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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS∗

SEAN CURRAN† , ORLANDO LEE‡ , AND XINGXING YU§

Abstract. In this paper we give a decomposition of a 4-connected graph G into nonsepa-
rating chains, which is similar to an ear decomposition of a 2-connected graph. We also give an
O(|V (G)|2|E(G)|) algorithm that constructs such a decomposition. In applications, the asymptotic
performance can often be improved to O(|V (G)|3). This decomposition will be used to find four
independent spanning trees in a 4-connected graph.
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1. Introduction. In [1], Cheriyan and Maheshwari gave an O(|V (G)|2) algo-
rithm for finding a “nonseparating ear decomposition” of a 3-connected graph G,
and they used this decomposition to construct three independent spanning trees in a
3-connected graph.

In this paper we give a 4-connected version of the nonseparating ear decompo-
sition of Cheriyan and Maheshwari and an O(|V (G)|2|E(G)|) algorithm for finding
such a decomposition. This will be used in a forthcoming paper to find four inde-
pendent spanning trees in an arbitrary 4-connected graph G, where the asymptotic
performance can be improved to O(|V (G)|3).

We use the definitions and notation given in [2]. Some of those definitions are quite
long, so we simply refer the readers to [2]. In particular, see [2] for definitions of chain
(Definition 1.3 of [2]), planar chain (Definition 1.4 of [2]), cyclic chain (Definition 4.2
of [2]), and planar cyclic chain (Definition 4.3 of [2]). Intuitively, the roles of planar
chains and planar cyclic chains in our decompsitions of 4-connected graphs are similar
to those of paths and cycles in ear decompositions of 2-connected graphs.

In [2], we showed how to find the first planar chain in our decomposition of
4-connected graphs. The other chains in our decomposition can be classified into
four types, as described below. The first three types are planar chains as defined in
Definition 1.1. The fourth type is not a planar chain (but almost planar as we will
see), and it is defined in Definition 1.2. See Figure 1 for illustrations of Definitions 1.1
and 1.2.

Definition 1.1. Let G be a graph, let F be a subgraph of G, and let r ∈
V (F ). Let H be a planar x-y chain in G such that V (H) − {x, y} ⊆ V (G) − V (F ).
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Fig. 1. (a) An up F -chain, (b) a down F -chain, (c) an elementary F -chain, and (d) a triangle
F -chain. The dashed edges need not exist.

We say that
(a) H is an up F -chain if {x, y} ⊆ V (F ) and NG(H −{x, y}) ⊆ (V (G)− V (F −

r)) ∪ {x, y};
(b) H is a down F -chain if {x, y} ⊆ V (G) − V (F − r) and NG(H − {x, y}) ⊆

V (F − r) ∪ {x, y}; and
(c) H is an elementary F -chain if {x, y} ⊆ V (F ) and H is an x-y path of length

two.
In any of the three cases above we say that H is a planar x-y F -chain in G (or simply,
a planar F -chain). For an x-y chain H we let I(H) := V (H)−{x, y}, and for a cyclic
chain H we let I(H) := V (H).

For a graph G, a subgraph H of G, and S ⊆ V (G) ∪ E(G), we let H + S denote
the graph with vertex set V (H) ∪ (S ∩ V (G)) and edge set E(H) ∪ (S ∩ E(G)).

Definition 1.2. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
Suppose that {v1, v2, v3} ⊆ V (G) − V (F ) induces a triangle T in G, and for each
1 ≤ i ≤ 3, vi has exactly one neighbor xi in V (F − r) and exactly one neighbor yi
in V (G) − (V (F ) ∪ V (T )) (thus, each vi has degree four in G). Moreover, assume
that x1, x2, x3 are distinct and y1, y2, y3 are distinct. Then we say that H := T +
{x1, x2, x3, v1x1, v2x2, v3x3} is a triangle F -chain in G. We let I(H) := {v1, v2, v3}.
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850 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

The definitions above depend on the choice of r and F , but in spite of this,
whenever we use these concepts in this paper, it should be clear which pair r, F we
refer to.

