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Lyapunov statistics and mixing rates for intermittent systems
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We consider here a recent conjecture stating that correlation functions and tail probabilities of finite time
Lyapunov exponents would have the same power law decay in weakly chaotic systems. We demonstrate that
this conjecture fails for a generic class of maps of the Pomeau-Manneville type. We show further that, typically,
the decay properties of such tail probabilities do not provide significant information on key aspects of weakly
chaotic dynamics such as ergodicity and instability regimes. Our approaches are firmly based on rigorous results,
particularly the Aaronson-Darling-Kac theorem, and are also confirmed by exhaustive numerical simulations.
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I. INTRODUCTION

It has been well known since the seminal works of Sinai,
Ruelle, and Bowen (SRB) [1–3] that the strongest chaotic
systems (Smale’s axiom A and Anosov systems) have SRB
measures with exponentially decaying mixing rates (see also
Ref. [4]). For these systems, the difference between temporal
and spatial averages is statistically described by a Gaussian
distribution (the central limit theorem) and the convergence of
both averages toward a unique value is assured. On the other
hand, there is a wide range of systems where mixing rates
and other related correlation functions decay as power laws.
Such a class of dynamical systems, dubbed weakly chaotic
in the physics literature, typically exhibits weak statistical
properties when compared with the chaotic ones. Examples
of weakly chaotic systems include maps with indifferent fixed
points [5–8], billiards [9], and Hamiltonian systems with sticky
islands in phase space [10], among others. These systems have
in common an intermittent dynamical behavior, exhibiting a
transition from regular to chaotic regimes which has attracted
the attention of physicists and mathematicians in the last
20 years. We recall that the so-called mixing rate of a pair
of phase space observable functions φ and ψ for maps of the
type

xt+1 = f (xt ) (1)

is defined as being the correlation function

Ct (φ,ψ) =
∣∣∣∣
∫

φ(x)ψ[f t (x)] dμ(x)

−
∫

φ(x) dμ(x)
∫

ψ(x) dμ(x)

∣∣∣∣ , (2)

where μ(x) is the invariant measure under the map f . A map
is said to be mixing if Ct → 0 as t → ∞ for any pair of phase
space smooth observables (φ,ψ).

Since correlation functions such as the mixing rate (2)
might characterize the transition from strong to weak chaos,
the attempt to relate them to more fundamental dynamical

*carlosamado@ig.com.br
†asaa@ime.unicamp.br
‡roberto.venegeroles@ufabc.edu.br

quantities is a goal that looks, at first glance, really promising.
In Ref. [11], for instance, the finite time Lyapunov exponents

�t (x) = 1

t

t−1∑
k=0

ln |f ′[f k(x)]|, (3)

were considered for one-dimensional maps like Eq. (1) for
which �∞ > 0, i.e., for strongly chaotic cases. Essentially,
they show that if there exist two positive constants �0 and
γ > 1 such that

Mt (�0) =
∫ ∞

�0

η(�t )d�t � a1t
−γ , (4)

where η(�t ) stands for the distribution of finite time Lyapunov
exponents for the system in question, then we also have the
following upper bound,

Ct (φ,ψ) � a2t
−(γ−1), (5)

for the mixing rates of any pair of Hölder continuous observ-
ables (φ,ψ). In other words, they have proved rigorously that
if the tail probabilities of the finite time Lyapunov exponents
are bounded by t−γ for large t , then correlations will be also
bounded asymptotically by t−(γ−1). These important results
have inspired a recent work [12] in which a related conjecture
is made for weakly chaotic systems, i.e., irrespective of having
�∞ > 0. The main results of Ref. [12] can be summarized as
follows.

(1) They argue that scrutinizing the way in which 1 − Mt

decays for large t provides an “extremely efficient way” of
studying quantitatively the decay of correlations.

(2) They conjecture, in view of the recent results of
Ref. [11], that the estimates of Eqs. (4) and (5) are not
optimal and that the decay properties of 1 − Mt and of
Ct − ∫

φdμ
∫

ψdμ should be, in fact, both polynomial with
the same exponent.

