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Abstract. This paper is concerned with the local bifurcation analysis around typical singularities of piecewise
smooth planar dynamical systems. Three-parameter families of a class of nonsmooth vector fields
are studied, and the bifurcation diagrams are exhibited. Our main results describe a particular
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1. Introduction. Nonsmooth dynamical systems (NSDSs, for short) have become cer-
tainly one of the common frontiers between mathematics and physics or engineering. Problems
involving impact or friction are piecewise-smooth, as are many control systems with thresh-
olds. Many authors have contributed to the study of Filippov systems (see, for instance, [7]
and [10] about details of these multivalued vector fields). One of the starting points for a
systematic approach to the geometric and qualitative analysis of NSDSs is [12], on smooth
systems in 2-dimensional manifolds with boundary. The generic singularities that appear in
NSDSs, to the best of our knowledge, were first studied in [13]. Bifurcations and related
problems, possibly involving sliding regions, were studied in papers like [6, 8, 1, 2]. The clas-
sification of codimension-1 local and some global bifurcations for planar systems was given
n [11]. In [9] (respectively, [5]) planar codimension-2 singularities (respectively, 3-parameter
families) were discussed, and it was shown how to construct the homeomorphisms which lead
to topological equivalences between two NSDSs when the discontinuity set is a planar smooth
curve. See [14] or [3] (and references therein) for a survey on NSDSs.

The specific topic addressed in this paper is the qualitative analysis of fold-cusp singu-
larities of NSDSs, where a fold and a cusp coincide. Moreover, the bifurcation diagrams of
particular unfoldings are exhibited. Our main concern is to analyze how the bifurcation whose
configuration is shown in Figure 4 falls within the bifurcation diagram of a fold-cusp singular-
ity. This is not an easy task, since it was necessary to add into the unfolding of the singularity
a C''-bump function. Moreover, the application of this tool through a C"-bump function, with
r > 1, did not work. This fact escaped our initial intuition. In fact, some obstructions in the
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Figure 1. Fold-cusp singularities: An invisible one on the left, and a visible one on the right.

completeness of the bifurcation diagram occur when C? perturbations of the original system
are considered instead of C'! perturbations. Thus the unfolding considered is very special and
does not fit within the usual sense of generic dynamical systems theory.

We consider a codimension-1 manifold ¥ of R? given by ¥ = f~%(0), where f: V — R is
a smooth function having 0 € R as a regular value (i.e., V.f(p) # 0 for any p € f~1(0)), and V
is an arbitrarily small neighborhood of 0 € R?. We call ¥ the switching manifold, that is, the
separating boundary of the regions X = {q € V|f(¢q) > 0} and X~ = {q € V|f(¢) < 0}. In
this paper we assume that ¥ is represented, locally around the origin of R?, by the function
flzy) =y.

We denote by Z = (X,Y") the vector field

[ X(z,y) for (z,y) € BT,
(1.1) Z(x,y) = { Y(;p’g) for (:E,g) exT,

where X = (f1,91), Y = (f2,92) are smooth vector fields defined in V. The trajectories of Z
are solutions of ¢ = Z(q) in the sense of Filippov; i.e., we will accept it to be multivalued at

points of ¥. The basic results of differential equations, in this context, were stated by Filippov
in [7].

1.1. Setting the problem. In short, our goal is to study the local dynamics of some class
of systems Z = (X,Y) at 0 € R?. Points where the vector field X (respectively, Y) has a
quadratic (respectively, cubic) tangency to X are called X-fold points (respectively, X-cusp
points). A Y-fold point is visible (respectively, invisible) if the trajectory that touches ¥ is
visible (respectively, invisible) (for a precise definition see section 2).

Following Theorem 2 of [15], we can conclude that any X € X% presenting a ¥-fold point
is CY-orbitally equivalent (according to Definition 2.2) to the normal form Xo(x,y) = (p1, pax)
with p; = £1 and pp = *1.

Following [12], we can derive that any Y € ¥~ presenting a X-cusp point is C°-orbitally
equivalent (according to Definition 2.2) to the normal form Yy(x,y) = (ps3, psax?) with p3 = £1
and pg = +1.

In this paper we consider the fold-cusp singularity; i.e., 0 is a Y-fold point of X and a
Y-cusp point of Y (see Figure 1).

We start with the normal form of an invisible (respectively, visible) fold-cusp singularity
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given by

1
= 1 >
X <vx> if y >0,

I/‘/ pr—
v .
= <
Y < 2 ) if y <0,

where v = —1 (respectively, v = 1).
In [9] the analysis of the bifurcation diagram of the 2-parameter family

S 1
= if y >
Xy <—$+N> if y >0,

—1 .
:<—x2+e> ify<0

of NSDSs presenting an invisible fold-cusp singularity is performed. A challenging problem
is to extend the analysis of [9] in answering the following question: Can we find families of
NSDSs presenting fold-cusp singularities whose dynamics is richer than the family exhibited
in [9]? Can we observe a configuration like that in Figure 27

Wye=

<

Figure 2. Configuration nearby Zo,0,0 not observed in [9].

In order to detect a larger range of topological behaviors near an invisible fold-cusp sin-
gularity we have to refine the analysis done in [9]. This refinement can be obtained by adding
a bump function to the expression of the NSDS.