Definition 1.3. Let G be a graph, let F be a subgraph of G, and let r ∈ V (F ).
By a good F -chain in G, we mean an up F -chain, a down F -chain, an elementary
F -chain, or a triangle F -chain.

We are now ready to describe a chain decomposition, which is similar to an ear
decomposition.

Definition 1.4. Let G be a graph, let r ∈ V (G), and let H1, . . . , Ht be chains
in G, where t ≥ 2. We say that (H1, . . . , Ht) is a nonseparating chain decomposition
of G rooted at r if the following conditions hold:

(i) H1 is a planar cyclic chain in G rooted at r;

(ii) for each i = 2, . . . , t− 1, Hi is a good G[
⋃i−1

j=1 I(Hj)]-chain in G;

(iii) Ht = G− (
⋃t−1

j=1 I(Hj) − {r}) is a planar cyclic chain in G rooted at r; and

(iv) for each i = 1, . . . , t− 1, both G[
⋃i

j=1 I(Hj)] and G− (
⋃i

j=1 I(Hj)−{r}) are
2-connected.

The chains H2, . . . , Ht−1 are called internal chains of the nonseparating chain decom-
position. If ra is a piece of H1, then we say that H1, . . . , Ht is a nonseparating chain
decomposition of G starting at ra.

The main result of this paper is the following.
Theorem 1.5. Let G be a 4-connected graph, let r ∈ V (G), and let ra ∈ E(G).

Then G has a nonseparating chain decomposition rooted at r starting at ra, and such
a decomposition can be found in O(|V (G)|2|E(G)|) time.

The existence of the first chain H1 of the chain decomposition is guaranteed by
the next result which corresponds to Theorem 4.4 of [2].

Theorem 1.6. Let G be a 4-connected graph, and let ra ∈ E(G). Then there
exists a planar cyclic chain H in G rooted at r such that ra is a piece of H and G−
(V (H)−{r}) is 2-connected. Moreover, such a chain can be found in O(|V (G)||E(G)|)
time.

In order to construct the internal chains of the chain decomposition in Theo-
rem 1.5, we need the following result which is Theorem 1.6 of [2].

Theorem 1.7. Let G be a graph, let {a, b} ⊆ V (G), and let P be a nonseparating
induced a-b path in G. Let BP be a nontrivial block of G − V (P ), and let XP :=
NG(G − V (BP )). Suppose G − (V (BP ) − XP ) is (4, XP ∪ {a, b})-connected. Then
there exists a planar a-b chain H in G such that G− V (H) is 2-connected and BP ⊆
G− V (H). Moreover, such a chain can be found in O(|V (G)||E(G)|) time.

The rest of this paper is organized as follows. In section 2 we recall some lem-
mas proved in [2] and provide some new auxiliary lemmas concerning nonseparating
induced paths. In section 3 we prove a technical result, which will be used to find
the internal chains of a nonseparating chain decomposition. Finally, in section 4 we
complete the proof of Theorem 1.5.

2. Nonseparating paths. In this section we state and prove some results con-
cerning nonseparating induced paths which will be used later. First, we state two
lemmas without proof, which are Lemmas 2.3 and 2.4 of [2], respectively.

Lemma 2.1. Let G be a connected graph, S ⊆ V (G), {a, a′} ⊆ S, and let P be
an a-a′ path in G. Suppose

(i) G is (3, S)-connected, and
(ii) S − {a, a′} is contained in a component U of G− V (P ).
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 851

Then there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′)∩V (U) =
∅. Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Lemma 2.2. Let G be a graph and S := {a, a′, b, b′} ⊆ V (G). Suppose that G is
(4, S)-connected. Then exactly one of the following holds:

(1) there exists a nonseparating induced a-a′ path P ′ in G such that V (P ′) ∩
{b, b′} = ∅;

(2) (G, a, b, a′, b′) is planar.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a path as in (i) or certify that (ii)
holds.

Note our use of “prime” notation in the statements of the lemmas. The reader
should not infer that the paths labeled P ′ are derived from an assumed path P . We
reserve P to denote a particular path specified in section 3, and we therefore label
paths P ′ in the statements of our lemmas. We hope this will sidestep any source of
confusion when these lemmas are applied.