(3) They check numerically such a conjecture for a one-
dimensional intermittent map with two indifferent fixed points
of the Pomeau-Manneville type [13], for which the polynomial
decay rates of correlations are known exactly. Two other types
of two-dimensional intermittent maps are also numerically
considered to support the conjecture.

Here, we show that this conjecture is false by presenting
an explicit class of counterexamples. We consider a general
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class of Pomeau-Manneville maps [13] and show that their
Lyapunov exponents’ tail probabilities (4) decay faster than
any power law, whereas their correlations (2) do exhibit
a power law decay. Our approaches are firmly based on
rigorous results, particularly on the Aaronson-Darling-Kac
theorem [14], and are also confirmed by exhaustive numerical
simulations. For all maps in this class, correlation functions
decay more slowly than the tail probabilities of the Lyapunov
exponents, suggesting that bounds of the types (4) and (5) can
be physically relevant also for weakly chaotic systems.

II. LYAPUNOV STATISTICS

Our counterexamples consist of a general class of Pomeau-
Manneville (PM) intermittent dynamical systems of type (1)
with f : [0,1] → [0,1], where

f (x) ∼ x(1 + axz−1) (6)

for x → 0, with a > 0 and z > 1. The global form of f

is irrelevant, provided it respects Adler’s, finite image, and
nonuniformly expansion (AFN) axioms [15]. For maps of
type (6), x = 0 is an indifferent (neutral) fixed point; i.e.,
f (0) = 0 and f ′(0) = 1. Such systems are known to have
power law invariant measures near their indifferent fixed
points. More specifically, we have dμ(x) = ω(x) dx, where
ω(x) ∼ bx−1/α near the fixed point x = 0, with α = (z − 1)−1

[16]. As a consequence, such systems have a diverging
invariant measure near this point for z > 2. Moreover, a finite
invariant measure (1 < z < 2) implies ergodicity and the usual
Lyapunov exponential instability, whereas the diverging case
(z > 2) implies nonergodicity and subexponential instability.
We consider each of these cases separately and show that the
conjecture proposed in Ref. [12] fails for both.

A. Exponential instability

Let us first consider the statistics of finite time Lyapunov
exponents (3) for randomly distributed initial conditions x ∈
[0,1], in the case of finite invariant measure cases (1 < z < 2).
It is well known that ergodicity properties can determine
completely such statistics. For instance, Birkhoff theorem
[17] states that, in an ergodic regime, the time average
of an arbitrary observable function ϑ , t−1 ∑t−1

k=0 ϑ[f k(x)],
converges uniformly to the spatial average

∫
ϑ dμ. Then, for

almost all initial conditions x ∈ [0,1], the local expansion rate
�t (x) in Eq. (3) converges to the unique positive Lyapunov
exponent �∞ as t → ∞. On the other hand, if t is finite, �t (x)
assumes different values depending on the initial condition
x. The corresponding probability density function η(�t ) =
η(�,t) is given by

η(�,t) =
∫

δ[�t (x) − �]dμ(x). (7)

For large t , η(�,t) takes the scaling form [18]

η(�,t) ∼ η(�∞,t) exp[−t�(�)], (8)

where �(�) � 0 is a concave function with minimum
at �(�∞) = 0. Then we have �(�) ∼ c1(� − �∞)2 and

η(�∞,t) ∼ (c1t/π )1/2, with c1 > 0. Now, a simple calculation
by using Laplace’s method leads to

Mt ∼ 1
2 erfc(

√
�0t), (9)

where �0 = �(�0). The decaying properties of Eq. (9) are
definitively different than those ones predict by Ref. [12]. In
fact, one has

Mt ∼ 1

2
√

π

exp(−�0t)√
�0t

, (10)

for �0 �= �∞ and Mt (�∞) ∼ 1/2. It is important to stress that
there are many rigorous results in the literature establishing
polynomial bounds for the decay of correlations of PM maps
in the regime 1 < z < 2 (see Ref. [5] and references therein).
Most notably, Sarig [6] and Gouëzel [7] have achieved optimal
polynomial bounds for such correlations in this regime.
Therefore, contrary to the conjecture proposed in Ref. [12],
polynomial decay of correlations can occur simultaneously
with exponential decay of Lyapunov tail probability distribu-
tions. In fact, any conjecture stating that Mt should decay as a
power law is generically violated for ergodic regimes. For the
PM map with 1 < z < 2, this is indeed predicted by Theorem
2 (exponential level I result) of Ref. [8].