Specifically, we distinguish the following cases (see Figure 1):

e Unfolding of an invisible fold-cusp singularity:

1
= 1 >
X <_$+)\> if y >0,

~1
Y, = if 4 <
P (—x2+ﬂ—%—f(%ﬂ,u)) ) =0

where ()‘7 57 M) € (_)‘07 )‘0) X (_507 ﬁO) X (_M(]v MO)? with A\g > 0, 50 >0, and po >0 SUfﬁCiently
small, and B is a bump function such that B(x,,u) =0 if 5 <0 and

0 if v < —/Borx>4y3,
(1.3) B(x,8,1) = { Bi(z, )+ f(B,n) if —V/B <z <P,
Bo(x, ) + f(B.p) if VB <z <4/B

(1.2) AN M=
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if 8 > 0, where

= (x +v/B)*(a*(208 + 38)—

B 8) = 1585 < 42/B(176 + 1583) + (688 + 933)) ) ’
_ L (@ 4VB)((a? + B)(~16 +98)~

By (z,B) = 1858 ( 22/B(16 + 153)) > ’

d
o p [ —8B(128 + 38)u\/B(256 + 638) 1 — (—64 + 458) 2 —

f6: ) = 4_8< B2(80 + 38)u + B (—16 + 98)u?) >

Now we list two important features of the bump function B that appears in (1.2).

1. Tt has exactly one point of local minimum in the interval (—+/3,4+/3). This point is
located at zo = v/B. As a consequence, Yg , has just one invisible X-fold point when
B> 0.

2. F(3y/B+ p) = 0 (see Figure 3). By means of this last property the orbit-arc of Yz,
that has a quadratic contact with 3 at go = (—+/3,0) turns to collide with ¥ at the
point 1 = (3v/B + u,0). So, the first coordinate of ¢ is bigger (respectively, smaller)
than 3/ as u is bigger (respectively, smaller) than 0.

VR IRV VY

"N

Figure 3. Graph of B.

Observe that Yj ( is not the same as Y, for e = 3.

It is worth saying that in this paper the bifurcation diagram of (1.2) is such that, under
the conditions f = p? and p < 0, the diagram obtained coincides with the diagram presented
in [9].

We mention an interesting phenomenon illustrated in Figure 4 that occurs in (1.2) when
£ > 0. We note, simultaneously, a two-fold singularity and a loop passing through the visible
>-fold point of Y.

e Unfolding of a visible fold-cusp singularity:

XA:< ! ) ity >0,
T — A
(1.4) 2y = 1
= 1 <
Y3 <—x2+5> if y <0,

where (X, 5) € (—Xo, Ao) X (=P, Bo), with A9 > 0 and Sy > 0 sufficiently small.
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Figure 4. The local and the global bifurcations observed in (1.2) when 8 >0, A =+/B, and = 0.

Remark 1.1.  Note that in (1.2) and (1.4) the perturbations considered depend only on the
variable x. The local geometry of an NSDS presenting a cusp-fold singularity becomes rather
different if perturbations involving the variables x and y are admitted. Moreover, another
important restriction on the perturbation considered here is that the second component of Y. is
constrained to have only one mazrimum and one minimum. In general the second component
of the perturbed system could have several minima and mazima since it is C* but not C? small.
In addition, in the C? topology, it happens that Y3, — Ygo as p — 0, but it is not the case
that Yg o — Yo,0 as 8 — 0.

1.2. Statement of the main results. Theorems 1, 2, and 3 pave the way for the proof of
Theorem A. Theorem B is self-contained.

Theorem 1. If p = 0 in (1.2), then its bifurcation diagram in the (\,B)-plane contains
essentially 17 distinct phase portraits (see Figure 23 ).

It is easy to see that in a neighborhood of Z) 5 in (1.2), there exist cases not covered by
Theorem 1. Because of this, the next two theorems are necessary.

Theorem 2. There exists py > 0 such that if 0 < p < po in (1.2), then its bifurcation
diagram in the (X, B)-plane contains essentially 19 distinct phase portraits (see Figure 25).

Theorem 3. There exists po > 0 such that if —pg < p < 0 in (1.2), then its bifurcation
diagram in the (X, B)-plane contains essentially 19 distinct phase portraits (see Figure 25).

Finally, we are in position to state the main results of the paper.

Theorem A. The bifurcation diagram of (1.2) exhibits 55 distinct cases representing 23
distinct phase portraits (see Figure 27).

Theorem B. The bifurcation diagram of (1.4) exhibits 11 distinct phase portraits (see Fig-
ure 33).

The paper is organized as follows. In section 2 we present some basic elements of the
theory of NSDSs. In sections 3, 4, and 5 we pave the way for the proofs of the main results
of the paper (Theorems A and B). Section 6 is devoted to proving Theorem A and exhibiting
the bifurcation diagram of (1.2). In section 7, the proof of Theorem B and the bifurcation
diagram of (1.4) are presented, and in section 8 some concluding remarks are discussed. In our
paper we basically follow the terminology and the approach of [11] or [9], and no sophisticated
tools are needed.

2. Preliminaries. Designate by y the space of C'!'-vector fields on V C R? endowed with
the C'-topology. Call Q = x x x the set of all Z = (X,Y) as defined in section 1. We endow
Q) with the product topology.
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Definition 2.1. A k-parameter family of elements in Q is a C°-mapping

¢: Sk —  Q,
Q:(Qlag%"')gk) = Xga

where S* = [—e1, 1] X [—€2,€2] X -+ X [—en, ] with ¢; >0, i =1,2,...,k, sufficiently small.

In the next definition a half-open set U means either U = VNXT or U =V NX~, where
V is an open set in R2. -

Definition 2.2. We say that W, W € x defined in half-open sets U and l~], respectively, are
C-orbitally equivalent if there exists_an orientation preserving homeomorphism h : U — U
that sends orbits of W to orbits of W. Here, orbit of W means the image of a solution of
& =W(z).

Definition 2.3. Two nonsmooth vector fields Z = (X,Y), Z = (X,Y) € Q defined in
open sets U, U and with switching manifold X are Y-equivalent if there exists an orientation
preserving homeomorphism h : U — U that sends UNY to U N >, the orbits of X restricted
to UNXT to the orbits of)z restricted to U N YT, and the orbits of Y restricted to UNX™ to
the orbits 0f§~f restricted to U NS~

Consider the notation

Xf(p) = (VI@).X(p) and  X'f(p) = (VX"f(p). X(p)), 22,

where (.,.) is the usual inner product in R

Remark 2.4. The vertical dotted lines in all figures of this paper that exhibit phase portraits
represent the points p € V.C R?, where X.f(p) =0 or Y.f(p) = 0.

