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We relate the problem of irreversibility of entanglement with the recently defined measures of quantum

correlation—quantum discord and one-way quantum deficit. We show that the entanglement of formation

is always strictly larger than the coherent information and the entanglement cost is also larger in most

cases. We prove irreversibility of entanglement under local operations and classical communication for a

family of entangled states. This family is a generalization of the maximally correlated states for which we

also give an analytic expression for the distillable entanglement, the relative entropy of entanglement, the

distillable secret key, and the quantum discord.
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Two complementary and among the most important
tasks in quantum information theory (QIT) are entangle-
ment dilution and entanglement distillation [1,2]. These
tasks are performed in a scenario where two spatially
separated observers, usually called Alice and Bob, share
some quantum states and are able to manipulate their
respective parties through local operations and classical
communication (LOCC) [2]. In the first task, Alice and
Bob share a large number of copies of a standard pure
maximally entangled state,

j�i ¼ 1ffiffiffi
2

p ðj00i þ j11iÞ; (1)

which is associated with a unit of entanglement called
e-bit. Their task is to construct many copies of an arbitrary,
generally mixed, state � from many copies of j�i using
only LOCC (see Fig. 1). In the second task, Alice and
Bob want to perform the reverse operation, i.e., to extract
from many copies of an arbitrary state, generally mixed,
the maximal possible amount of e-bits using only LOCC.
Those tasks naturally raise the two most important mea-
sures of entanglement-entanglement cost (EC) and distil-

lable entanglement (ED) [2]. For a given state �ab, E
Cð�abÞ

is the optimal rate for converting a large number of e-bits
into a large number of copies of the mixed state �ab under

LOCC by Alice and Bob. Similarly EDð�abÞ is the optimal
rate for converting a large number of �ab into e-bits under
LOCC [3].

When Alice and Bob can build a large number of copies
of an arbitrary state �ab and can get the same amount
of e-bits back through LOCC, it is said that there is
entanglement reversibility. Conversely, the entanglement
is said irreversible. To understand the aspects leading to
entanglement irreversibility is one of the most important
open problems in QIT [2] with practical implications.
Particularly, entanglement dilution is connected to the
problem of classical communication over a noise quantum
channel [4] and entanglement distillation is connected to

quantum communication and quantum key distribution
[3,5–7] for secure cryptography. It is known that the task
of building an entangled state and extracting back the
e-bits is reversible if Alice and Bob are limited to build
and to distill pure entangled states [1]. For a pure state ’,

EC and ED are equal to the von Neumann entropy Sð�rÞ of
the reduced density matrix �r of one of the subsystems.
Moreover, it is a long-standing conjecture that the only

states with EC ¼ ED are pure states and the so-called
pseudopure (PP) [3,8] states,

�PP ¼
X

pij’i
abih’i

abj � jfiihfij; (2)

where jfii is an ancilla, locally accessible for Alice or Bob,
working as a flag that indicates which pure entangled state
j’i

abi is in the mixture. Although widely believed, there are

few concrete evidences for this conjecture. To understand
irreversibility for mixed states has revealed itself to be a
very difficult question and the first examples were given
only some years later in Refs. [9–12]. Particularly, in
Ref. [12] it is shown that one can find mixed states that
consume entanglement to be created but no entanglement
can be extracted from it, the so-called bound entanglement.

FIG. 1 (color online). Entanglement dilution-distillation cycle.
The entanglement loss is given by �. In the case of reversible
entanglement, � vanishes. In the irreversible case of Eqs. (8) and
(9), � is the regularized quantum discord.
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One of the main reasons why it is so difficult to under-

stand irreversibility for mixed states is that EC and ED are
given by formal limits that are very hard to evaluate in
general. The first attempt to quantify the entanglement cost
was given by Bennett et al. [2] introducing the entangle-
ment of formation (EOF),

EF ð�Þ ¼ min
E

�X
i

piE
Cð’iÞ

�
;

where the minimization is over the set E of all ensembles of
pure states fpi; ’ig such that � ¼ P

ipi’i. EOF is the cost
of diluting the e-bits in the pure states of the ensemble of �
and mixing them. As there are many ensembles that real-
izes �, one can always choose the ensemble that gives the
minimal cost, hence the minimization in the formula of
EF . For a long time, it was generally believed that this
method was the best dilution protocol and that EC ¼ EF .
Indeed, it was shown by Hayden et al. [13] that EC is the
regularization of the EOF:

ECð�Þ ¼ lim
n!1

1

n
EF ð��nÞ: (3)

So the question was reduced to whether EF ð��nÞ ¼
nEF ð�Þ or not, that is, whether EOF is an additive measure
[4]. However, recently it was shown that EOF is not
additive in general [14], implying that there are states for
which better dilution protocols exist than the one given the
EOF. For such states, EF ð��nÞ< nEF ð�Þ for some n and
EC is strictly smaller than EF . Since EF is known to be
additive only for very particular states [7,10], it is not
generally known when one can take EF for EC.

The difficulty is similar for evaluating ED. In fact,

ED is only known in the particular case of maximally
correlated (MC) states [15]. There is an important lower
bound, however. When one of the conditional
entropies Sajb or Sbja is negative (Sajb ¼ Sab � Sb), there
is a protocol called hashing which can distill �Sajb e-bits
from � [2,5]. Then the coherent information, IC ¼
maxf0;�Sajb;�Sbjag, captures this negative part and is a

lower bound for ED. Indeed it is known that
IC can be increased by LOCC, and notably an optimal
distillation protocol can always be achieved performing
the optimization of IC followed by hashing [5]. That is,

EDð�Þ ¼ lim
n!1 sup

V

1

k
ICðV��kÞ; (4)

where V is some LOCC operating on k copies of �. There

is no bound on the number of copies V can act. So ED

might in fact exist only as the limit of V acting on a very
large number of copies of �. In the end, it is very difficult to

know or to efficiently bound EC and ED simultaneously for
answering the reversibility question. The difficulty in cal-
culating these quantities is the main reason for this ques-
tioning to be open for 14 years [2]. Here we will be able to

calculate ED for a new family of states.

In this context, it is convenient to introduce our first
formal results in the form of an important theorem and a
lemma. In what follows, when we say a mixed state, we
mean a not pure and not PP state.
Lemma 1.—For every mixed entangled state �ab

EF ð�abÞ> ICð�abÞ;
i.e., the EOF is strictly larger than the coherent information
for every mixed �ab.
Theorem 1.—Let �ab be a mixed entangled state, if

ECð�abÞ ¼ 1

n
EF ð��n

ab Þ; (5)

EDð�abÞ ¼ max
V

1

k
ICðV��kÞ; (6)

for some finite n and k, then the entanglement is irrevers-

ible for �ab, i.e., E
Cð�abÞ>EDð�abÞ.

The technical details of the proofs of Lemma 1 and
Theorem 1 are left to the supplementary material [16].
Here we limit ourselves to discuss their meaning in the
context of entanglement irreversibility and the main con-
cepts involved. First we notice that Eqs. (5) and (6) differ
from Eqs. (3) and (4) only by the lack of the limits.
So entangled states satisfying condition (5) will be called
type A and those satisfying condition (6) will be called
type B. The states satisfying both conditions will be
called type AB and, to complete the analogy, states satisfy-
ing none will be called type O. In this way, Theorem 1
simply says that states of type AB are irreversible. It is

important to notice that for all states that EC and/or ED are
known, the conditions (5) and/or (6) are satisfied.
The central concept behind Lemma 1 and Theorem 1 is

the quantum discord [17]. It is defined as the difference
between two ways of defining mutual information,

�ajcð�acÞ ¼ Ið�acÞ � Jajcð�acÞ;
where Ið�acÞ ¼ Sð�aÞ þ Sð�cÞ � Sð�acÞ is the quantum
mutual information and Jajcð�acÞ is a measure of the

amount of classical correlations present in quantum states,

Jajcð�acÞ ¼ max
f�ig

�
Sð�aÞ �

X
i

piSð�i
aj�iÞ

�
;

where f�ig is a complete positive operator valued measure
(POVM) on subsystem c and pi are the respective proba-
bilities, so Sð�i

aj�iÞ is the entropy of subsystem a condi-
tioned to the output �i on c. So Ið�acÞ measure the total
amount of correlations in �ac while Jajcð�acÞ measures the