B. Subexponential instability

Let us consider now the cases for which the invariant
measure diverges locally at the indifferent fixed point x = 0,
i.e., z > 2. For such cases, the system typically exhibits a
nonergodic behavior and, hence, time averages do not converge
to a unique constant value. Nevertheless, the Aaronson-
Darling-Kac (ADK) theorem [14,19,20] ensures that a suitable
time-weighted average does converge uniformly in distribution
terms toward a Mittag-Leffler distribution of unit first moment.
More specifically, for a positive function ϑ and a random
variable x with an absolutely continuous measure with respect
to the Lebesgue measure on the interval [0,1], there is a (return)
sequence {at } for which

1

at

t−1∑
k=0

ϑ[f k(x)]
d−→ ξα

∫
ϑdμ, (11)

for t → ∞, where ξα is a non-negative Mittag-Leffler random
variable of index α ∈ (0,1) and with unit expected value. The
return sequence {at } for PM systems like Eq. (6) and 0 < α <

1 is given by [15,21]

at ∼ 1

b

1

a

(
a

α

)α sin(πα)

πα
tα, (12)

for t → ∞. What the ADK theorem is really pointing out
here is the explicit necessity of dealing with finite time
subexpoential Lyapunov exponents,

λ
(α)
t (x) = 1

tα

t−1∑
k=0

ln |f ′[f k(x)]|, (13)
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instead of the usual exponents (3) for PM systems of the AFN
type (see also Ref. [22]). From Eq. (11), we have

λ
(α)
t

〈λ〉
d−→ ξα, (14)

for t → ∞, where the ADK average value 〈λ〉 is given by

〈λ〉 = 1

ba

(
a

α

)α sin(πα)

πα

∫ 1

0
ln |f ′(x)|ω(x) dx. (15)

The ADK theorem completely determines the correlations
and the tail probability of Lyapunov exponents for the maps of
type (6), as one can see by considering a randomly distributed
initial condition x ∈ [0,1] with probability density h(x) > 0
in Eq. (11), leading to

1

at

t−1∑
k=0

∫
ϑ[f k(x)]h(x) dx =

∫
ϑdμ, (16)

for t → ∞. We can rearrange this expression and write

Ct (φ,ϑ) −
∫

φ dμ

∫
ϑ dμ ∼ α〈ϑ〉tα−1 (17)

for t → ∞, where φ(x) = h(x)/ω(x) and the ADK average
〈ϑ〉 is given by an expression analogous to Eq. (15). It remains
now to show that the tail probability of Lyapunov exponents
for systems of type (6) does not decay as predicted by Eq. (17).
From Eq. (14), one can obtain Mt for the map (6) by recalling
that λ

(α)
t = t1−α�t , implying the following distribution of

finite time Lyapunov exponents for systems of type (6),

η(�t ) = t1−α

〈λ〉 ρ(r)
α

(
t1−α�t

〈λ〉
)

, (18)

where ρ(r)
α is a Mittag-Leffler probability density function with

unit first moment, which corresponds to choice rα = α�(α),
according to the definitions of Ref. [23]. Then, we have finally
from Eqs. (4) and (18)

Mt =
∫ ∞

u(t)
ρ(r)

α (s)ds, (19)

for t → ∞, where u(t) = t1−α�0/〈λ〉. The behavior of ρ(r)
α (x)

for large x was recently discussed in Ref. [23], based on the
known relation between Mittag-Leffler and one-sided Lévy
distributions [24] and the Mikusiński’s asymptotic analysis
[25] of the latter. In particular, one has

