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We develop the minimal requirements for the complete entanglement quantification of an arbitrary two-
mode bipartite Gaussian state via local measurements and a classical communication channel. The
minimal set of measurements is presented as a reconstruction protocol of local covariance matrices and no
previous knowledge of the state is required but its Gaussian character. The protocol becomes very simple
mostly when dealing with Gaussian states transformed to its standard form, since photocounting or
intensity measurements define the whole set of entangled states. In addition, conditional on some prior
information, the protocol is also useful for a complete global state reconstruction.
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Quantum communication protocols extend the informa-
tion theoretical notion of channel [1] to the quantum
domain by incorporating nonlocal entangled states. Those
channels are generated by the preparation of a pair (or
more) of quantum systems in an entangled state, which
are then separated to establish nonlocal correlations [2],
allowing several communication tasks otherwise unattain-
able via classical channels [3]. However, for most of the
quantum protocols to work properly (deterministically)
one has first to be able to prepare maximally pure en-
tangled states and then to guarantee that those states stay
pure or nearly pure during all the processing time. An
important problem then arises in this whole process: One
has to check the ‘‘quality’’ (the amount of entanglement
and purity) of the quantum channel, while usually the only
available tools for that are local measurements (operations)
and one (or several) classical channel.

The quest for an optimal and general solution for this
problem has generated a vast literature on the character-
ization of entangled states under local operations and
classical communication (LOCC), either for qubits [4] or
for continuous variable systems of the Gaussian type [5,6].
Gaussian states (completely described by up to second
order moments) are particularly important since they can
be easily generated with radiation field modes. Moreover,
operations that keep the Gaussian character (so-called
Gaussian operations) are given by the transformations
induced by linear (active and passive) optical devices
(beam splitters, phase shifters, and squeezers) [6]. A par-
ticular result for this kind of state is that it is impossible to
distill entanglement out of a set of Gaussian states through
Gaussian operations [7].

Assuming one is left with only Gaussian local operations
and a classical channel (GLOCC), how is it possible to
infer the quality of a quantum channel in use? For a two-
mode Gaussian state one possibility is to access directly the
entanglement properties of the system after a proper ma-

nipulation of the two modes [8,9]. This procedure requires,
however, that the two parties (modes) be recombined in a
beam splitter (nonlocal unitary operation) in which their
entanglement content are transferred to local properties of
one of the output modes. Another possible way is to
completely reconstruct the bipartite quantum system, a
resource demanding task [10] which also requires global
operations here forbidden.

In this Letter we demonstrate a minimal set of GLOCC
to completely quantify the entanglement of a two-mode
Gaussian state. As a bonus of this procedure one can also
assess the purity of the Gaussian state and, for some
particular classes of states, reconstruct the bipartite covari-
ance matrix. The protocol consists mainly in the attain-
ment, via local measurements, of all the symplectic
invariants that allows, for example, one to test the separa-
bility of the system, to know its P-representability proper-
ties, and to quantify its entanglement content. We also
show that for a particular class of Gaussian states belong-
ing to the set of symmetric Gaussian states [11], including
the Einstein-Podolsky-Rosen (EPR) states and general
mixed squeezed states, the protocol becomes straightfor-
ward due to the relative easiness with which one obtains
the correlation matrix elements from local measurement
outcomes. Moreover, since P-representability and separa-
bility for these kinds of states are equivalent, we show that
for two-mode thermal squeezed states with internal noise
[12] it is possible to decide whether or not they are sepa-
rable via local photon number measurements.

A two-mode Gaussian state �12 is characterized by its
Gaussian characteristic function C����e��1=2��yV�,
where �y � ���1; �1; �

�
2; �2� are complex numbers and

a1 (ay1 ) and a2 (ay2 ) the annihilation (creation) operators for
parties 1 and 2, respectively [13]. The covariance matrix V
describing all the second order moments Vij � ��1�i�j�

hviv
y
j � v

y
j vii=2, where �v1; v2; v3; v4� � �a1; a

y
1 ; a2; a

y
2 �,

is given by

PRL 98, 150501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
13 APRIL 2007

0031-9007=07=98(15)=150501(4) 150501-1 © 2007 The American Physical Society

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296740883?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1103/PhysRevLett.98.150501


 V �
V1 C
Cy V2

� �
�

n1�
1
2 m1 ms mc

m�1 n1�
1
2 m�c m�s

m�s mc n2�
1
2 m2

m�c ms m�2 n2�
1
2

0
BBB@

1
CCCA:

V1 and V2 are local Hermitian matrices, while C is the
correlation between the two parties. Any covariance matrix
must be positive semidefinite V � 0 and the generalized
uncertainty principle, V � �1=2�E � 0, where E �
diag�Z;Z� and Z � diag�1;�1�, must hold [14].