amount of classical correlations when the POVM f�ig is
performed on c. In this way, �ajcð�acÞ gives a distinct

notion of nonclassicality from entanglement.
It is easy to relate quantum discord with the EOF. For

every pure tripartite state jc abci holds [18]
EF ð�abÞ ¼ �ajcð�acÞ � Sajbð�abÞ; (7)
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where �ab and �ac are the reduced states of the respective
subsystems. From Eq. (7) it is easy to see that �ajc is not
additive only when EF ð�abÞ is not additive as well. Then
it is necessary to define the regularized quantum discord
(RQD) in the same way as for EF ,

�ajcð�acÞ ¼ lim
n!1

1

n
�ajcð�acÞ:

Similarly to Eq. (7), we have for the regularized quantities

ECð�abÞ ¼ �ajcð�acÞ � Sajbð�abÞ; (8)

Equation (8) is relating three fundamental quantities in
QIT with a clear operational meaning. It is known that
when the conditional entropy is negative it is possible to
distill �Sajb e-bits out of the state �ab. Then Eq. (8) is

telling us that the amount of entanglement lost in the
process of creating a mixed state �ab and distilling it by
hashing is equivalent to the RQD with a complementary
system c. Thus Eq. (8) gives a new operational meaning to
�ajc as a measure of the amount of entanglement loss when

Alice and Bob distill entanglement by hashing.
For states of type B and AB, i.e., all those satisfying

condition (6), the connection between the RQD with the
purifying subsystem c and entanglement loss in distillation
will turn clear. For every �ab of typeB there is a finite k and
a LOCC V0 giving the maximum in Eq. (6) such that

�ajcð�acÞ ¼ ECð�abÞ � EDð�abÞ; (9)

where �ab ¼ V0��k
ab and EDð�abÞ ¼ kEDð�abÞ. In this

way, we say that �ab is the optimized distillable state
(ODS) of �ab. We notice that �ab can be the ODS of
many distinct states, being the result of also distinct V 0’s.
Therefore each �ab satisfying Eq. (9) defines a class of
states �ab for which it is the ODS. For each class,�ajcð�acÞ
is the minimal amount of entanglement lost in any
distillation protocol for all states belonging to the class.
In the case of �ab being bound entangled, we have for any
�ab ¼ V�ab, with an arbitrary LOCC V, that

�ajcð�abÞ � ECð�abÞ:
We have stated our more general results. Now we apply

these results for an important case—we consider the tri-
partite state

jc abci ¼
XN
i¼1

�ijai; ib; cii;

where N is the dimension of the subsystems, fjibig is an
orthonormal basis for b, fjaiig and fjciig are arbitrary
(usually nonorthogonal) states of a and c. The subsystem
ab results in the density matrix

�ab ¼
X
ij

�ijjaiibihajjbj; (10)

where �ij ¼ �i�
�
j hcjjcii. We call these states one-way

maximally correlated (1-MC) since, despite �ab being

mixed, the result of a measurement in the basis fjibig is
perfectly correlated with a definite state jaii.
Theorem 2.—For every mixed 1-MC �ab the entangle-

ment is irreversible. Equation (9) holds and

EC
ab > ED

ab ¼ �ajb ¼ �ajb ¼ �Sajb:

Further, �ab is separable if and only if�Sajb ¼ 0 and there
is no bound entangled state in this family.
In fact, 1-MC states are examples of type AB states. The

essential elements of the proof are the fact that EOF is
additive for them and the distillable entanglement turns out
to be exactly�Sajb. Furthermore, Theorem 2 gives us also

the quantum discord in one direction, �ajb (as well as other
measures, like the relative entropy of entanglement and the
distillable secret key; see the supplementary material [16]
for details) for these states. From the fact that �ajb � 0, one
can deduce that �Sajb � 0. We know also that �ajb ¼ 0
implies that �ab is separable. So �Sajb ¼ 0 is a necessary

and sufficient separability criteria for 1-MC states and
there is no bound entangled state belonging to this family.
In addition, we should notice that the only examples of

irreversibility previously known [11] with ED > 0 are very
particular cases of 1-MC states. Furthermore, the examples

for which we knew ED [5,15] are also a subset of null
measure of 1-MC states. Therefore, the only states proved
irreversible are the bound entangled and 1-MC correlated
states.
Example.—A tripartite pure state satisfying the condi-

tion of Theorem 2, i.e., such that the reduced state �ac is
separable, can be written as

jc abci ¼ 1ffiffiffi
2

p ðj000i þ j�1’iÞ;

where j�i¼cos�j0iþsin�j1i and j’i¼cos’j0iþsin’j1i.
The resulting 1-MC state is given by