ρ(r)
α (x) ∼

√
A

2πα

x(2α−1)/(2−2α)

1 − α
exp (−Ax1/(1−α)), (20)

for rα = α�(α), valid for x → ∞, where

A = 1 − α

α
�(α)1/(α−1). (21)

The integral of Eq. (20) can be written in terms of the
complementary error function, leading simply to

Mt ∼ 1√
2α

erfc(
√

Bt), (22)

for large t , where

B = 1 − α

α

(
�0�(α)

〈λ〉
)1/(α−1)

. (23)

The decaying properties of Eq. (22) are also definitively
different than those predicted by Eq. (17), in the context of
conjecture proposed in Ref. [12]. Once more we have

Mt ∼ 1√
2πα

exp(−Bt)√
Bt

, (24)

for large t , demonstrating finally that the conjecture presented
in Ref. [12] is false. It is noteworthy that the tail probabilities
of Lyapunov exponents given by Eq. (24) are essentially the
same as those we would expect from finite measure cases, i.e.,
Eq. (10). This shows that the way in which Mt decays does
not provide significant information on key aspects of weakly
chaotic dynamics.

III. NUMERICAL SIMULATIONS

In order to test and illustrate the conclusions of the last
section, we perform an exhaustive numerical analysis of two
particular AFN maps of type (6), namely, the Thaler map [16],
defined for z > 2 as

f (x) = x

[
1 +

(
x

1 + x

)z−2

− xz−2

]−1/(z−2)

, (25)

mod 1, and the modified Bernoulli map [22], defined also for
z > 2 as

f (x) =
{

x + 2z−1xz, 0 � x � 1
2 ,

x − 2z−1(1 − x)z, 1
2 < x � 1.

(26)

The Thaler map (25) is very convenient here because its
invariant measure density is explicitly known, namely [16],

ω(x) = x−1/α + (1 + x)−1/α, (27)

where α = (z − 1)−1, allowing in this way the explicit eval-
uation of the ADK averages like Eq. (15). In contrast with
the Thaler map, there is no explicit expression for the invariant
measure of the modified Bernoulli map, but it is known to have
the form ω(x) ∼ bk|x − xk|−1/α , also with α = (z − 1)−1, in
the neighborhood of each of the two indifferent fixed points
x0 = 0 and x1 = 1 [26]. Note that the ADK theorem is also
valid for systems with more than one indifferent fixed point
[15]. For the Bernoulli map (26), we also have return rates
in the form at ∼ tα for 0 < α < 1 [15]. However, since its
corresponding explicit expression for the invariant measure is
lacking, we cannot evaluate the ADK averages for the modified
Bernoulli map. We show that this problem can be circumvented
by exploiting the numerical data.

A. Tail probabilities of Lyapunov exponents

Our first task here is to determine if the tail probabilities
of finite time Lyapunov exponents (4) for the maps (25)
and (26) do indeed decay as predicted by Eq. (22). From
Sec. II, we known that such decaying behavior is assured if the
distribution of finite time Lyapunov exponents is effectively
given by Eq. (18). We compute numerically the distribution
of finite time Lyapunov exponents �t for the maps (25) and
(26) for random initial condition and large t and confront
the obtained numerical data with the theoretically predicted
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distribution (18). The algorithm for the numerical computation
of Mittag-Leffler distributions with arbitrary index α intro-
duced in Ref. [23] is instrumental to performing such a task.
The key point of our analysis is to check if a given distribution
is well described by a generic Mittag-Leffler probability
density function. We recall that a Mittag-Leffler probability
density ρ(r)

α (x) is defined from its Laplace transform as∫ ∞

0
e−sxρ(r)

α (x) dx =
∞∑

n=0

(−srα)n

�(1 + nα)
, (28)

for s � 0, with 0 < α < 1. The choice rα = α�(α) assures
that 〈x〉 = 1, where the average here is evaluated with respect
to ρ(r)

α (x). From Eqs. (18) and (28), we have the following
constraints on the high-order moments

