
microsatellite loci were found to be adequate for distinguishing these
three species of the P. cuvieri group and their populations.

Key words: Related species; Frogs; Microsatellites; Physalaemus;
Population structure

INTRODUCTION

The Physalaemus genus of the family Leiuperidae consists of 45 species (Frost, 2009)
distributed into seven groups: “albifrons”, “cuvieri”, “deimaticus”, “gracilis”, “henselii”,
“olfersii”, and “signifer” (Nascimento et al., 2005). Of these 45 species, nine belong to the
P, cuvieri group and are named P. albonotatus, P. centralis, P. cicada, P. cuqui, P. cuvieri,
P. ephippifer, P. erikae, P. fischeri, and P. kroyeri. The P. cuvieri group is widely distributed
from southern to northern South America, in the east of the Andes from Argentina to Venezu-
ela, in the open Cerrado, Caatinga, Chaco, and Llanos Domains (Nascimento et al., 2005).

The P. cuvieri group contains cryptic species with intraspecific morphological varia-
tion. Therefore, the identification of species, such as P. cuvieri, P. ephippifer and P. albono-
tatus (analyzed in this present study) and P. centralis, based exclusively on morphological
characteristics is not reliable (Barrio, 1965). In addition, new species are supposed to occur
and their identification is often difficult.

The correct species delimitation and identification is important for defining diversity
and conservation strategies. The speciation process is not always accompanied by morpho-
logical changes, and thus, the true number of biological species is likely to be greater than cur-
rently known, as most of the species are determined on purely morphological traits (Bickford
et al., 2007). Given the increasing worldwide destruction and disturbance of natural ecosys-
tems, and considering that most species remain undescribed, efforts to catalogue and explain
biodiversity need to be prioritized.

DNA markers have been proven useful for detecting and differentiating morphologi-
cally similar species (Bickford et al., 2007) and have been used as molecular markers, mainly
to investigate the genetic structure of natural populations (Jones and Ardren, 2003; Lai and
Sun, 2003). Microsatellites as genetic markers can be species-specific, but fortunately, the
presence of highly conserved flanking regions has allowed cross-amplifications in species
that diverged as long as 470 million years ago (Zane et al., 2002). They can be used as heter-
ologous molecular markers in closely related species. These markers offer great potential for
studies on parentage (Myers and Zamudio, 2004), gene flow (Austin et al., 2004; Kraaijeveld-
Smit et al., 2005; Arens et al., 2007), and maintenance of genetic diversity (Funk et al., 2005;
Wilkinson et al., 2007; Allentoft et al., 2009). High degrees of conservation in primer-binding
sites have occasionally been shown among certain taxa (Hamill et al., 2007).

In this study, we report the comparison among two species of the P. cuvieri group (P,
ephippifer and P. albonotatus, one population each) along with five populations of P. cuvieri
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using microsatellite markers to analyse population genetic structure of these closely related
species of the Physalaemus genus.

MATERIAL AND METHODS
Population sampling and DNA extraction

The specimens analyzed in this study were sampled in seven localities of Brazil (Fig-
ure 1). In total, 111 individuals were collected in the breeding season under a permission
issued by the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renovaveis
(IBAMA, Proc. #02010.002895/03-84). One population of each species, P. ephippifer (PA12)
and P. albonotatus (MT13) (Table 1), was analyzed together with five populations of P. cuvieri
from Urbano Santos, Maranhdo State (MA2), Porto Nacional, Tocantins State (TO3), Uberlan-
dia, Minas Gerais State (MG4), Passo Fundo, Rio Grande do Sul State (RS10), and Crateus,
Ceara State (CE11). The populations MA2, TO3 and MG4 were previously analyzed by Conte
et al. (2009), and also, these three populations plus CE11 (P. cuvieri), PA12 (P. ephippifer)
and MT13 (P. albonotatus) were cytogenetically studied (Quinder¢ et al., 2009). TO3 espe-
cially showed several remarkable chromosomal differences among P. cuvieri populations. To
complete the sampling in this study, we added the RS10 population (analyzed by Conte M,
unpublished results). These authors showed that TO3 and RS10 populations were divided into
two sets of individuals each, representing a different sampled season. The accession numbers
of voucher specimens are shown in Table 1.
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Figure 1. Map of Brazil displaying the sampling localities of Physalaemus populations. PA12 = P. ephippifer;
MT13 = P. albonotatus; the five remaining populations (MA2, TO3, MG4, RS10, CE11) = P, cuvieri.
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Genomic DNA was extracted from liver, muscle and heart tissues of the Physalaemus
specimens using the Genomic Prep Cells and Tissues DNA Isolation kit (Amersham Pharma-
cia Biotech) and the TNES method (Tris, NaCl, EDTA, SDS; Martins and Bacci Jr., 2001).