From local measurements on both modes of �12, either
through homodyne detection (see [15], and references
therein) or alternatively by employing single-photon de-
tectors [16], the local covariance matrices V1 and V2 can
be reconstructed. Remark that for the reconstruction of the
global matrix V, and therefore the joint bipartite state, one
has to obtain C. Obviously, global joint measurements
achieved through recombination of the two parties in a
beam splitter followed by local homodyne detections are
forbidden. Thus one has to deal only with local measure-
ments whose results can be sent through classical commu-
nication channels to the other party. As we now show, there
are minimal operations or measurements that can be per-
formed locally on the system to attain j detCj and detV.
These quantities, together with detV1 and detV2, will be
shown to be all that one needs to determine whether or not
a two-mode Gaussian state is entangled as well as how
much it is entangled. As it will become clear, the required
set of operations is minimal in the sense that only two local
measurement procedures are needed—one to characterize
local covariance matrices and another to locally assess the
parity of one of the modes.

First of all let us introduce an important result [17].
Given a two-mode Gaussian state with density operator
�12 and covariance matrix V we can define the Gaussian
operator �1 � Tr2fe

i�ay2a2�12g, whose covariance matrix
�1 is the Schur complement [18] of V relative to V2:

 � 1 � V1 �CV�1
2 Cy: (1)

The meaning of �1 is best appreciated through a partial
trace in the Fock basis: �1 �

P
neven2hnj�12jni2 �P

nodd2hnj�12jni2 � �1e � �1o , being equal to the differ-
ence between Alice’s mode states conditioned, respec-
tively, to even and odd parity measurement results by
Bob [17]. While �1e and �1o are not generally Gaussian,
�1 is a Gaussian operator, and �1 can be built with only
second order moments of these conditioned states.

Now suppose that Alice and Bob share many copies of a
two-mode Gaussian state. The protocol works as follows:
(i) First, in a subensemble of the copies, each party per-
forms a set of local measurements in such a manner to
obtain the covariance matrices V1 and V2, corresponding
to the reduced operators �1 � Tr2f�12g and �2 � Tr1f�12g;
(ii) then Bob informs Alice, via a classical communication
channel, the matrix elements of V2; (iii) after that, for the
remaining copies, Bob performs parity measurements on

his mode, letting Alice know to which copies does that
operation correspond and the respective outcomes, i.e.,
even parity (eigenvalue 1) or odd parity (eigenvalue �1);
(iv) Alice then separates her copies in two groups, the even
(e) and the odd (o) ones. The first group (e) contains all the
copies conditioned on an even parity measurement on
Bob’s copies. The other one (o) contains all the remaining
copies, namely, those conditioned on an odd parity mea-
surement at Bob’s; (v) for each group, Alice measures the
respective correlation matrices V1e and V1o; (vi) finally,
she obtains �1 [Eq. (1)] subtracting the odd correlation
matrix from the even one [17]: �1 � V1e � V1o.
Remarkably, with V1, V2, and �1 in hand Alice is able to
completely characterize the Gaussian state’s entanglement
content as well as its purity without any global or nonlocal
measurements.

Remembering that a two-mode Gaussian state’s purity
P is equal to 1=�4

����������
detV
p

� [19] and using the identity [18]

 detV � detV2 det�1; (2)

Alice readily obtains the purity of the channel: P �

1=�4
�������������������������
detV2 det�1

p
�. Her next task is to decide whether or

not she deals with an entangled two-mode Gaussian state.
Using the Simon separability [20] test she knows that it is
not entangled if, and only if,

 I1I2 � �1=4� jI3j�
2 � I4 � �I1 � I2�=4; (3)

where I1 � detV1, I2 � detV2, I3 � detC, and I4 �
Tr�V1ZCZV2ZCyZ�. These four quantities are the local
symplectic invariants, belonging to the Sp�2; R� 	
Sp�2; R� group [20], that characterizes all the entanglement
properties of a two-mode Gaussian state. Alice already has
I1 and I2. We must show, however, how she can obtain jI3j
and I4. Since one can prove that [9]

 I4 � 2jI3j
��������
I1I2

p
; (4)

we just need to show how jI3j is obtained from I1, I2, and
IV � detV, the three pieces of information locally avail-
able to Alice. To achieve this goal we first note that a direct
calculation gives IV � I1I2 � I4 � I2