〈�n〉
〈�〉n = n!αn−1�(α)n

n�(nα)
(29)

of the probability density (18). One can evaluate 〈�n〉 easily
from the numerical data and the constraints (29) can be
objectively used to decide if a given distribution is well
described by a Mittag-Leffler probability density. In particular,
notice that one can determine the two free parameters of
the distribution (18), 〈λ〉 and α, by considering, for instance,
〈�〉 = tα−1〈λ〉 and

〈�2〉
〈�〉2

= α�(α)2

�(2α)
. (30)

It is very instructive to inspect the graphics of 〈�2〉/〈�〉2 as a
function of α (see Fig. 1). For Mittag-Leffler distributions with
unit first moment, one has necessarily 1 � 〈�2〉/〈�〉2 � 2,
with the boundaries corresponding, respectively, to α = 1 and
α = 0. For such values of α, the Mittag-Leffler probability den-
sity function approaches, respectively, a δ function centered
in x = 1 and a simple exponential e−x (see Ref. [23]). The
violation of such boundaries would point out unequivocally
that one is not leading with Mittag-Leffler distributions with

1
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0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9 1

<
Λ

2 >
/<

Λ
>

2

α

FIG. 1. (Color online) Graphics of 〈�2〉/〈�〉2 as a function of α

for Mittag-Leffler distributions with unit first moment [see Eq. (30)].
The Mittag-Leffler index α can be determined from the value of
〈�2〉/〈�〉2 ∈ [1,2].

first unit moment. Analogous bounds hold also for higher-order
moments (29), 1 � 〈�n〉/〈�〉n � n!.

For the case of the Thaler map, both parameters 〈λ〉 and α

in the distribution (18) are predicted theoretically by the ADK
theorem, allowing the inspection of the convergence rate of
Eq. (14) with respect to t and to the number of initial conditions
used to evaluate the Lyapunov exponents. On the other hand,
for the modified Bernoulli map one cannot determine exactly
the average 〈λ〉, but it is possible to infer its value by computing
〈�〉 from the numerical data and then using 〈λ〉 = t1−α〈�〉.
Figure 2 depicts the distribution of finite time Lyapunov
exponents for the Thaler map (25). The plots show clearly
that the distribution of Lyapunov exponents becomes peaked
around the origin for t → ∞, leading to 〈�n〉 → 0 for large t .
In particular, one has �∞ = 0, in perfect agreement with the
predicted distribution (18) and the fact that the Thaler map is
known to be weakly chaotic. Figure 3 illustrates the case of the
modified Bernoulli map (26). For all cases, we see, graphically
and according to the higher-order moments constraints (29),
that the distribution of finite time Lyapunov exponents is
very well described by a Mittag-Leffler probability density
according to the prediction of Eq. (18). The tail probability
(22) is then guaranteed for these maps.

Our numerical examples are, in fact, illustrating the
convergence of Eq. (14), which is a consequence of ADK
theorem. As expected, for large values of t and for large
numbers of initial conditions, the histograms of both Figs. 2
and 3 approach the Mittag-Leffler probability density with
the theoretical predicted values of α and 〈λ〉. We could,
however, detect another very interesting property. For a given
value of t and a given number of initial conditions, the
corresponding histograms are already very well described by
a Mittag-Leffler probability density! With the increasing of
t and the number of initial conditions, such “instantaneous”
Mittag-Leffler probability densities approach the ADK ones,
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Λt
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FIG. 2. (Color online) Distribution of finite time Lyapunov
exponents (3) for the Thaler map, determined from the iteration of
Eq. (25), with z = 22/7 (α = 7/15), for 2.5 × 105 initial conditions
uniformly distributed on the interval [0,1]. The histograms are built
directly from the numerical data, while the solid lines are the
corresponding Mittag-Leffler probability density (18), computed by
means of the algorithm of Ref. [23]. The inset and the background
plots correspond, respectively, to t = 6 × 104 and t = 5 × 105.
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Λ t