The next lemma is a variation of Lemma 2.1 (and Lemma 2.2 as well) in which
we prove the existence of a specific nonseparating induced path. However, here it is
not possible to specify the ends of the desired path. Moreover, in the hypotheses of
Lemma 2.3 there are some technical conditions which arise when we try to produce an
internal chain. Note that conditions (iii), (iv), and (v) of Lemma 2.3 are automatically
satisfied if G is (4, S∪{b, b′})-connected. Actually, this is the case in all applications of
Lemma 2.3 with the exception of the proof of Lemma 3.15, where the more complicated
conditions are required.

Lemma 2.3. Let G be a graph, let S ⊂ V (G), and let {b, b′} ⊆ V (G)−S. Suppose
(i) G− S is 2-connected,
(ii) every element of S has a neighbor in V (G) − (S ∪ {b, b′}),
(iii) G is (3, S ∪ {b, b′})-connected,
(iv) if |S| = 2, then G is (4, S ∪ {b, b′})-connected, and
(v) if |S| ≥ 3, then there exists some component of G− (S ∪ {b, b′}) which has at

least two neighbors in S.
Then exactly one of the following holds:

(1) there exist a, a′ ∈ S and an induced a-a′ path P ′ in G such that V (P ′) ∩
{b, b′} = ∅, V (P ′) ∩ S = {a, a′}, and G− (V (P ′) ∪ S) is connected;

(2) |S| = 2, and the elements of S can be labeled as a, a′ such that (G, a, b, a′, b′)
is planar.

Moreover, one can in O(|V (G)| + |E(G)|) time find a path as in (1) or certify that
(2) holds.

Proof. First, suppose that |S| = 2. Let a, a′ denote the vertices in S. By (iv) G
is (4, {a, a′, b, b′})-connected. Thus, by Lemma 2.2 exactly one of the following holds:

(a) there exists a nonseparating induced a-a′ path P ′ such that V (P ′)∩{b, b′} = ∅;
or

(b) (G, a, b, a′, b′) is planar.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a path as in (a) or certify that (b)
holds. If (a) holds, then P ′ is the required path in (1). If (b) holds, then (2) holds.

Thus, we may assume that |S| ≥ 3. First, we prove the following.
Claim. There exist a, a∗ ∈ S and an a-a∗ path Q in G− (S − {a, a∗}) such that

b and b′ are contained in a component of G − V (Q). Moreover, such a path can be
found in O(|V (G)| + |E(G)|) time.

Proof of Claim. We consider two cases. See Figure 2 for an illustration of the
outcomes of Lemma 2.3.
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Fig. 2. Outcomes in Lemma 2.3.

Case 1. G− (S ∪ {b, b′}) is not connected.
In this case, there exist edge-disjoint subgraphs G1, G2 of G− S such that G1 ∪

G2 = G− S, V (G1) ∩ V (G2) = {b, b′}, and |V (G1)| ≥ 3 ≤ |V (G2)|. Note that such a
partition can be found in O(|V (G)| + |E(G)|) time. Since G − S is 2-connected (by
(i)), both G1 and G2 are connected.

By (v) there exists some component K of G− (S ∪{b, b′}) which has at least two
neighbors in S. Note that such a component can be found in O(|V (G)|+|E(G)|) time.
We may assume that V (K) ⊆ V (G1). Let a, a∗ ∈ NG(K) ∩ S, and let Q be an a-a∗

path in G[V (K) ∪ {a, a∗}]. Since G2 is connected, b, b′ are contained in a component
of G− V (Q). Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Case 2. G− (S ∪ {b, b′}) is connected.
Since G − S is 2-connected by (i), one can find in O(|V (G)| + |E(G)|) time two

