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This work introduces a pathwise notion of solution for the stochastic Burgers
equation, in particular, our approach encompasses the Cole–Hopf solution. The
developments are based on regularization arguments from the theory of distribu-
tions.
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1. Introduction

The aim of this paper is to study the existence of solution to the stochastic Burgers equation
of the following form:{

∂tU (t, x) = �U (t, x) + ∂xU 2(t, x) + ∂x W (t, x),

U (0, x) = ∂x f (x).
(1)

where W (t, x) is a space-time white noise.
There are many motivations for studying the stochastic Burgers equation. Several

authors have indeed suggested to use the stochastic Burgers equation as a simple model
for turbulence, has also been proposed to study the dynamics of interfaces and numerous
applications were found in astrophysics and statistical physics, see for example [1,2]. We
refer to [3,4] for a more detailed historical account of the stochastic Burgers equation from
a purely mathematical point of view.

The main difficulty with the stochastic Burgers Equation (1) is that the solutions do not
take values in a function space but in a generalized function space. Thus, it is necessary
to give meaning to the non-linear term ∂xU 2, because the usual product makes no sense
for arbitrary distributions. We recall that is not possible to define a product for arbitrary
distributions with good properties, see [5,6].

In this article, we deal with product of distributions via regularizations. This is, we
approximate the distributions to be multiplied by smooth functions, multiply the approxi-
mations and pass to the limit (see for instance [6–8]).
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Bertini and Giacomin in [9], proposed that U (t, x) = ∂x ln Z(t, x) is the meaningful so-
lution to the stochastic Burgers equation. Here Z(t, x) denotes the solution of the stochastic
heat equation with multiplicative noise. This is known as the Cole–Hopf solution for the
stochastic Burgers equation. We recall that the stochastic heat equation with multiplicative
noise is the Itô equation, {

d Z = �Z dt + ZdW
Z(0, x) = e f (x).

(2)

The Hopf–Cole solution is believed to be the correct physical solution for (1). However
up to recently a rigorous notion of solution to the stochastic Burgers equation was lacking.
In [10], Assing introduces a weak solution in a probabilistic sense for the Equation (1).
The idea is to approximate the Cole–Hopf solution by the density fluctuations in weakly
asymmetric exclusion. In [11], Gonçalves and Jara considered a similar type of solution.

In this article we introduce a nice space of generalized stochastic processes in order to
prove that the Cole–Hopf solution is a strong solution to the Equation (1). We also show
that the Cole–Hopf solution satisfies a certain type of stability.

Our space of generalized stochastic processes looks like a generalized stochastic process
space in the sense of Itô–Gelfand–Vilenkin, see [12,13]. A main ingredient in our approach
is the use of regularization techniques to define non-linear operations in the theory of
distributions, we refer the reader to [6,7] for the background material.

Finally, we mention that the Cole–Hopf solution does not make sense in the multidi-
mensional case since the solution of the stochastic heat equation is not a standard stochastic
process. It is realized as a generalized stochastic process in the space of stochastic Hida
distribution, see for example [14]. Thus, we expect solutions of Stochastic Burgers equation
only in the sense of Colombeau’s generalized functions. We refer the reader to [15–19] for
applications of this theory in stochastic analysis.

The article is organized as follows: Section 2 reviews some basic facts on the standard
cylindrical Wiener process. Section 3, we give a notion of random generalized functions, we
introduce a new concept of solution for the stochastic Burgers equation and we prove that
the Cole–Hopf solution solves (1). Also we prove that its has certain property of stability.

2. Cylindrical Wiener process

Let {W (t, ·) : t ∈ [0, T ]} be a standard cylindrical Wiener process in L2(R); it is canonically
realized as a family of continuous processes satisfying:

(1) For any ϕ ∈ L2(R), {Wt (ϕ), t ∈ [0, T ]} is a Brownian motion with variance
t
∫

ϕ2(x) dx ,
(2) For any ϕ1, ϕ2 ∈ L2(R) and s, t ∈ [0, T ],

E(Ws(ϕ1)(Wt (ϕ2)) = (s ∧ t)
∫

ϕ1(x)ϕ2(x) dx .

Let {Ft : t ∈ [0, T ]} be the σ -field generated by the P-null sets and the random variables
Ws(ϕ), where ϕ ∈ D(R) and s ∈ [0, t]. The predictable σ -field is the σ -field in [0, T ] × �

generated by the sets (s, t] × A where A ∈ Fs and 0 ≤ s < t ≤ T .
Let {v j : j ∈ N} be a complete orthonormal basis of L2(R). For any predictable

process g ∈ L2(� × [0, T ], L2(R)) it turns out that the following series is convergent in
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L2(�,F , P) and the sum does not depend on the chosen orthonormal system:∫ T

0
gt Wt :=

∞∑
j=1

∫ T

0
(gt , v j )dWt (v j ). (3)

We notice that each summand in the above series is a classical Itô integral with respect to
a standard Brownian motion, and the resulting stochastic integral is a real-valued random
variable. The independence of the terms in the series (3) leads to the isometry property

E

(∣∣∣∣
∫ T

0
gs dWs

∣∣∣∣
2)

= E

(∫ T

0

∫
|gs(x)|2 dx ds

)
.