Microsatellite analysis

Nine specific microsatellite loci, previously developed for P. cuvieri and named
P1A10, P3A12, P6AS, PICI, P12D1, P13AS5, P17B10, P20D4, and P21D10 (Conte et al.,
2009), were used to genotype the individuals in the present study. The choice of the nine
microsatellite markers used was based on data from previous analyses regarding number of
alleles, null alleles, observed (H,)) and expected (H,) heterozygosities, and deviation from the
Hardy-Weinberg equilibrium (Conte et al., 2009).

Polymerase chain reaction (PCR) amplifications were performed according to Conte
et al. (2009). PCR products were visualized on 3% agarose gels. Amplified DNA fragments
were separated by electrophoresis on 6% denatured polyacrylamide gels using a 10-bp ladder
(Invitrogen) as size standard, and silver stained (Creste et al., 2001).

Data analysis

The FSTAT software (Goudet, 1995) was used to estimate overall G, G, pairwise
(Nei, 1973) and Cockerham’s estimator of F ; (/- inbreeding coefficient) in order to investi-
gate possible deviations from the Hardy-Weinberg equilibrium. Means of expected and ob-
served heterozygosities were calculated using GDA (Lewis and Zaykin, 2000).

The Bayesian approach has been extensively used in population analyses. In the
STRUCTURE software (Pritchard et al., 2000), K populations were assumed and each popu-
lation is characterized by allelic frequency group in each locus. This software is able to cluster
the individuals in populations that are as close as possible of the Hardy-Weinberg equilibrium,
without a priori information about sampling sites. This feature is important to recognize cryp-
tic species (Falush et al., 2007). The STRUCTURE software was used to group the individuals
in clusters. The analysis uses Bayesian model-based clustering algorithm and attempts to iden-
tify genetically distinct populations on the basis of patterns of allele frequencies. The allele
frequencies correlated among populations were used and STRUCTURE was applied in over-
lapping subsets of seven populations at a time. Runs were performed with a burn-in length of
100,000 and MCMC repeats of 100,000, with 10 iterations for each K. The range of possible
Ks was from 2 to 7. Identification of number of distinct clusters (K) was performed following
the procedure described by Evanno et al. (2005). In order to define the genetic relationships
among populations, the neighbor-joining analysis (Saitou and Nei, 1987) was performed using
the DARwin 5.0 software (Perrier and Jacquemoud-Collet, 2006).

RESULTS

Of the 10 microsatellite loci previously developed for P. cuvieri (Conte et al., 2009),
nine cross-amplified were suitable for assessing genetic variability and genetic structure
among the populations analyzed of P. cuvieri, P. albonotatus and P. ephippifer.

The overall H, mean per population ranged from 0.09 in MT13 (P. albonotatus) to 0.58
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in RS10 (2. cuvieri) populations. The H varied in a range from 0.15 in MT13 to 0.59 in RS10 (P
cuvieri), as shown in Table 2. The inbreeding coefficient ( /) measures the correlation of genes
among individuals belonging to a same population, and it determines random mating within the
samples. The overall f~value was -0.12 (95%CI). The predominance of negative f-values, calcu-
lated by each population (Table 2), suggests that this was largely due to heterozygote excess.

Table 2. Physalaemus populations analyzed with microsatellites.

Population H, H, v

MA2 0.41 0.56 -0.38
TO3 0.54 0.45 0.18
MG4 0.46 0.53 -0.14
RS10 0.58 0.59 -0.03
CEll 0.30 0.31 -0.05
PA12 0.34 0.47 -0.37
MT13 0.09 0.15 -0.61

PA12 = P. ephippifer; MT13 = P. albonotatus; other five populations (MA2, TO3, MG4, RS10, CE11) = P. cuvieri,
H, = expected heterozygosity; H, = observed heterozygosity; /= breeding index.

The overall G, value of 0.46 (95%CI) indicated a high genetic differentiation among

the sampled populations, and in the G, pairwise, the values ranged from 0.17 between TO3
and PA12 to 0.77 between PA12 and MT13 (Table 3).

Table 3. Genetic differentiation among populations measured as pairwise G, values (lower).