internally disjoint b-b′ paths P1, P2 in G − S. Let a1, a2, a3 be distinct vertices in
S. For i = 1, 2, 3, let vi ∈ NG(ai) ⊆ V (G) − (S ∪ {b, b′}) (they exist by (ii)). Since
G − (S ∪ {b, b′}) is connected by assumption, for each i = 1, 2, 3, there exists a path
Qi from vi to some vertex ui in (V (P1) ∪ V (P2)) − {b, b′} internally disjoint from
V (P1)∪V (P2). Moreover, such paths can be found in O(|V (G)|+ |E(G)|) time. Note
that at least two (not necessarily distinct) vertices in u1, u2, u3 lie on the same path
P1−{b, b′} or P2−{b, b′}. By symmetry, we may assume that u1, u2 ∈ V (P1)−{b, b′}.
Then there exist disjoint paths in G−(S−{a1, a2}) from a1 to a2 (the path contained
in Q1 ∪ Q2 ∪ (P1 − {b, b′})) and from b to b′ (the path P2), respectively. Thus, the
result follows by taking a = a1 and a∗ = a2. Moreover, it is not hard to see that such
paths can be found in O(|V (G)| + |E(G)|) time.

Now given a, a∗ and Q, we will describe how to find a′ ∈ S and an induced a-a′

path P ′ such that V (P ′) ∩ {b, b′} = ∅, V (P ′) ∩ S = {a, a′}, and G − (V (P ′) ∪ S)
is connected. Let G′ be the graph obtained from G by identifying the vertices in
S − {a} to a single vertex a′′ and removing the resulting multiple edges. Let S′ :=
{a, a′′, b, b′}.

We claim that G′ is (3, S′)-connected. Suppose for a contradiction that there
exists T ⊆ V (G′) such that |T | ≤ 2 and G′−T has a component K with V (K)∩S′ = ∅.
Clearly a′′ ∈ T because G is (3, S ∪ {b, b′})-connected (by (iii)); then either a ∈ T or
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 853

T −{a′′} is a vertex cut of G−S, which is a contradiction since G−S is 2-connected
(by (i)). Thus, G′ is (3, S′)-connected.

Note that the a-a∗ path Q in G corresponds to an a-a′′ path P in G′, and S′ −
{a, a′′} = {b, b′} is contained in a component U of G′−V (P ). Thus, the hypotheses of
Lemma 2.1 are satisfied with G′, S′, P, a, a′′, U as G,S, P, a, a′, U , respectively. Hence,
there exists a nonseparating induced a-a′′ path P ′′ in G′ such that V (P ′′)∩V (U) = ∅.
Moreover, such a path P ′′ can be found in O(|V (G′)| + |E(G′)|) time (hence, in
O(|V (G)|+ |E(G)|) time). The path P ′′ corresponds to an induced a-a′ path P ′ in G
for some a′ ∈ S−{a} such that V (P ′)∩{b, b′} = ∅ and V (P ′)∩S = {a, a′}. Since P ′′

is nonseparating in G′, G− (V (P ′) ∪ S) is connected. Therefore, a, a′ and P ′ satisfy
(1), and they can be found in O(|V (G)| + |E(G)|) time.

The following lemma is a variation of Lemma 2.3 (by letting b = b′), and its proof
is essentially the same. For the sake of completeness, we include it here.

Lemma 2.4. Let G be a graph, let S ⊆ V (G), and let b ∈ V (G) − S. Suppose
(i) G− S is 2-connected,
(ii) every element of S has a neighbor in V (G) − (S ∪ {b}), and
(iii) G is (3, S ∪ {b})-connected.

Then there exist a, a′ ∈ S and an induced a-a′ path P ′ in G such that V (P ′)∩{b} = ∅,
V (P ′)∩S = {a, a′}, and G− (V (P ′)∪S) is connected. Moreover, such a path can be
found in O(|V (G)| + |E(G)|) time.

Proof. Since G is (3, S ∪ {b})-connected (by (iii)), |S| ≥ 2, so let a, a∗ ∈ S. Since
G−S is 2-connected (by (i)), G−(S∪{b}) is connected. Since a and a∗ have a neighbor
in V (G)− (S ∪{b}) (by (ii)), there exists an a-a∗ path Q in G− ((S−{a, a∗})∪{b}).
Clearly, such a path can be found in O(|V (G)| + |E(G)|) time.

Let G′ be the graph obtained from G by identifying the vertices in S − {a} to a
single vertex a′′ and removing the resulting multiple edges. Let S′ := {a, a′′, b}.