We distinguish the following regions on the discontinuity set >:

(i) 3¢ C X is the sewing region if (X.f)(Y.f) > 0 on €.

(ii) X¢ C X is the escaping region if (X.f) > 0 and (Y.f) < 0 on €.

(i) ¥° C X is the sliding region if (X.f) <0 and (Y.f) > 0 on X°.

Consider Z € Q. The sliding vector field associated with Z is the vector field Z° tangent
to X% and defined at ¢ € ¥° by Z®(q) = m — ¢ with m being the point of the segment joining
g+ X (q) and ¢+Y (q) such that m — g is tangent to 3° (see Figure 5). It is clear that if ¢ € 3¢,
then ¢ € X¢ for —Z, and then we can define the escaping vector field on X¢ associated with
Z by Z¢ = —(—Z)®. In what follows we use the notation Z* for both cases. In our pictures
we represent the dynamics of Z> by double arrows.

q +Y(q)

575

4+ X@

Figure 5. Filippov’s convention.
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Lemma 2.5. Let Z = (X,Y) € Q present a fold-cusp singularity; then Z is ¥-equivalent to
the standard form Zo = Z,, py ps.pa given by

XP17P2 = < P1 ) if y >0,

p2T

(2.1) Zy=Zp, psp3.ps =
P3,P4 <

p32> nygoa

p4T

where p1, p2, p3, pa = £ 1.

Observe that the values of p;, i = 1,2,3,4, in Lemma 2.5 depend on the orientation of
X and Y. In subsection 2.3 we prove Lemma 2.5; i.e., we exhibit the homeomorphism that
characterizes the equivalence between any fold-cusp singularity and the standard form given
by (2.1).

We say that ¢ € X is a X-reqular point if

(i) (X.F(@)(Y-f(q)) > 0 or

(i) (X.f(9)(Y.f(q)) < 0and Z*(q) # 0 (that is, ¢ € £ UX* and it is not an equilibrium

point of Z*).

The points of ¥ which are not X-regular are called X-singular. We distinguish two subsets
in the set of Y-singular points: ! and ¥?. Any ¢ € X? is called a pseudoequilibrium of Z and is
characterized by Z*(q) = 0. Any ¢ € X! is called a tangential singularity and is characterized
by Z*(q) # 0 and (X.f(q))(Y.f(q)) =0 (g is a contact point).

We say that a point pg € X is a X-fold point of X if X.f(po) = 0 but X2.f(py) # 0.
Moreover, pg € X is a visible (respectively, invisible) Y-fold point of X if X.f(pg) = 0 and
X2.f(po) > 0 (respectively, X2.f(pg) < 0). We say that a point gy € ¥ is a X-cusp point of
Y if Y.f(q0) = Y2 f(qo) = 0 and Y3.f(qo) # 0. Moreover, a ¥-cusp point go of Y is of kind 1
(respectively, kind 2) if Y3.f(qo) > 0 (respectively, Y3.f(qo) < 0). In particular, ¥-fold and
Y-cusp points are tangential singularities.

A pseudoequilibrium ¢ € P is a Y-saddle provided that one of the following conditions
is satisfied: (i) ¢ € ¢ and ¢ is an attractor for Z* or (ii) ¢ € £° and ¢ is a repeller for
Z*. A pseudoequilibrium ¢ € Y is a S-repeller (respectively, Y-attractor) provided ¢ € ¢
(respectively, ¢ € ¥¥) and ¢ is a repeller (respectively, attractor) equilibrium point for Z 2

Given a point ¢ € 3¢, we denote by 7(q) the straight line through ¢ + X (¢) and ¢+ Y (q).

Definition 2.6. The X-regular points q € X¢ such that either {X(q),Y (q)} is a linearly
dependent set or r(q) N X = 0 are called virtual pseudoequilibria.

Let us consider a smooth autonomous vector field W defined in an open set U. Then we
denote its flow by ¢w (¢, p). Thus,

d

E¢W(tv p) = W(QSW(t’p)),

¢W(07p) =D

where t € I = I(p, W) C R, an interval depending on p € U and W.
The following definition was stated in [9, p. 1971].
Definition 2.7. The local trajectory of an NSDS given by (1.1) is defined as follows:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/26/13 to 143.106.1.143. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

ON FAMILIES OF PIECEWISE SMOOTH VECTOR FIELDS 1409

x=T
Figure 6. Canard cycle Figure 7. Canard cycle Figure 8. Canard cycle
of kind 1. of kind 1I. of kind III.

e Forp e XT and p € X the trajectory is given by ¢z (t,p) = ¢x(t,p) and ¢z (t,p) =
oy (t,p), respectively, where t € I.

e For p € X¢ such that X.f(p) > 0, Y.f(p) > 0 and taking the origin of time at p, the
trajectory is defined as ¢z(t,p) = ¢y (t,p) fort € IN{t <0}, and ¢z (t,p) = dx(t,p)
fort € IN{t > 0}. For the case X.f(p) <0 and Y.f(p) < 0 the definition is the same,
reversing time.

o Forp € X¢UX* such that Z>(p) # 0 we define ¢z (t,p) = ¢4=(t,p) fort € 1.

e Forp € 9X°U0X°U0Y® such that the definitions of trajectories for points in a full
neighborhood of p in X can be extended to p and coincide, the trajectory through p is
this trajectory.

e For any other point ¢z(t,p) = p for all t € R. This is the case of points in 9% U
0%:° U 0X° which are not regular tangential singularities and the equilibrium points of
X in 2T, of Y in X7, and of Z* in ¥ U XC.

Definition 2.8. The local orbit-arc of the vector field W passing through a point p € U is
the set yw (p) = {¢w(t,p) : t € I}.