FIG. 3. (Color online) Distribution of finite time Lyapunov
exponents (3) for the modified Bernoulli map, determined from the
iteration of Eq. (26), with z = 28/13 (α = 13/15) and t = 6 × 104,
for 2.5 × 105 initial conditions uniformly distributed on the interval
[0,1]. The histogram was built directly from the numerical data; the
solid line is the Mittag-Leffler probability density computed with the
algorithm of Ref. [23]. The behavior of the distribution for large t is
identical to that of the Thaler map case depicted in Fig. 3. In particular,
one also has 〈�n〉 → 0 for t → ∞ and �∞ = 0, in agreement with
the predictions of Eq. (18).

as is illustrated, for the Thaler map, in Fig. 4 and in
Table I.

The solid lines in both Figs. 2 and 3, for instance, are the
instantaneous Mittag-Leffler probability densities, i.e., their
parameters α and 〈λ〉, although close to the theoretically
predicted values, were calculated from the numerical data by
using 〈λ〉 = t1−α〈�〉 and Eq. (30). Table I shows the values
of the higher-order moment constraints (29) for the data sets
presented in Fig. 4.

B. Correlation functions

The numerical computation of the correlation functions (2)
is rather tricky for the maps in question due to the highly

TABLE I. Statistical data for the graphics in Fig. 4. For each
data set, the higher-order moment constraints (29) are respected,
showing that each “instantaneous” histogram of Fig. 4 is indeed well
described by a Mittag-Leffler probability density. The values of the
Mittag-Leffler index α for each one of the data sets (last row) were
calculated from 〈λ2〉/〈λ〉2 [see Eq. (30) and also Fig. 1]. The last
column corresponds to the probability density predicted from the
ADK theorem, namely, the curve (e) in Fig. 4.

(a) (b) (c) (d) ADK

〈λ〉 0.853 0.840 0.829 0.822 0.807
〈λ2〉/〈λ〉2 1.305 1.303 1.300 1.296 1.290
〈λ3〉/〈λ〉3 1.956 1.947 1.935 1.921 1.899
〈λ4〉/〈λ〉4 3.216 3.189 3.155 3.117 3.051
〈λ5〉/〈λ〉5 5.674 5.598 5.510 5.414 5.242
〈λ6〉/〈λ〉6 10.589 10.383 10.168 9.927 9.497
15α 10.81 10.84 10.88 10.92 11

 0.0001

 0.001

 0.01

 0.1

1

0  0.5 1  1.5 2

λt
(α)

(a)
(b)
(c)
(d)
(e)

FIG. 4. (Color online) Log plot of the distribution of finite
time subexponential Lyapunov exponents (13) for the Thaler map,
determined from the iteration of Eq. (25), with z = 26/11 (α =
11/15), for 2.5 × 105 initial conditions uniformly distributed on the
interval [0,1]. The set of points (a), (b), (c), and (d) correspond,
respectively, to the histograms built from the numerical data obtained
for t = 104, t = 5 × 104, t = 25 × 104, and t = 106. Each one of
these data sets is very well described by a Mittag-Leffler probability
density (see Table I). The line (e) corresponds to the Mittag-Leffler
probability density with the ADK values for α and 〈λ〉. As one can see,
the numerically obtained distributions converge toward the prediction
of the ADK theorem with the increasing of t . The increasing of
the number of initial conditions does not alter considerably such a
convergence, but a better description of the density tail requires a
larger number of initial conditions, as expected.

discontinuous nature of the iterated maps f t (x) for large t .
For both cases (25) and (26), for instance, the iterated map
f t (x) has 2t − 1 discontinuous points. An accurate numerical
computation for large t of a correlation function such as Ct

would require an extremely fine subdivision of the interval
[0,1], rendering the task practically and computationally
unviable. Nevertheless, in order to establish the correlation
function decaying (17), it is enough to assure that, for some
value of 0 < α < 1, the quantity