We claim that G′ is (3, S′)-connected. Suppose for a contradiction that there
exists T ⊆ V (G′) such that |T | ≤ 2 and G′−T has a component K with V (K)∩S′ = ∅.
Clearly, a′′ ∈ T because G is (3, S∪{b})-connected (by (iii)). But then either a ∈ T or
T −{a′′} is a vertex cut of G−S, which is a contradiction since G−S is 2-connected
(by (i)). Thus, G′ is (3, S′)-connected.

Note that the a-a∗ path Q in G corresponds to an a-a′′ path P in G′, and S′ −
{a, a′′} = {b} is contained in a component U of G′ − V (P ). Thus, by Lemma 2.1
(with G′, S′, P, a, a′′, U as G,S, P, a, a′, U , respectively), there exists a nonseparating
induced a-a′′ path P ′′ in G′ such that V (P ′′) ∩ V (U) = ∅. Moreover, such a path P ′′

can be found in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).
The path P ′′ corresponds to an induced a-a′ path P ′ in G for some a′ ∈ S − {a}
such that V (P ′) ∩ {b} = ∅ and V (P ′) ∩ S = {a, a′}. Since P ′′ is nonseparating in G′,
G− (V (P ′)∪ S) is connected. So a, a′ and P ′ are as required, and they can be found
in O(|V (G)| + |E(G)|) time.

Some results and algorithms which we use here require that we find an embedding
of a planar graph (G, a, b, c, d) in a closed disk such that a, b, c, d occur on the boundary
of the disk in that cyclic order. This can be done in linear time using an algorithm
of Hopcroft and Tarjan [4] (or a more recent algorithm by Hsu and Shih [5]). For
convenience, we state this result as our next lemma.

Lemma 2.5. Let (G, a, b, c, d) be a planar graph. Then one can find in O(|V (G)|+
|E(G)|) time an embedding of G in a closed disk such that a, b, c, d occur on the
boundary of the disk in that cyclic order.

D
ow

nl
oa

de
d 

07
/2

9/
14

 to
 1

43
.1

06
.1

90
.1

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p
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Let (G, a, b, a′, b′) be a planar graph. Then any a-a′ path in G− {b, b′} separates
b from b′. The next lemma shows that one can find efficiently an a-a′ path P ′ in G−
{b, b′} such that G−V (P ′) has exactly two components. This will be used in section 3.

Lemma 2.6. Let (G, a, b, a′, b′) be a planar graph with |V (G)| ≥ 5 and suppose
G is (4, {a, a′, b, b′})-connected. Then there exists an induced a-a′ path P ′ in G such
that G−V (P ′) has exactly two components K and K ′ with b ∈ V (K) and b′ ∈ V (K ′).
Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.

Proof. Take an embedding of G in a closed disk such that a, b, a′, b′ occur on the
boundary of the disk in the cyclic order listed. By Lemma 2.5, this can be done in
O(|V (G)| + |E(G)|) time. Let G′ := (G− b′) + {ab, a′b}.

We claim that G′ is 2-connected. Suppose for a contradiction that G′ is not
2-connected. Let x be a cut vertex of G′. Since |V (G)| ≥ 5 and G is (4, {a, a′, b, b′})-
connected, G − {b, b′} contains an a-a′ path, and hence, {a, a′, b} is contained in a
cycle in G′. Therefore, {a, a′, b} is contained in an x-bridge of G′, and G′ has another
x-bridge B such that (V (B) − {x}) ∩ {a, a′, b} = ∅. Hence, B − x is a component of
G− T , where T := {x, b′} and (V (B)− {x})∩ {a, a′, b, b′} = ∅, which contradicts the
assumption that G is (4, {a, a′, b, b′})-connected.

Thus, we can assume that ab, a′b are in the cycle bounding the infinite face of G′.
Let P ′ be the a-a′ subpath of this cycle which avoids b. Note that NG(b′) ⊆ V (P ′)
and P ′ can be computed in O(|V (G)| + |E(G)|) time.