Since we are dealing with autonomous systems, from now on we will use trajectory and
orbit-arc indistinguishably when there is no danger of confusion.

Definition 2.9. Consider Z = (X,Y) € Q.

1. A canard cycle is a closed curve I' = U}_ 0; composed by the union of orbit-arcs oy,
i=1,...,n, of X|ys+, Y|s- and Z* such that

o cither there exists igp C {1,...,n} with o;, C vx (respectively, o;, C vy ) and then
there exists j # iy with 0; C vy Uvys (respectively, o; C yx U~yyzs), or I' is
composed of a single arc o; of Z*;

e the transition between arcs of X and arcs of Y occurs in sewing points;

e the transition between arcs of X (or'Y) and arcs of Z* occurs through Y-fold
points or regqular points in the escaping or sliding arc, respecting the orientation.
Moreover, if I' # X, then there exists at least one visible X-fold point on each
connected component of I' N X.

2. A canard cycle I' of Z is of

e Kind I if I" meets X just in sewing points;

e KindIT 4f T' =3I;

e Kind III if T contains at least one visible X-fold point of Z.

In Figures 6, 7, and 8 arise canard cycles of kinds 1, 11, and 111, respectively.
3. A canard cycle U of Z is hyperbolic if one of the following conditions is satisfied:
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(i) T is of kind T and 1/ (p) # 1, where n is the first return map defined on a segment
T withpe T h~;
(ii) T is of kind 11;
(iii) T is of kind 111, 2 NXsNT = 0, and either TNL C XCUNCUXSt or TNE C
LeyuXsu Xt

2.1. Global bifurcation. As said before, the configuration illustrated in Figure 4 plays a
very important role in our analysis. The configuration of this figure is reached from (1.2) by
taking 8 > 0, A = /3, and pu = 0. In this section we deal with this global phenomenon.

Let Zy = (X0, Yp) € Q having the following properties:

e Consider Xy = (f?,¢9) and Yy = (f9,¢9) and assume that f{(p) > 0if p € =+ and
Pp)<0ifpen.

e gy € X is a visible X-fold point of Yy and X.f(qo) > 0.

e The orbit vx,(qo) of Xo through gy meets X transversally at a point ¢;.

e The orbit vy, (¢q1) of Yy through ¢; meets ¥ tangentially at gp. Call I' the degenerate
canard cycle composed by vx,(qo) and vy, (q1). Let M be the compact region in the
plane bounded by I'.

2.1.1. Transition fold map. As ¢y € X is a visible Y-fold point of Yy, we may assume
(see [15]) coordinates around gy such that the system is represented by (&,7y) = (—1,z) with
go = (0,0). The solutions of this differential equation are given by

Gap(t) = (—t+a,—(t*/2) + at +b).

The orbit-arc ¢g through (0, 0) is represented by ¢g(t) = (—t, —t2/2).

Let 0 be a very small positive number. We construct the transition map & : L1 — Lo from
Ly = {(z,y), y = =6, x > v/20} to Ly = {(2,0), 0 < x < 2\/B}, following the orbits of Yy (see
Figure 9). The curve L, is transverse to Yy at ps = (v/26, —8). Since the solutions ¢s through
(T,—8) € Ly meet X = {y = 0} at time t = T + VT2 — 2§ we obtain that {(T) = VT2 — 26
and ¢ is an homeomorphism. Moreover, ¢! (z) = Va2 4 26, ¢! is differentiable at 0, and
(& 1'(0) =o.

Figure 9. First return map around the two-fold singularity p.

2.1.2. First return map associated to I'. Let px be the transition map from Lg to
Ly = {(,0), 2¢/B < z < 4y/B} C X via X-trajectories, and gy be the transition map from
Ly to Ly via Yp-trajectories (see Figure 9). Observe that the linear part of the composition
oy o ox is nonzero due to the transversality conditions of the problem. For simplicity, let
Je =[0,€) x {0} be a small semiopen interval of X.
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3VB 3V ] 3VB

T..

VB 3VB+u3/E B 3VB VB 3VB3A+u
nw<0 pw=0 w>0

Figure 10. Graph of the first return map ¥\ .

So the first return map of Zy at qq is k(z) = (£ 0 gy 0 0x)(x) for € J.. Its inverse k!

is a differentiable map at 0 and satisfies (k7!)'(0) = 0. So, I locally repels the orbits of Z
close to I' and in the interior of I.

In conclusion, if Z is very close to Zjy in ) in such a way that it possesses a canard cycle
nearby I', then it is a hyperbolic repeller canard cycle. Under some other conditions on Z
(reversing the directions of X and Yj) we can derive that such a canard cycle is an attractor.

2.1.3. Analysis around the two-fold singularity. In (1.2), for 8 > 0, it is possible to define
a first return map ¥ : (v/B,3vB + p) — (vV/B,3VB), associated to Z g, given by

P (x) = (ox, ooy, 5) (@),

where gy, ,(z) is the first return to ¥ of the orbit-arc of Y}, 5 that passes through ¢ = (x,0),
and o XA( ) is the first return to X of the orbit-arc of X that passes through ¢ = (z,0).

Lemma 2.10. If 8 > 0, A = /B, and u = 0 in (1.2), then (see Figure 4) the first return
map Y (x) satisfies

(i) Y(z) <z for all x € (v/B,3v/B) and

(i) 1V (VB) 1.