�ab ¼ 1

2
½j00ih00j þ j�1ih�1j

þ cos’ðj00ih�1j þ j�1ih00jÞ�: (11)

Notice that a measurement in the basis fj0i; j1ig has a
perfect correlation with the states j0i and j�i. The angle
� gives how far �ab is from a usual MC state [15] belong-
ing to this class when j�i ¼ j1i. The angle ’ gives the
amount of mixedness of �ab. For ’ ¼ 0 the state is pure
and for ’ ¼ �=2 the state is separable. Figure 2 shows the

behavior of EC
ab and ED

ab and how the loss of entanglement

is equal to �ajc. It is remarkable that this class is now the

only one for which we know both EC and ED.
Combining Theorems 1 and 2 we easily get the

following.
Corollary 1.—A type B reversible mixed state �ab exists

if and only if there exists a bound entangled state �ac such
that �ajc > 0 and �ajc ¼ 0.
The question about existence of states with �ajc ¼ 0,

but �ajc > 0, was raised in 2005 [19] and is directly related
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to the question of additivity of EOF by Eq. (7). So our
results tell us exactly in which situation the nonadditivity
of EOF could be responsible for irreversibility providing a
strong link between these two fundamentals questions.

Thermodynamical analogy.—Since the beginning of
entanglement theory, it has been compared with thermo-
dynamics. Dilution and distillation of pure into pure states
are reversible operation under LOCC. This is analogous to
a reversible process in classical thermodynamics where
entropy remains constant and all the energy that is put in
the system can be recovered without losses. Mixedness is
caused by some noise and is associated with the increasing
of entropy. Then our intuition tells us that noise will
probably result in some irreversible loss of entanglement
that cannot be recovered by LOCC only. However, this
connection has never been done explicitly. Our work pro-
vides the desired connection directly between that noise
and entanglement loss.

Zurek [20] has shown that QD can be interpreted as
some amount of thermodynamical work that Alice and
Bob must pay when they operate only locally on their
respective subsystems. The same operational interpretation
was developed independently [19,21], generating many
kinds of a similar quantity called quantum deficit. In the
asymptotic limit, the regularized expressions for QD and
one-way quantum deficit are equivalent. The quantum
deficit measures the following task: Suppose that Alice
and Bob share many copies of �ab. From that they can
use the information they have about this state to produce
work through a Szilard engine [19,21]. However, there is a
difference between the amount of work Alice and Bob can
perform whether they operate globally with the two sub-
systems or they can operate only locally on its respective
subsystems. This difference in the amount of information
they can use to perform work is the quantum deficit. We
have seen that in the process of diluting e-bits inevitably
some information corresponding to the entropy Sð�abÞ is
lost to the environment. In our approach, the environment
is represented by c. Therefore the loss of entanglement is,
de facto, associated with part of this information lost to the
environment and is quantified by �ajc.

To summarize, our results provide strong evidences that
irreversibility must happen for all mixed, not PP, entangled

states. We have shown that such a counterintuitive possi-
bility would necessarily imply other very counterintuitive
properties. For instance, one possibility is having �ajc > 0
and �ajc ¼ 0. In this case the nonadditivity of EOF would

be responsible for irreversibility. Another possibility is

that, to obtain ED, it is necessary to optimize the coherent
information over an arbitrary large number of copies of the
entangled state. Moreover we have shown irreversibility
for the important family of 1-MC states. In addition we

calculate ED, quantum discord, and the relative entropy of
entanglement for them, and, further, we have shown that
there is no bound entangled and that Sajb ¼ 0 is a neces-

sary and sufficient separability criteria for this family.
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