We claim that G′ − V (P ′) is connected. Suppose for a contradiction that G′ −
V (P ′) is not connected. Let K be the set of components of G′ − V (P ′) which do
not contain b. For any K ∈ K, let uK , u′

K ∈ V (P ′) such that NG′(K) ∩ V (P ′) ⊆
V (P ′[uK , u′

K ]) and P ′[uK , u′
K ] is minimal with respect to this property. If |K| ≥ 2,

choose K ∈ K such that for any K ′ 
= K, if E(P [uK , u′
K ]) ∩ E(P [uK′ , u′

K′ ]) 
= ∅,
then P [uK , u′

K ] ⊆ P [uK′ , u′
K′ ]; such a component must exist because of planarity.

If |K| = 1, let K = {K}. In either case, NG(P ′(uK , u′
K)) ⊆ V (K) ∪ {uK , u′

K , b′}.
Thus, K ∪ P ′(uK , u′

K) is contained in a component of G − {uK , u′
K , b′} that does

not contain any vertex in {a, a′, b, b′}, which contradicts the assumption that G is
(4, {a, a′, b, b′})-connected.

So G′ − V (P ′) = G− (V (P ′) ∪ {b′}) is connected. Hence, G− V (P ′) has exactly
two components K and K ′ with b ∈ V (K) and b′ ∈ V (K ′).

We now show that P ′ is an induced path in G. Suppose on the contrary that P ′

is not induced. Let e = xy ∈ E(G)−E(P ′) with x, y ∈ V (P ′). Then V (P ′(x, y)) 
= ∅.
Moreover, by planarity NG(P ′(x, y)) ⊆ {x, y, b′}. Then P ′(x, y) is contained in a
component of G − {x, y, b′} that does not contain any vertex in {a, a′, b, b′}, which
contradicts again the assumption that G is (4, {a, a′, b, b′})-connected.

Thus, P ′ is a path as required. Moreover, it is easy to see that such a path can
be found in O(|V (G)| + |E(G)|) time.

We conclude this section with another lemma which concerns nonseparating in-
duced paths in planar graphs.

Lemma 2.7. Let (G, a, a′, b, b′) be a planar graph with |V (G)| ≥ 5 and suppose G
is (4, {a, a′, b, b′})-connected and G 
∼= K1,4. Then there exists a nonseparating induced
a-a′ path P ′ in G such that V (P ′) ∩ {b, b′} = ∅. Moreover, such a path can be found
in O(|V (G)| + |E(G)|) time.

Proof. For convenience, let S := {a, a′, b, b′}. Take an embedding of G in a closed
disk such that a, a′, b, b′ occur on the boundary of the disk in the cyclic order listed.
By Lemma 2.5, this can be done in O(|V (G)|+ |E(G)|) time. Let G′ := G+{ab′, a′b}.
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 855

We claim that G′ is 2-connected. Suppose for a contradiction that G′ is not 2-
connected. Let x be a cut vertex of G′. Since |V (G)| ≥ 5 and G (and hence, G′)
is (4, S)-connected, it follows that any component of G′ − x either contains vertices
only in S or contains at least one vertex in V (G) − S and at least three vertices in
S. Since a′b, ab′ ∈ E(G′), G′ − x cannot have both kinds of components. Therefore,
every component of G′ − x contains vertices only in S. Moreover, since |V (G)| ≥ 5,
x 
∈ S. But then, it is easy to see that (G, a, a′, b, b′) must be isomorphic to K1,4

with x as the vertex of degree four, which contradicts the hypothesis. Hence, G′ is
2-connected.

Thus, we can assume that ab′, a′b are in the cycle bounding the infinite face of
G′. Let P ′ be the a-a′ subpath of this cycle which avoids b and b′. Note that P ′ is
an a-a′ path in G and such a path can be found in O(|V (G)| + |E(G)|) time.