Proof. Consider Figure 4. Given a point p = (p1,p2) € Ls (observe that Ly = {(x,0), v/ <
x < 34/B} in Figure 4), the positive Y-orbit through p reaches L3 = {(v/B3,v), y < 0} at the
point ¢ = (q1,¢2), and the negative X-orbit through p reaches Ly at the point p = (p1,D2).
The negative Y-orbit through p reaches L3 at the point ¢ = (¢1,G2). Since

(01— 3VB) (w1 — VB)* (p1(1744 + 99V/B) — VB(6236 + 3215))
3848

@ —q =

and /B < p1 < 3v/B we conclude that go — g2 > 0, and item (i) is proved. Item (ii) follows
from section 2.1.2. |

Note that Lemma 2.10 implies that Z 3 5, does not have closed orbits in the interior
of the closed orbit of Z passing through the visible X-fold point of Y{ 3. Moreover, when
i < 0 (see Figure 10), Lemma 2.10 guarantees that 1/1)\ has a unique fixed point T, where
T < 3\/@) + p. And, in this case, |(¢¥))(Z))| # 1; ie., T is a hyperbolic fixed point for
¢§f that corresponds to a hyperbolic canard cycle of Zy g ,. When p > 0 (see Figure 10),
YN (z) <z for all z € (v/B,3v/B + i), and closed orbits of Z g, do not arise.
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4

Figure 11. Case Y. Figure 12. Case Y ™.
r(C)y
X 7 C+Y(C)
. £p(C),
¥ A N\, B
Y ;O +X(0)

Figure 13. Direction function.

Given Z = (X,Y), we describe some properties of both X = X and either Y = Y3 , or
Y =Y3.

The parameter A measures how the -fold point d = (A, 0) of X is translated away from
the origin. More specifically, if A < 0, then d is translated to the left-hand side, and if A > 0,
then d is translated to the right-hand side.

The parameter 3 distinguishes the contact order between a trajectory of Y and X. In this
way, there occurs one, and only one, of the following situations:

e Y: In this case 8 > 0. So Y has two X-fold points in such a way that one of them is
invisible and the other one is visible. These points are expressed by a = ag = (—+/f3,0)
and b = bg = (y/B,0). Moreover, a third point ¢ = ¢z, = (3v/3 + ,0) plays an
important role in the analysis of (1.2). This point is the locus where the orbit-arc
vy (a) intersects ¥ transversally for negative time (see Figure 11). Using the bump
function B, the distance between ¢ and b is bigger or smaller than the distance between
a and b according to the value of the parameter y. This fact will be important to change
from Theorem 1 to Theorems 2 and 3.

e YO In this case 3 = 0. So Y has a X-cusp point e = (0,0) (see Figure 1).

e Y : In this case 8 < 0. So Y does not have Y-fold points. In this way, Y.f # 0, and
Y is transversal to ¥ (see Figure 12).

2.2. The direction function. The next function will be very useful in what follows.

On X, consider the point C = (C1,C%) and the vectors X(C) = (D1, D2) and Y (C) =
(E1, E9) (as illustrated in Figure 13). Observe that the straight line »(C) by ¢ + X(¢) and
q + Y (q), generically, meets ¥ in a point p(C'). We define the C"-map

p: X — X,
z — p(2).

We choose local coordinates such that X is the z-axis; so C' = (C1,0) and p(C) € R x {0}
can be identified with points in R. According with this identification, the direction function
on X is defined by

H: R — R,
z — p(z)— =z
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Remark 2.11. We obtain that H is a C"-map. When C € 3¢ U X* the following holds:
e if H(C) < 0, then the orientation of Z* in a small neighborhood of C is from B to A;
e if H(C) =0, then C € ¥P;

e if H(C) > 0, then the orientation of Z* in a small neighborhood of C is from A to B.
E3(D14C1)—D2(E14-Ch)

Simple calculations show that p(C7) = , and consequently,

Eo—Do
EsDy — Do,
2.2 H(Cy) = 22— 271
(2:2) () Ey — Dy

Remark 2.12. If X.f(p) =0 and Y.f(p) # 0, then, in a neighborhood V,, of p in ¥, we have
H(V,)D; > 0, where X (p) = (D1, D2). In fact, X.f(p) =0 and Y.f(p) # 0 are equivalent to
saying that Dy = 0 and Ey # 0 in (2.2). So, lim(p, p,)—(0,k) H(P1) = D1, where ko # 0 and
p = (p1,p2)-

Considering the previous notation and identifying ¥ with the z-axis, we have that r(C) N
> = () when Ey = Dy. In such a case, H is not defined at C. The following property is
immediate.

Proposition 2.13. If ny is the number of pseudoequilibria and no is the number of virtual
pseudoequilibria, then nq + no = v1 + vo, where vy is the number of zeros of H and vy is the
number of points q of X such that r(q) N X = 0.

Proof. The proof is straightforward according to Remark 2.11, (2.2), and Definition
2.6. |

Remark 2.14. Given Z) g, we list some properties of the function H. According to (2.2)
we have that the expression of H is

Hl(l’,)\,,@,ﬂ)
HQ(.'L',)\,,B,N)’

where Hy(z,\, B, 1) = —2? —x + A+ B — %—f(m,,@,,u) and Hy(z, N\, B, ) = =22 + 2 — A+ —
9B (1,8, 11). So,
(i) When x = X\ we get Hi (A, \, B, 1n) = Ha(A N, B, ).

(ii) For the parameter values satisfying B = \? + %—f()\, By ) >0 we have Hy(A\\, B, p) =
Ho(A A, B, 1) = 0.

(iii) Since H1(0,0,0,0) = 0 (respectively, H5(0,0,0,0) = 0) and %(0,0,0,0) = —1 (re-
spectively, %(0,0, 0,0) = 1), by the implicit function theorem there is a unique x =
xm, (N, B, 1) such that Hy(x g, (N, B, 1), A, B, 1) = 0 (respectively, Ha(xm, (N, B, 1), A, B,
w) = 0). Therefore, there is only one zero of Hy and only one zero of Hy in a suffi-
ciently small neighborhood of x = 0. These points are called p1 and 71, respectively,
in Figure 14. The pseudoequilibrium py and the virtual pseudoequilibrium ri are the
unique roots of Hy and Ho, respectively, that are relevant to our analysis. In fact, the
other roots are far from the origin.