θ
(α)
t = 1

tα

t−1∑
k=0

ϑ[f k(x)], (31)

where ϑ(x) is an integrable function, converges uniformly
in distribution terms toward a random variable for large t .
The ADK theorem does assure such a convergence with α =
(z − 1)−1 for the maps in question, and, as demonstrated in
Sec. II, the correlation decaying (17) is also firmly based on the
ADK theorem. As an example, let us consider the observable
function ϑ(x) = sinz πx for the case of the modified Bernoulli
map. According to the discussion of Sec. II, the correlation
Ct (h,ϑ) for any smooth observable function h(x) > 0 will
exhibit a power lay decay as predicted by Eq. (17) provided
θ

(α)
t does converge in distribution terms to a Mittag-Leffler

random variable. Figure 5 depicts such a distribution and one
can confirm the very good agreement with the predictions
of the ADK theorem, assuring the validity of the correlation
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FIG. 5. (Color online) Distribution of the quantity θ
(α)
t , given by

Eq. (31), for ϑ(x) = sinz πx, determined from the iteration of the
modified Bernoulli map (26), with z = 28/13 (α = 13/15) and t =
6 × 104, for 2.5 × 105 initial conditions uniformly distributed on the
interval [0,1]. The histogram is built directly from the numerical
data and the solid line is the corresponding Mittag-Leffler probability
density, computed by means of the numerical algorithm of Ref. [23].

decaying (17). Similar results hold also for the Thaler map
(25) and for other observables.

We notice that the validity of Eq. (17) is stronger than
the ADK theorem, in the sense that the convergence to a
Mittag-Leffler distribution given by Eq. (11) is not a necessary
condition to establish Eq. (16). In fact, the existence of a se-
quence at ∼ tα such that a−1

t

∑t−1
k=0 ϑ[f k(x)] does converge in

distribution terms toward a random variable, not necessarily of
the Mittag-Leffler type, is enough to assure the decaying (17).

IV. FINAL REMARKS

We close by noticing that the first map presented in Ref. [12]
to support the conjecture we have just proved to be false is

also a map with indifferent fixed points, namely, the so-called
Pikovsky map, which is defined implicitly by [27]

x =
{

1
2z

[1 + f (x)]z , 0 < x < 1
2z

,

f (x) + 1
2z

[1 − f (x)]z, 1
2z

< x < 1.
(32)

The Pikovsky map is defined on the interval [−1,1]. For
negative x, one has simply f (x) = −f (−x). This map has
two indifferent fixed points located at x = ±1 for z > 1. The
correlation functions for the Pikovsky map are known to decay
as a power law [27,28]. The authors of Ref. [12] present some
numerical evidence suggesting that the tail probability Mt for
the map (32) would also decay with the same power law. This
fact seems to contradict our results of Sec. II. However, a
closer inspection of Eq. (32) reveals that the Pikovsky map is
not an AFN map [15] and, hence, the ADK theorem cannot
be invoked here to determine the distribution of finite time
Lyapunov exponents. From the first equation of map (32), we
have

f ′′

(f ′)2
= (1 − z)(2zx)−1/z, (33)

showing that the axiom A (Adler’s condition) [15] is not
satisfied for x = 0 and positive z. The violation of Adler’s
condition here is related to the infinity slope of the map at the
origin, and this is known to be capable of inducing some new
dynamical properties such as, for instance, the existence of a
regular invariant measure despite the indifferent fixed points;
see Example 1 of Ref. [29], for instance. The failure of Adler’s
condition might explain why the authors of Ref. [12] have
arrived at the conclusion that Mt decays as a power law for the
map (32), but certainly a deeper investigation of the Pikvosky
map would be interesting and revealing.
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[7] S. Gouëzel, Isr. J. Math. 139, 29 (2004).
[8] M. Pollicott and R. Sharp, Nonlinearity 22, 2079 (2009).
[9] N. Chernov and H.-K. Zhang, Nonlinearity 18, 1527 (2005);

J. Machta, J. Stat. Phys. 32, 555 (1983); J. Machta and
B. Reinhold, ibid. 42, 949 (1986).

[10] C. F. F. Karney, Phys. D 8, 360 (1983); R. Venegeroles,
Phys. Rev. Lett. 102, 064101 (2009); Phys. Rev. E 77, 027201
(2008).