3 . Using Eq. (4) we
see that jI3j follows from jI3j

2 � 2jI3j
��������
I1I2

p
� I1I2 � IV �

0. One of its roots is not acceptable since it implies V < 0.
Therefore, we are left with

 jI3j �
��������
I1I2

p
�

�����
IV

p
: (5)

Hence, substituting Eqs. (4) and (5) in Eq. (3), Alice is able
to unequivocally tell whether or not she shares an en-
tangled two-mode Gaussian state with Bob. Finally, if her
state is entangled then I3 < 0 [20] and, for a symmetric
state (I1 � I2), Alice can quantify its entanglement via the
entanglement of formation (Ef) [21,22]:

 Ef��12� � f�2

����������������������������������������������������
I1 � jI3j �

������������������������
I4 � 2I1jI3j

qr
�; (6)

where f�x� � c��x�log2
c��x�� � c��x�log2
c��x�� and
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c��x� � �x�1=2 � x1=2�2=4. For arbitrary two-mode
Gaussian states (I1 � I2) Alice can work with lower
bounds for Ef [21] or calculate its negativity or logarithmic
negativity [23]. These last two quantities are the best
entanglement quantifiers for nonsymmetric two-mode
Gaussian states and are given as analytical functions
[19,24] of the four invariants here obtained from local
measurements: I1, I2, jI3j �

��������
I1I2

p
�

�����
IV
p

, and I4 �
2jI3j

��������
I1I2

p
, with IV � detV given by Eq. (2). It is worth

mentioning that I1 (I2) can easily be determined by the
measurement of the purity (Wigner function at the origin of
the phase space) of Alice’s (Bob’s) mode alone [16,25].
This measurement is less demanding than the ones re-
quired to reconstruct V1 and V2 [9].

Besides furnishing all the entanglement properties of an
arbitrary two-mode Gaussian state, the previous local pro-
tocol can also be employed to reconstruct the covariance
matrix for some particular types of Gaussian states. To see
this, let �1 be explicitly written as

 � 1 �
�1 �

1
2 �1

��1 �1 �
1
2

 !
; (7)

where

 �1 � ha
y
1a1ie � ha

y
1a1io; (8)

 �1 � ha2
1ie � ha

2
1io; ��1 � h�a

y
1 �

2ie � h�a
y
1 �

2io; (9)

being hie and hio the mean values for Alice’s even and odd
subensembles, respectively. From this identity it is clear
that �1 does not necessarily represent a physical state since
�1 can take negative values [17]. From Eq. (1) we obtain
the following two relations:
 

n1 � �1 �
1

�n2 �
1
2�

2 � jm2j
2
f�jmcj

2 � jmsj
2��n2 �

1
2�

� 2<e�m2msm�c�g; (10)
 

m1 ��1 �
1

�n2 �
1
2�

2 � jm2j
2
f2msmc�n2 �

1
2�

�m�2m
2
c �m2m2

sg: (11)

Equations (10) and (11) give the matrix elements of �1 as a
function of the matrix elements of V. If mc and ms are real
(if either mc or ms is zero) Eqs. (10) and (11) can be
inverted to give mc and ms (either ms or mc).

Let us explicitly solve the previous equations for an
important case, namely, the ones in which CCy �
jmij

2I, where i � c or s and I is the identity matrix. The
states comprehending this class are the ones where C has
only diagonal or non diagonal elements, i.e., ms � 0 and
mc � 0 or mc � 0 and ms � 0, reducing the unknown
quantities to two, namely, the absolute value and the phase
of ms or mc. Recall that if i � s the system is separable,
since detC � jmsj

2 � 0; i.e., the correlation between the
two modes is strictly classical [20]. Otherwise, if i � c the
state is not necessarily separable, possibly being entangled,
for in this case detC � �jmcj

2 � 0. This last case is more

interesting since it represents a class of states that might
show nonlocal features [20].

From Eqs. (10) and (11) the diagonal (off-diagonal)
elements of C, mi � jmijei�i , for i � s (i � c), are

 jmij
2 �
�n1 � �1�

n2 � 1=2

�n2 � 1=2�2 � jm2j

2�; (12)

 e2i�i �

�
�1 �m1

n1 � �1

�
n2 � 1=2

m2i
; (13)

where m2c � m�2 and m2s � m2. Note that whenever m2 �
0, �i becomes undetermined. This problem can be solved
by locally (unitary) transforming the two-mode squeezed
state to a matrix V 02 with m02 � 0, where �0i can be deter-
mined. Then, transforming back, we get �i. Fortunately,
there are various experimentally available bipartite
Gaussian states in which all the parameters are real,
ms�mc� � m1 � m2 � 0, and mc�ms� � 0. For these
states, Eq. (12) is sufficient to determine C.