H(l‘?A?/B?lLL) =

2.3. Proof of Lemma 2.5. Here we construct a Y-preserving homeomorphism A that
sends orbits of Z = (X,Y) to orbits of Z = (X,Y), where Z = Z, is given by (2.1) with
p1=1and p; = —1, i = 2,3,4. The other choices on parameters p;, i = 1,2, 3,4, are treated
in a similar way. Let p (respectively, p) be the fold-cusp singularity of Z (respectively, Z ) (see
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0B .
B:)\2+%()‘aﬁaﬂ) \ : \H—].

Nwl /7

Figure 14. Variation of H with respect to X and B. The dark lines in the boxes H-1, H-2, and H-3
correspond to the graph of H.

Figure 15. Construction of the homeomorphism.

Figure 15). Identify p with p; i.e., h(p) = p. Consider a point g € v (respectively, § € 7),
where v (respectively, 7) is the orbit-arc of Y (respectively, Y) starting at p (respectively, p).
Identify v with 7 (i.e., h(y) = 7) from a reparametrization by arc-length. Let T' (respectively,
T ) be transversal sections to Y (respectively, 17) passing through ¢ (respectively, ¢) with
small amplitude. Identify T with T (i.e., W(T) = Tv) by arc-length. Let ¢! € T be a point
on the left of ¢. Using the implicit function theorem (abbreviated by IFT), there exists a
time t! < 0, depending on q!, such that ¢y (ql,tl) := p! € ¥. Since h(T) = T, there exists
qr € T such that h(ql) = ¢l. Using the IFT, there exists a time Z} < 0, depending on ¢_,
such that qb;,((ﬁ,%) .= p! € ¥. Identify the orbit-arc Uﬁ (Y) of Y joining p! to ¢! with
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the orbit-arc aps(f/) of Y joining p! to ¢t (i.e., h(c” (Y)) = ﬁpf(?)) by arc-length. Fix the
ak at

notation for the orbit-arcs of a given vector field j JOlnlng two points. Since p (respectively, p) is
a Y-fold point of X (respectively, X), using the IFT, there exists a time t2 > 0 (respectively,

t2 > 0), depending on p! (respectively, ), such that QSX(pi, t2) = pg € X (respectively,

N %) := p? € ). Identify a (X) with o S()Z') (ie., h(o” (X)) = 5’35 (X)) by arc-length.
p p.S
Using the IFT, there exists a time t3 > 0 (respectively, £ > 0), depending on p? (respectively,
~ 2
p?), such that ¢y (p2,t3) := qs € T (respectively, ¢3(p?, £3) := g2 € T). Identify azg (Y) with

5[1%(57) (ie., h(ffgg Y)) = 5[13( )) by arc-length.
p s ]7

s s

So, the homeomorphism h sends ¥ to 3 and sends orbits of Z to orbits of Z. [ |

3. Proof of Theorem 1. In Case 17 we assume that Y presents the behavior Y ~, where
B < 0. In Cases 21, 31, and 4; we assume that Y presents the behavior Y°, where f = 0. In
these cases canard cycles do not arise (for a proof, see [4]).

o Case 11: B < 0. The points of ¥ on the left of d belong to ¢, and the points on
the right of d belong to ¢ See Figure 16. Since § < 0, the graph of H is illustrated in
H-3 of Figure 14. We get that p; = (=1 + /1+48+4)X/2,0) € X¢ is a Y-repeller and
r1=(1—+v1+48—4X/2,0) € X°.

Figure 16. Case 1;.

o Case 21: A < 0, Case 31: A = 0, and Case 4;: A > 0. The configuration of the
connected components of ¥ is the same as in Case 1. Since 8 = 0, the graph of H, when
A # 0, is given by H-3 of Figure 14. When A\ = 0 (Case 31), the graph of H is given by H-2
of Figure 14 and p; = r1. These cases are illustrated in Figure 17.

d>e

Figure 17. Cases 21, 31, and 4;.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/26/13 to 143.106.1.143. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1416 C. A. BUZZI, T. DE CARVALHO, AND M. A. TEIXEIRA

In Cases 5;-17; we assume that Y presents the behavior Y+, where 3 > 0.

o Case 51: A < —+/. The points of ¥ on the left of d belong to X¢, the points inside the
interval (a,b) belong to 3°, and the points on (d,a) and on the right of b belong to ¥X¢. The
graph of H is like H-3 of Figure 14. We can prove that p; is a X-repeller situated on the left
of d and 7 € (d,a). Canard cycles do not arise. See Figure 18.

Figure 18. Case 5;. Figure 19. Case 6.

o Case 61: A\ = —/B. In this case the points on the right of b belong to ¢, the points
on (a = d,b) belong to ¥°, and the points on the left of a = d belong to X¢. Since 8 = \?, H
is like H-2 of Figure 14 and p; = r1. There exists a nonhyperbolic canard cycle I' of kind III
passing through a and c. See Figure 19.

o Case T1: —/B < X <0, Case 81: A =0, and Case 91: 0 < X\ < y/B. The configuration
of the connected components of ¥ is like Case 51, replacing a by d and vice versa. The graph
of H is like H-1 of Figure 14. We observe that p; € (d,b) is a Y-attractor and m € (a,d).
There exists a hyperbolic repeller canard cycle I' of kind III passing through a and c. See
Figure 20.