[11] J. F. Alves, S. Luzzatto, and V. Pinheiro, Ergod. Th. Dynam.
Syst. 24, 637 (2004).

[12] R. Artuso and C. Manchein, Phys. Rev. E 80, 036210 (2009).
[13] Y. Pomeau and P. Manneville, Commun. Math. Phys. 74, 189

(1980); P. Manneville, J. Phys. (Paris) 41, 1235 (1980).
[14] J. Aaronson, An Introduction to Infinite Ergodic Theory

(American Mathematical Society, Providence, 1997).
[15] R. Zweimüller, Ergod. Th. Dynam. Syst. 20, 1519 (2000).
[16] M. Thaler, Studia Math. 143, 103 (2000).
[17] G. D. Birkhoff, Proc. Natl. Acad. Sci. USA 17, 656 (1931).
[18] R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics

(Springer-Verlag, New York, 1985).
[19] J. Aaronson, J. Anal. Math. 39, 203 (1981).
[20] D. A. Darling and M. Kac, Trans. Am. Math. Soc. 84, 444

(1957).
[21] M. Thaler and R. Zweimüller, Probab. Theory Relat. Fields 135,

15 (2006).

066210-6

http://dx.doi.org/10.1070/RM1972v027n04ABEH001383
http://dx.doi.org/10.2307/2373810
http://dx.doi.org/10.1007/BF01942372
http://dx.doi.org/10.1007/BF01942372
http://dx.doi.org/10.1007/BF02046760
http://dx.doi.org/10.1007/BF02808180
http://dx.doi.org/10.1090/S0002-9939-08-09751-7
http://dx.doi.org/10.1090/S0002-9939-08-09751-7
http://dx.doi.org/10.1007/s00222-002-0248-5
http://dx.doi.org/10.1007/BF02787541
http://dx.doi.org/10.1088/0951-7715/22/9/001
http://dx.doi.org/10.1088/0951-7715/18/4/006
http://dx.doi.org/10.1007/BF01008956
http://dx.doi.org/10.1007/BF01010456
http://dx.doi.org/10.1016/0167-2789(83)90232-4
http://dx.doi.org/10.1103/PhysRevLett.102.064101
http://dx.doi.org/10.1103/PhysRevE.77.027201
http://dx.doi.org/10.1103/PhysRevE.77.027201
http://dx.doi.org/10.1017/S0143385703000579
http://dx.doi.org/10.1017/S0143385703000579
http://dx.doi.org/10.1103/PhysRevE.80.036210
http://dx.doi.org/10.1007/BF01197757
http://dx.doi.org/10.1007/BF01197757
http://dx.doi.org/10.1051/jphys:0198000410110123500
http://dx.doi.org/10.1017/S0143385700000821
http://dx.doi.org/10.1073/pnas.17.12.656
http://dx.doi.org/10.1007/BF02803336
http://dx.doi.org/10.1090/S0002-9947-1957-0084222-7
http://dx.doi.org/10.1090/S0002-9947-1957-0084222-7
http://dx.doi.org/10.1007/s00440-005-0454-3
http://dx.doi.org/10.1007/s00440-005-0454-3


LYAPUNOV STATISTICS AND MIXING RATES FOR . . . PHYSICAL REVIEW E 84, 066210 (2011)

[22] P. Gaspard and X.-J. Wang, Proc. Natl. Acad. Sci. USA 85,
4591 (1988); T. Akimoto and Y. Aizawa, J. Korean Phys. Soc.
50, 254 (2007); Chaos 20, 033110 (2010); N. Korabel and
E. Barkai, Phys. Rev. Lett. 102, 050601 (2009); Phys. Rev. E 82,
016209 (2010).

[23] A. Saa and R. Venegeroles, Phys. Rev. E 84, 026702
(2011).

[24] W. Feller, An Introduction to Probability Theory and its
Applications, Vol. II (Wiley, New York, 1971).
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