We claim that P ′ is nonseparating in G. Suppose for a contradiction that G′ −
V (P ′) is not connected. Note that b and b′ are contained in a component of G−V (P ′).
Let K be the set of components of G′ − V (P ′) which contain neither b nor b′. For
any K ∈ K, let uK , u′

K ∈ V (P ′) such that NG′(K) ∩ V (P ′) ⊆ V (P ′[uK , u′
K ]) and

P ′[uK , u′
K ] is minimal with respect to this property. If |K| ≥ 2, choose K ∈ K such

that for any K ′ 
= K, if E(P [uK , u′
K ]) ∩ E(P [uK′ , u′

K′ ]) 
= ∅, then P [uK , u′
K ] ⊆

P [uK′ , u′
K′ ]; such a component must exist because of planarity. If |K| = 1, let K =

{K}. In either case, NG(P ′(uK , u′
K)) ⊆ V (K) ∪ {uK , u′

K}. Thus, K ∪ P ′(uK , u′
K)

is contained in a component of G − {uK , u′
K} that does not contain any vertex in

S, which contradicts the assumption that G is (4, S)-connected. Thus, G− V (P ′) is
connected.

Next we show that P ′ is an induced path in G. Suppose by contradiction that
P ′ is not induced. Let e = xy ∈ E(G) − E(P ′) such that x, y ∈ V (P ′). Then
V (P ′(x, y)) 
= ∅. Moreover, by planarity NG(P ′(x, y)) ⊆ {x, y}. Then P ′(x, y) is
contained in a component of G− {x, y} that does not contain any vertex in S, which
again contradicts the assumption that G is (4, S)-connected.

Thus, P ′ is a nonseparating induced a-a′ path in G such that V (P ′)∩ {b, b′} = ∅
as required.

3. Internal chains. In this section, we prove the following theorem, which will
be used to construct internal chains in a nonseparating chain decomposition. See
Figure 3 for an illustration of the statement of the result. Recall that, for a graph
K and u, v ∈ V (K), K − uv denotes the graph with vertex set V (K) and edge set
E(K) − {uv} (note that uv need not be an edge of K).

Definition 3.1. Let G be a 4-connected graph, let F be a subgraph of G, and
let r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected. For any distinct
a, a′ ∈ V (F ), an a-a′ path in G − aa′ is said to be a feasible F -path if the following
hold:

(i) V (P ) ∩ V (F ) = {a, a′} and P is an induced path in G− aa′;
(ii) P (a, a′) is a non-separating path in GF ;
(iii) r is contained in a nontrivial block BP of GF − V (P (a, a′)); and
(iv) if r ∈ {a, a′}, then r is not a cut vertex of GF − V (P (a, a′)).
Remark 1. Condition (iv) in Definition 3.1 is necessary for a technical reason, and

the reader may want to assume in a first reading that r 
∈ {a, a′} to become familiar
with the proof of the next result.

Theorem 3.2. Let G be a 4-connected graph, let F be a subgraph of G, and let
r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected. Suppose that G has
a feasible a-a′ F -path P for some a, a′ ∈ V (F ). Then there exists a good F -chain
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856 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Fig. 3. Illustration for Theorem 3.2 and Notation and Definition 3.3: one with r �∈ {a, a′} and
the other with r ∈ {a, a′}.

H in G such that GF − I(H) is 2-connected, G[V (F ) ∪ I(H)] is 2-connected, and
BP ⊆ GF − I(H). Moreover, such a chain can be found in O(|V (G)||E(G)|) time.

Throughout the rest of this section, we fix the following notation.
Notation and definition 3.3. Let G be a 4-connected graph, let F be a sub-

graph of G, and let r ∈ V (F ) such that GF := G − (V (F ) − {r}) is 2-connected.
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 857

Suppose G has a feasible a-a′ F -path P and r is contained in a nontrivial block BP

of GF − V (P (a, a′)).
Let PP be the set of feasible F -paths P ′ (with ends, say u, u′) in G such that

BP ⊆ GF − V (P ′(u, u′)). For each P ′ ∈ PP with ends, say u, u′, let BP ′ denote
the block of GF − V (P ′(u, u′)) which contains BP . We say that P ′ ∈ PP is a BP -
augmenting path if |V (BP )| < |V (BP ′)|.