O<d<ec

b<d<0

Figure 20. Cases 71-9;.

o Case 101: A = /B. In this case the points on the left of a belong to X¢, and the points
on the right of a belong to ¢, except by @ = (b,0) € X. Since 8 = A2, H is like H-2 of
Figure 14 and p; = r1. Since g = 0 and d = b, by the construction of the bump function B
it is straightforward to show that the point ) behaves itself like a weak attractor for Z and
there exists a nonhyperbolic canard cycle of kind III passing through a and c. See Figure 4.
This case has already been discussed previously in subsection 2.1. Note that in [9] the authors
avoid this case.

o Case 111: /B < X\ < L1. The meaning of the value L; will be given below in this case.
The points of ¥ on the left of @ and on (b, d) belong to 3¢. The points on (a,b) and on the
right of d belong to X¢. The graph of H is like H-3 of Figure 14. We can prove that p; € (b, d)
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is a X-repeller and 71 is on the right of d. Since the point ) of the previous case is a weak
attractor, in a neighborhood of d there occurs a Hopf-like bifurcation. Moreover, according to
Lemma 2.10, there is a unique canard cycle I'y in a neighborhood of d and a unique canard
cycle I'y in a neighborhood of ¢. Observe that both are of kind I, I'y is attractor, I's is repeller,
and I'q is located within the region bounded by I's. See Figure 21. Note that, as A increases,
Iy becomes bigger and I'ys becomes smaller. When A assumes the limit value Lq, one of them
collides with the other.

\/B<)\<L1

Figure 21. Cases 11; and 12;.

o Case 121: X = L. The distribution of the connected components of ¥ and the behavior
of H are the same as in Case 11;. Since A = L1, as described in the previous case, there exists
a nonhyperbolic canard cycle I' of kind I which is an attractor for the trajectories inside it
and is a repeller for the trajectories outside it. See Figure 21.

o Case 131: L1 < XA < 2y/B, Case 141: X = 2y/B, Case 151: 2¢/B < XA < 3v/B, Case 161:
A = 3y/B, and Case 171: X\ > 3y/B. The distribution of the connected components of ¥ and
the behavior of H are the same as in Case 11;. Canard cycles do not arise. See Figure 22.

Figure 22. Cases 131 -17;.

The bifurcation diagram is illustrated in Figure 23. |
Remark 3.1. In Cases 91 and 11y the ST-bifurcations (as described in [9, subsections 11.2
and 12.2]) arise. In fact, note that the trajectory passing through a in Case 91, and ¢ in Case
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Figure 23. Bifurcation diagram of Theorem 1.

111, can make more and more turns around p1. This fact characterizes a global bifurcation
also reached in other cases.

4. Proof of Theorem 2. In Case 1o we assume that Y presents the behavior Y~. In
Cases 29, 39, and 45 we assume that Y presents the behavior Y. In Cases 52195 we assume
that Y presents the behavior Y.

o Case 19: B <0, Case 29: A <0, Case 32: A =0, Case 49: X >0, Case Ho: A < —/[3,
Case 63: X = —/3, Case T9: —/B < XA <0, and Case 8: X\ = 0. By the choice of the bump
function B, these cases are analogous to Cases 11, 21, 31, 41, 51, 61, 71, and 8;.

o Case 93: 0 < X\ < /B — pu/2. The analysis of this case is done in a similar way as for
Case 91. In this case and in Cases 75 and 85 there exists a hyperbolic repeller canard cycle I’
of kind III passing through a and c.

o Case 109: A = /B — 11/2. The points of 3 on the left of a belong to ¥¢, and the points
on (d,b) belong to ¥%. The points on (a,d) and on the right of b belong to €. The graph of
H is like H-3 of Figure 14. Observe that p; € (d,b) is a Y-attractor, and r; is on the right
of b. In this case the arc yx(a) of X passing through a returns to 3 at the point c. So, in
this case there arises a nonhyperbolic canard cycle I' = yx(a) U vy (c). By the discussion on
subsection 2.1.2, we have that I' is a repeller and we do not have other canard cycles inside
I". See Figure 24.

102

Figure 24. Cases 102-125.
o Case 113: /B — /2 < XA < /B. The configuration on ¥ and the graph of H are the

same as in Case 10,. Since oy’ (c) € (a,d) there exists a point @ € (05" (c), 0% (b)) such that
7'(Q) = 1. So there exists a hyperbolic repeller canard cycle T, of kind I, passing through
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Q. See Figure 24. Moreover, by Lemma 2.10 this canard cycle is unique. In Figure 10 we
introduced the point T which plays the same role of Q.

o Case 129: A = /B. The points of ¥ on the left of a belong to X¢, and the points on the
right of a belong to 3¢, except by the tangential singularity ¢ = d. The graph of H is like H-2
of Figure 14. The repeller canard cycle I' presented in the previous case is persistent. Recall
that this canard cycle is born from the bifurcation of Case 105. So, the radius of I' does not
tend to zero when A tends to /3. Moreover, the tangential singularity b = d behaves itself
like a weak attractor. See Figure 24.

o Case 133: /B < X < Ly, Case 149: X = Ly, Case 159: L1 < X\ < 2¢/B+ /2, Case 16:
A =2B+pu/2, Case 179: 2¢/B + /2 < X < 3v/B + p, Case 185: X = 3v/B + u, and Case
199: A > 3/B + p. The analysis of these cases is done in a similar way as for Cases 111, 121,
131, 144, 151, 161, and 171, respectively.

The bifurcation diagram is illustrated in Figure 25. |

\ 1 /[13)
62 m 82 125 149 {152
2 / 7,

59 109 162 5 -
o
2 [
3,
g

Figure 25. Bifurcation diagram of Theorems 2 and 3.

5. Proof of Theorem 3. In Case 13 we assume that Y presents the behavior Y. In
Cases 23, 33, and 43 we assume that Y presents the behavior Y. In Cases 53-193 we assume
that Y presents the behavior Y.

o Case 13: B <0, Case 23: A <0, Case 33: A =0, Case 43: X > 0, Case H3: A < —/j3,
Case 63: A\ = —/B, Case 73: —/B <X <0, Case 83: A =0, and Case 93: 0 < X\ < /3. By
the choice of the bump function B, these cases are analogous to Cases 11, 21, 31, 41, 51, 61,
71, 81, and 9;.

o Case 103: A = y/B. The distribution of the connected components of ¥ and the behavior
of H are the same as in Case 125. This case differs from Case 125 because, as observed in
subsection 2.1.3, when A = /3 and p > 0 canard cycles of Z do not arise (see Figure 10)
bifurcating from the nonhyperbolic canard cycle I' of Case 123 below. Moreover, the tangential
singularity d = b behaves itself like a weak attractor. See Figure 26. There exists a hyperbolic
repeller canard cycle I' of kind III passing through a and c.