Population MA2 TO3 MG4 RS10 CEll PA12 MT13
MA2 0

TO3 0.24 0

MG4 0.36 0.20 0

RS10 0.31 0.23 0.28 0

CEIll 0.34 0.30 0.37 0.40 0

PA12 0.45 0.17 0.44 0.35 0.54 0

MTI13 0.72 0.64 0.68 0.63 0.74 0.77 0

The clustering analysis using STRUCTURE revealed K = 7, indicating that the dataset con-
tained 7 distinct genetic units (Figure 2). The population clustering probabilities (P> 0.90) are listed
in Table 4, and letters A to G symbolize the clusters. The closely related species P. ephippifer (PA12)
and P. albonotatus (MT13) were assigned to a single cluster each, cluster A and G, respectively
(Table 4). The P. cuvieri population grouping was: MA2 had 11 of 15 individuals assigned with all
14 individuals from CE11 to cluster C; TO3 was divided into two sets, with 9 individuals assigned
to cluster E and 6 to cluster F together with 11 individuals from MG4. Moreover, RS10 had two
distinct sets: cluster B with 10 individuals and cluster D with 6 individuals. The clustering of the 7
Physalaemus populations is represented in Figure 2, in which the groups are distinguished by colors.

The neighbor-joining tree (10,000 bootstraps) generated by the DARwin software
(Figure 3) revealed that the clustering was similar to that with STRUCTURE (Figure 2). The
first clade in the Figure 3 representation contained individuals from the PA12 population (P
ephippifer). The next clade has part of TO3 individuals, followed by a set of individuals from
RS10. The most apart clade has individuals from MT13. Subsequently, there is a clade con-
sisting of a set of individuals from the RS10 population and lower there is another branch
composed of MA2 and CE11 individuals. Ultimately, the lowest positioned clade shows indi-
viduals from the MG4 population and part of TO3.
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Figure 2. Color scheme: graphical output from STRUCTURE for K = 7. Clustering of Physalaemus populations,
with K = 7. The color composition displays the probability of belonging to each of the seven clusters defined by
STRUCTURE.

Table 4. Results of STRUCTURE analysis for seven Physalaemus populations (K = 7) showing mean
probabilities for each population assigned to a cluster.

Population N Inferred cluster by STRUCTURE P<0.90
A B C D E F G
MA2 15 0.006 0.023 11/0.933 0.005 0.008 0.023 0.002 4
TO3 21 0.018 0.012 1/0.1 0.009 9/0.498 6/0.361 0.002 5
MG4 16 0.005 0.011 0.007 0.059 0.016 11/0.9 0.002 5
RS10 19 0.006 10/0.599 0.026 6/0.353 0.006 0.007 0.003 3
CEll 14 0.004 0.005 14/0.964 0.004 0.013 0.006 0.004 -
PA12 15 13/0.95 0.012 0.004 0.015 0.014 0.004 0.002 2
MTI3 11 0.002 0.002 0.002 0.002 0.002 0.002 11/0.989 -

Numbers in bold refer to the individuals assigned to one of the seven clusters, with probability >0.90. The last
column on the right side refers to the remaining individuals assigned to other clusters. PA12 = P. ephippifer; MT13
= P. albonotatus; other five populations (MA2, TO3, MG4, RS10, CE11) = P. cuvieri. N = sample size.

. PA12

Figure 3. Neighbor-joining dendrogram. Numbers in the dendrogram indicate bootstrap probability (%) based on
100,000 replicates. Only probabilities over 50% were represented. Color representation of the five clusters and
identification of specimens are as following: Red = PA12; pink = part of TO3; yellow = part of RS10; orange =
MT13; green = remainder of RS10; dark blue = CE11 and MAZ2; pale blue = remainder of TO3.
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DISCUSSION

The results described herein demonstrated that the 9 microsatellite loci (Conte et al.,
2009) are suitable to separate the closely related species studied in this analysis and, besides,
these markers were useful to determine the genetic structure of these closely related Physalae-
mus species. In addition, these markers allowed the discrimination of two populations (TO3
and RS10) of P. cuvieri.

The negative f~values found in six populations suggested heterozygote excess within
these populations, probably due to favorable heterozygote selection or an effect of sampling.
Still, these negative values show that these populations are panmictic. Some authors found
similar results for this coefficient (i.e., Schmeller and Merild, 2007; Allentoft et al., 2009).