See [20] for properties of the cylindrical Wiener process and stochastic integration. The
mollifier cylindrical Wiener process is defined by:

W n
t (x) := Wt (nρ(n(x − ·))) (4)

where ρ : R → R is an infinitely differentiable function with compact support such that∫
ρ(x) dx = 1.

The mollifier Wiener process satisfies:

(1) The covariance of the mollifier Wiener process is given by

E[W n
t (x)W n

s (y)] = s ∧ t
∫

Cn(x − y) (5)

where Cn(z) = ∫
δn(z − u)δn(−u)du and δn(z) = nρ(nz).

(2) The quadratic variation of W n
t (x) is given by

〈W n(x)〉t = Cnt (6)

where C = ∫
ρ2(−x)dx .

(3) The mollifier Wiener process is an approximation to the cylindrical Wiener process.
For all ϕ ∈ L2(R),

lim
n→∞

∫
W n

t (x)ϕ(x)dx = Wt (ϕ). (7)

In the case that ϕ has compact support the above convergence is a.e..

3. Solving the stochastic Burgers equation

We denote by D((0, T )×R) the space of the infinitely differentiable functions with compact
support in (0, T ) × R and D′((0, T ) × R) its dual.

Definition 3.1 Let D be the space of functions T : � → D′((0, T )×R) such that 〈T, ϕ〉
is a random variable for all ϕ ∈ D((0, T ) × R). The elements of D are called random
generalized functions.

The initial condition of the stochastic Burgers equation requires the usage of the notion
of section of a distribution in the sense of Lojasiewicz, see [6,21]. For convenience of the
reader, we present the relevant definitions.

Definition 3.2 A strict delta net is a net {ρε : ε > 0} of D((0, T )) such that it satisfies:



Applicable Analysis 649

(1) limε→0 supp(ρε) = {0}.
(2) For all ε > 0,

∫
ρε(t) dt = 1.

(3) supε>0
∫ |ρε(t)| dt < ∞.

Definition 3.3 A distribution H ∈ D′((0, T )× R) has a section U ∈ D′(R) at t = 0 if for
all ϕ ∈ D(R) and all strict delta net {ρε : ε > 0},

lim
ε→0

〈H, ρεϕ〉 = 〈U, ϕ〉.

3.1. Existence of generalized solution

We say that a random field {S(t, x) : t ∈ [0, T ], x ∈ R} is a spatially dependent
semimartingale if for each x ∈ R, {S(t, x) : t ∈ [0, T ]} is a semimartingale in relation
to the same filtration {Ft : t ∈ [0, T ]}. If S(t, x) is a C∞-function of x and continuous
in t almost everywhere, it is called a C∞-semimartingale. See [22] for a rigorous study
of spatially depend semimartingales and applications to stochastic differential equations.
Now, following ideas of regularization and passage to the limit, we introduce a new concept
of solution for the stochastic Burgers equation.

Definition 3.4 We say that U ∈ D is a generalized solution of the Equation (1) if

(1) There exists a sequence of C∞-semimartingales {Un : n ∈ N} such that U =
limn→∞ Un and there exists limn→∞ ∂xU 2

n in D′((0, T )×R) almost surely for ω ∈ �.
(2) For all ϕ ∈ D((0, T ) × R),

〈U, ∂tϕ〉 + 〈�U, ϕ〉 + 〈∂xU 2, ϕ〉 +
∫ T

0
∂xϕ(t, ·)dWt = 0

where ∂xU 2 := limn→∞ ∂xU 2
n .

(3) There exists a section of U at t = 0 and is equal to ∂x f .

Theorem 3.1 Let f ∈ C∞
b (R) and Z be a solution of the stochastic heat Equation (2).

Then U = ∂x ln Z is a generalized solution of the stochastic Burgers Equation (1).