o Case 113: /B < A < /B — u/2. The points of ¥ on the left of a and on (b,d) belong
to 3¢ The points on (a,b) and on the right of d belong to X¢. The graph of H is like H-3
of Figure 14. We can prove that p; € (b,d) is a X-repeller and r is on the right of d. Since

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/26/13 to 143.106.1.143. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1420 C. A. BUZZI, T. DE CARVALHO, AND M. A. TEIXEIRA

Figure 26. Cases 103-123.

oy (ox(a)) € (a,b) there exists a point @ € (oy (ox(a)), oy (d)) such that n(Q) = 1. So there
exists a hyperbolic attractor canard cycle ', of kind I, passing through Q. See Figure 26. By
Lemma 2.10, in this Hopf bifurcation a unique canard cycle arises. Moreover, there exists a
hyperbolic repeller canard cycle I' of kind III passing through a and c.

o Case 123: X = /B — /2. The configuration on ¥ and the graph of H are the same as
in Case 1135. The attractor canard cycle I' presented in the previous case is persistent. Recall
that this canard cycle is born from the bifurcation of Case 103. So, the radius of I' does not
tend to zero when A tends to /3 + u/2. Moreover, it appears as a nonhyperbolic canard cycle
passing through a and c. See Figure 26.

o Case 133: /B — /2 < X < Ly, Case 143: A = Ly, Case 153: Ly < A\ < 2v/B — /2,
Case 163: A = 2/ — /2, Case 173: 24/ — /2 < X < 3y/B — p, Case 183: A = 3/ — u,
and Case 193: A > 3v/3 — . The analysis of these cases is done in a similar way as for Cases
114, 129, 134, 144, 151, 161, and 177, respectively.

The bifurcation diagram is illustrated in Figure 25, replacing the number 2 subscript by
the number 3. |

6. Proof of Theorem A. Since in (1.2) we can take u € (—ug, pto), from Theorems 1, 2,
and 3 we derive that its bifurcation diagram contains all the 55 cases described in Theorems
1, 2, and 3. However, some of them are Y-equivalent, and the number of distinct topological
behaviors is 23. Moreover, each topological behavior can be represented respectively by the
Cases 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 102, 112, 122, 103,
113, and 123.

The full behavior of the 3-parameter family of NSDSs expressed by (1.2) is illustrated in
Figure 27, where we consider a sphere around the point (A, 3, 1) = (0,0,0) with a small ray,
and so we make a stereographic projection defined on the entire sphere except the south pole.
Still, in relation to this figure, the numbers pictured correspond to the occurrence of the cases
described in the previous theorems. As expected, Cases 31 and 35 are not represented in this
figure because they are, respectively, the center and the south pole of the sphere. [ ]

7. Proof of Theorem B. When we consider (1.4), the function H, given by (2.2), is
constant and equal to 1 independent of the value of . Moreover, distinct values of the bump
function B (where B # B) do not produce any topological change in the bifurcation diagram
of the singularity. In other words, two parameters are enough to describe the full behavior
of this singularity. Observe that, by Proposition 2.13, we have X/ = (), and it does not have
virtual pseudoequilibria.
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A< <—F+—>A>0
A=0

Figure 27. Bifurcation diagram of the invisible fold-cusp singularity.

Since X has a unique X-fold point which is visible, we conclude that canard cycles do not
arise. In Case 1p we assume that Y presents the behavior Y ~. In Cases 2p, 3, and 45 we
assume that Y presents the behavior Y. In Cases 55115 we assume that Y presents the
behavior Y.

o Case 1p: B < 0. The points of X on the left of d belong to 3¢, and the points on the
right of d belong to X¢. See Figure 28.

Figure 28. Case 15.
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o Case 2p: XA < 0, Case 3g: A\ = 0, and Case 4g: A > 0. The configuration of the
connected components of ¥ is the same as in Case 1. Note that, when A < 0 (Case 2p), it
appears a tangential singularity P = (),0) € ¢, but Z*> is always oriented from the left to
the right. These cases are illustrated in Figure 29.

d<e d=-¢e

Figure 29. Cases 2p-4p.

o Case 5: A < —2/B, Case 6g: A\ = —2/B, and Case Tp: —2/B < A < —/B. The
points of 3 on the right of b and inside the interval (d,a) belong to 3¢. The points on (a,b)
and on the left of d belong to ¢ See Figure 30.

Figure 30. Cases 5-7p.

o Case 8g: A = —+/B. In this case a = d, and the configuration of the connected
components of ¥ is illustrated in Figure 31.

Figure 31. Case 85.

o Case 9p: —v/B < A < /B. The points of ¥ on the right side of b belong to ¢, and the
points inside the interval (a,d) belong to 3°. The points on (d,b) and on the left of a belong
to ¢ See Figure 32.

o Case 10p: X\ = /B. In this case d = b, and the configuration of the connected compo-
nents of ¥ is illustrated in Figure 32.
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Figure 32. Cases 9p—11p.

o Case 11g: X\ > /B. The points of ¥ on the right of d belong to ¢, and the points
inside the interval (a,b) belong to ¥*. The points on (b,d) and on the left of a belong to :¢.
See Figure 32.

The bifurcation diagram is illustrated in Figure 33. |

Figure 33. Bifurcation diagram of Theorem B.

8. Concluding remarks. The results in section 12 of [9] were revisited and extended in
this paper. The bifurcation diagram of a 3-parameter family of NSDSs presenting a fold-cusp
singularity was exhibited. In particular, the existence of some new interesting global bifur-
cations around the standard fold-cusp singularity expressed by (2.1) was shown. Moreover,
the simultaneous occurrence of such local and global bifurcations indicates how complex the
behavior of this singularity is.
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