In accordance with our expectations, the overall G, value (0.46) was high and indi-
cated high genetic differentiation among populations. A smaller F value (0.27) was recently
estimated for 10 P. cuvieri populations (Conte M, unpublished results). This F = 0.27 in
P. cuvieri is coherent when compared with the G, = 0.46 reported in the present study for
distinct yet closely related species analyzed together. In a previous study, Chiari et al. (2006)
reported microsatellite and cytocrome b analyses of Dyscophus antongilii and D. guineti, in
which the values of F_ and R were 0.606 and 0.546, respectively. These results suggested
a clear genetic differentiation between the two Dyscophus species. Morgan et al. (2008), us-
ing microsatellite and mitochondrial DNA data, analyzed two species of frogs, Pseudophryne
pengilleyi and P. corroboree, from distinct localities. The authors reported Fg values more
significant between geographically more distant populations, and the global @ showed that
18.7% of the molecular variation was partitioned among these populations. The present data
of Physalaemus reflect a strong genetic differentiation among the sampling localities, show-
ing that the microsatellites clearly distinguished the species involved in the present analysis.

The cytogenetic analysis of populations analyzed here (MA2, TO3, MG4, and CE11
- P. cuvieri, PA12 - P. ephippifer and MT13 - P. albonotatus) found a nucleolar organizer
region (NOR) pattern that allowed the clustering of the populations from MA2, CE11 and
MG4, but the TO3 did not group with any other population. The PA12 NOR was located in
the same chromosome of these four P. cuvieri populations, but in a distinct region of pair 8.
Physalaemus ephippifer (PA12) also differed by the presence of heteromorphic ZZ/ZW sex
chromosomes. Ultimately, the P. albonotatus (MT13) karyotype clearly distinguished this spe-
cies from other species of the P. cuvieri group (Quinderé, 2007). For the RS10 population,
there are no cytogenetic data.

The neighbor-joining tree obtained from the analysis with the DARwin software,
similar to the clustering obtained by STRUCTURE, were also useful in discriminating species
of the cuvieri group. In the present study, these analyses discriminated PA12 and MT13 from
each other and from other P. cuvieri populations analyzed. Even though they have been con-
sidered sibling species (Frost, 2009), they were clearly separated in all the genetic analyses,
including STRUCTURE.

These two analyses also clearly separated the TO3 and RS10 (both P. cuvieri) populations
in two groups each. Interestingly, even though all TO3 specimens were collected in the same local-
ity, 10 individuals were captured from February to April 2004, in an open pasture area, and 11 were
sampled in a forest, in April 2007. The former sample of TO3 population clustered with MG4, sug-
gesting that set of individuals could really be P. cuvieri, since MG4 behavior was similar to that of
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other populations of this species studied by Conte M (unpublished results). The second part did not
show any grouping with the populations analyzed here, suggesting that these individuals probably
belong to other species. Similar results were found for the RS10 population. Seven individuals were
sampled in 2006 and 12 specimens were collected in 2007. These specimens were also divided into
two sets of individuals by Bayesian analysis, and none of these sets showed any group with the
Physalaemus species and populations analyzed here. The previous cytogenetic data (Quinderé et al.,
2009) and the microsatellite analysis of the TO3 population (Porto Nacional County, TO) indicate
that these individuals probably belong to other species, although the individuals are morphologically
identical to and identified as P. cuvieri. We suggest a taxonomic review of this population, as well as
the individuals from the RS10 population. These results reinforce that microsatellite analysis can be
useful in detecting problems in species delimitation.

One crucial point in delimiting cryptic species is to distinguish between broad admix-
ture and narrow contact zone or even restricted hybridization (Fouquet et al., 2007). There are
several but perhaps incorrect assumptions about cryptic species, indicating that their specia-
tion was so recent that morphological or other diagnosable traits have not yet evolved. Strong
divergent natural or sexual selections are thought to be primary drivers behind rapid morpho-
logical divergence with little accompanying genetic differentiation (Bickford et al., 2007).
Thus, it is difficult to explain or identify the mechanisms involved in cryptic species differen-
tiation. There are few studies on population genetic structure of related species (Rosenberg et
al., 2001; Parker et al., 2004; Engel et al., 2005; Ellis et al., 2006; Chiari et al., 2006), but they
are rare for anuran sibling species.

The difficulty of morphological distinction between individuals from P. cuvieri dem-
onstrates that very closely related species may go undetected in suitable habitats for decades
or longer, even when those areas have been extensively studied. According to Luhring (2008),
management decisions dependent on the perceived absence of a cryptic species should be
made with the utmost caution, a high volume of targeted survey efforts, and long-term data
sets, because hidden biodiversity can be obscured to the most qualified of experts.

The results obtained here showed that microsatellite markers were useful in determining
the genetic structure of three related species of the genus Physalaemus. The levels of interspe-
cific variation detected among these species, make microsatellite markers suitable for studies
of population differentiation of these anuran species. The separation between TO3 and RS10
deserve special attention, and additional studies are warranted to better understand these results.
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