A natural and important example belonging to this class
is the two-mode thermal squeezed state [12], which is
generated in a nonlinear crystal with internal noise. Its
covariance matrix is

 V �

n� 1
2 0 0 mc

0 n� 1
2 mc 0

0 mc n� 1
2 0

mc 0 0 n� 1
2

0
BBB@

1
CCCA; (14)

where n and mc are time dependent functions having as
parameters the relaxation constant of the bath as well as the
nonlinearity of the crystal [12]. In this case the protocol
involves only simple local measurements, i.e., those to get
n, hay1a1ie, and hay1a1io (or equivalently �1) by Alice, and
the parity measurements by Bob. The classical communi-
cation corresponds to Bob informing Alice the instances he
performs the parity measurement in his mode and the
respective outcomes. Hence, Eq. (12) reduces to

 m2
c � �n� �1��n� 1=2�: (15)

Experimentally, n and �1 [Eq. (8)] are readily obtained by
photodetection, while the parity measurement is related to
the determination of Bob’s mode Wigner function at the
origin of the phase-space [26], or alternatively to his
mode’s purity, both of which can be measured by photo-
counting experiments [16,25].

We can also study the P representability [27] for the
state (14), which in this case is equivalent to the Simon
separability test [11,20]. A two-mode Gaussian state is
P representable iff V � 1

2 I � 0, where I is the unity
matrix of dimension 4. Explicitly, this separability condi-
tion in terms of the elements of (14) is equivalent to n �
jmcj. From this inequality and Eq. (15) we see that for a
given n there exists a bound for �1 below which the states
are entangled (upper solid curve in Fig. 1):

 �
n=2

n� 1=2
� �1 �

n=2

n� 1=2
: (16)
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The left bound in Eq. (16) (lower solid curve in Fig. 1) is a
consequence of the uncertainty principle, delimiting the set
of all physical symmetric Gaussian states (SGS). This
bound is marked by all the pure states and the upper curve
bounds (from below) the subset of all separable (P-
representable) states [11]. Thus, for the SGS class, photon
number measurements, before and after Bob’s parity mea-
surements, are all Alice needs to discover whether or not
her mode is entangled with Bob’s. The exquisite symmetry
of those two antagonistic bounds is quite surprising, and
possibly valid only for the SGS class. There is another
interesting feature for the SGS set that should be empha-
sized. Note that �1 � 0 contains all the states where Bob
has equal chances of getting even or odd outcomes for his
parity measurements, delimiting two subsets (even and
odd). The even subset contains all the states where Bob
has greater probabilities of getting even outcomes while
the odd subset contains all the states where he has greater
probabilities of getting odd outcomes. The entanglement
for states belonging to the SGS can be quantified through
Ef [Eq. (6)] as depicted by the color scale in Fig. 1. It is
remarkable that the most entangled states (including the
pure ones) are concentrated in the �1 < 0 odd subset.

In conclusion, we have presented the minimal set of
local operations and classical communication that allows
one to quantify the entanglement of an arbitrary two-mode
Gaussian state. One important step towards the derivation
of this protocol was the mathematical identity relating the
two-mode covariance matrix determinant to the product of
two local quantities, namely, the determinants of the one-
mode correlation matrix and its Schur complement. In
addition, we have also shown that the Schur complement
of one of the modes’ covariance matrix is obtained via a set
of parity measurements on the other one. We have also
explicitly discussed how the protocol works for a particular

class of Gaussian states belonging to the SGS set. Within
this class, for states written in its standard form, we have
shown that only photon number measurements (made
before and after a parity measurement on the other
mode) are needed to completely characterize the state’s
entanglement.
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137903 (2002); J. Fiurášek, Phys. Rev. Lett. 89, 137904
(2002).

[8] M. C. de Oliveira, Phys. Rev. A 72, 012317 (2005).
[9] G. Rigolin and M. C. de Oliveira, quant-ph/0608184.

[10] J. Laurat et al., J. Opt. B 7, S577 (2005); V. D’Auria et al.,
J. Opt. B 7, S750 (2005).

[11] M. C. de Oliveira, Phys. Rev. A 70, 034303 (2004).
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FIG. 1 (color online). Above the upper solid curve lie the
separable states. Below it, entanglement is quantified via Ef
[Eq. (6)] up to the lower curve, where the pure entangled states
are located. Below this curve there exist no physical states.
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