Proof Let us denote by Hn(t, x) the process ln Zn(t, x), where Zn is the solution of the
regularized stochastic heat equation in the Itô sense{

d Zn = �Zn dt + Zn dW n,

Zn(0, x) = e f (x).
(8)

We observe that the solution of the Equation (8) is understood in a mild sense, this is,
Zn satisfies the equation

Zn = Gt ∗ f +
∫ t

0
(Gt−s ∗ Zn)dW n

t

where Gt = G(t, .) is the fundamental solution the heat equation. This construction is due
to Bertini and Giacomin [23] p. 1884. The solution Z(t, x) of the stochastic heat Equation
(2) is too understood in a mild sense, see Definition 2.1 and Theorem 2.2 of [23].
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By Itô formula and (6), we have

Hn = f +
∫ t

0
�Hn ds +

∫ t

0
(∂x Hn)2 ds + W n

t − C

2
nt. (9)

Let Un(t, x) = ∂x ln Zn(t, x). Multiplying (9) by ∂x∂tϕ(t, x), where ϕ ∈ D((0, T ) × R),
and integrating in (0, T ) × R we obtain that

〈Un, ∂tϕ〉 + 〈�Un, ϕ〉 + 〈∂xU 2
n , ϕ〉 +

∫ T

0
(∂xϕ(t, ·) ∗ δn) dWt = 0. (10)

We observe that Zn converge to Z uniformly on compacts of (0, T ) × R, see Bertini and
Cancrini [23], Theorem 2.2. Thus,

lim
n→∞〈Un, ∂tϕ〉 = 〈U, ∂tϕ〉 (11)

and
lim

n→∞〈�Un, ϕ〉 = 〈�U, ϕ〉. (12)

We recall that
∫ T

0 ϕ(t, ·) dWt defines a continuous linear functional from D((0, T ) × R) to
R, see Schaumloffel [24]. Then

lim
n→∞

∫ T

0
(∂xϕ(t, ·) ∗ δn) dWt =

∫ T

0
∂xϕ dWt . (13)

From the Equation (10) and the convergences (11), (12) and (13) we have that for all
ϕ ∈ D[0, T ) × R), ∫ T

0

∫
R

∂xU 2
n ϕ(t, x) dtdx

converges and defines a linear functional in D′((0, T ) × R) . Thus, the nonlinearity

〈∂x (U )2, ϕ〉 := lim
n→∞

∫ T

0

∫
R

∂x (Un)2 ϕ(t, x) dtdx

is well defined. From the continuity of Z(t, x), see for instance [23], we observe that

lim
ε→0

∫ ∫ T

0
∂x ln Z(t, x) ρε(t) dt ϕ(x) dx = −

∫
f (x) ∂xϕ(x) dx

=
∫

∂x f (x) ϕ(x) dx

for all ϕ ∈ D(R) and for all strict delta net {ρε : ε > 0}. Thus, we conclude that U is a
generalized solution for the problem (1). �

Remark 3.1 In our formulation of the Equation (1), the initial condition is U |{t=0} =
∂x f (x). Thus, if f and g are functions such that ∂x f (x) = ∂x g(x) the solution of Equation
(1) are the same. This is, we are identifying inicial conditions that have the same derivative.

Remark 3.2 The uniqueness problem is interesting and probably impossible to solve in
this setting. The problem is that different approximations of the stochatic heat equations
could have different limits, we refer to the reader to Section 2.4 of [25].
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3.2. Stability of the Cole–Hopf solution

A well-known statement is that if a PDE is well posed, then the solutions to every reasonable
sequence of approximating PDEs should converge to it. However, in SPDEs this statement
is ambiguous since stochastic integrals are too irregular to be defined pathwise in an
unambiguous way. See [26] for interesting comments in relation to this issue in SPDEs.
The Cole–Hopf solution of the stochastic Burgers equation has this property of stability
for approximations obtained as solutions of the stochastic Burgers equation driven by a
mollifier Wiener process.

Theorem 3.2 Let f ∈ C∞
b (R). Then the Cole–Hopf solution U = ∂x ln Z of the

stochastic Burgers equation with initial condition ∂x f satisfies the following stability
property: If Vn are semimartingales such that

Vn = ∂x f +
∫ t

0
�Vn ds

∫ t

0
∂x V 2

n ds + ∂x W n
t

then limn→∞ Vn = U in D′((0, T ) × R).

Proof We observe that Vn = ∂x Hn where Hn satisfies

Hn = f +
∫ t

0
�Hn ds

∫ t

0
(∂x Hn)2 ds + W n

t .

We have that Gn = eHn verifies the following Stratonovich equation{
dGn = �Gn dt + Gn ◦ dW n

Gn(0, x) = e f (x),
(14)

or equivalently the Itô equation{
dGn = �Gn dt + GndW n + n C Gndt
Gn(0, x) = e f (x).

(15)

A trivial calculation shows that Gn = ZneCnt where Zn is the solution of the Equation (8).
Then

Hn = ln
(

ZneC nt
)

.

Thus,

Vn = ∂x Hn = ∂x ln Zn .

By continuity, we have that Vn converges to U = ∂x ln Z in D′((0, T ) × R). �
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