We will describe an algorithm for finding a good F -chain as required in Theo-
rem 3.2. The idea of the algorithm is roughly the following. At the beginning of
each iteration we have vertices a, a′ ∈ V (F ) and a feasible a-a′ F -path P in G. The
algorithm iteratively tries to find a BP -augmenting path P ′ with ends u, u′, and start
a new iteration with u, u′, P ′ as a, a′, P , respectively. Note that r, u, u′, P ′, F and
G (as r, a, a′, P, F and G, respectively) satisfy the hypotheses of Theorem 3.2 with
BP enlarged to BP ′ . When the algorithm does not find such a path, it finds a good
F -chain as required in Theorem 3.2.

The next lemma says that (assuming G has a feasible a-a′ F -path P ) one can
find in O(|V (G)| + |E(G)|) time a feasible u-u′ F -path P ′ such that |V (P ′)| = 3 or
NG(P ′(u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}. The latter condition is equivalent to requiring
that NG(P ′(u, u′))∩V (F ) = {u, u′} when r ∈ {u, u′} or that NG(P ′(u, u′))∩V (F ) ⊆
{u, u′, r} when r 
∈ {u, u′} (see Figure 3).

Lemma 3.4. There exist u, u′ ∈ V (F ) and a feasible u-u′ F -path P ′ such that
(1) |V (P ′)| = 3 or NG(P (u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}, and
(2) BP ⊆ BP ′ .

Moreover, such a path can be found in O(|V (G)| + |E(G)|) time.
Proof. If either |V (P )| = 3 or NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪{r}, then the result

follows with P ′ := P .
Thus, assume that |V (P )| ≥ 4 and (NG(P (a, a′)) ∩ V (F )) − ({a, a′} ∪ {r}) 
= ∅.

By symmetry, we may assume that a 
= r. Let v ∈ V (P (a, a′)) such that v has a
neighbor in V (F ) − ({a, a′} ∪ {r}), and subject to this, P [a, v] is minimal. If v has
two neighbors in V (F ) − {r, a}, say u and u′, let P ′ := (u, v, u′). In this case, (1)
holds with |V (P ′)| = 3. If v has exactly one neighbor in V (F ) − {r, a}, say u, then
let P ′ := P [a, v] + {u, vu} and u′ := a. Note that in both cases r 
∈ {u, u′}. By the
choice of v, NG(P (u, u′)) ∩ V (F ) ⊆ {u, u′} ∪ {r}, and hence, (1) holds. Moreover,
since GF − V (P (a, a′)) ⊆ GF − V (P ′(u, u′)), we have BP ⊆ GF − V (P ′(u, u′)), and
hence, (2) holds.

Finally, we show that P ′ is a feasible u-u′ F -path. Since P is induced in G− aa′,
P ′ is induced in G−uu′. Clearly V (P ′)∩V (F ) = {u, u′}, so (i) of Definition 3.1 holds.
Since GF is 2-connected and P (a, a′) is an induced path in GF−aa′, if V (P (v, a′)) 
= ∅,
then NGF

(P (v, a′)) ∩ (V (GF ) − V (P (a, a′))) 
= ∅. Thus, since GF − V (P (a, a′)) is
connected, P ′(u, u′) is nonseparating in GF , so (ii) of Definition 3.1 holds. Also, r
is contained in a nontrivial block of GF − V (P ′(u, u′)) because r ∈ BP ⊆ GF −
V (P ′(u, u′)), so (iii) of Definition 3.1 holds. Since r 
∈ {u, u′}, we do not need to
verify (iv) of Definition 3.1.

Therefore, P ′ is a feasible F -path as required, and it is not hard to see that such
a path P ′ can be found in O(|V (G)| + |E(G)|) time.

Assumption 1. Using Lemma 3.4, we can preprocess a feasible F -path at the
beginning of each iteration (in O(|V (G)|+ |E(G)|) time). Henceforth, we may assume
that for the (current) feasible F -path P , |V (P )| = 3 or NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′}∪{r}. We may also assume that GF−V (P (a, a′)) is not 2-connected; otherwise,
H := P gives an F -chain as required in Theorem 3.2: H is an up F -chain (where
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858 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

each of its blocks is trivial), or H is an elementary F -chain. Moreover, GF − I(H) =
GF − V (P (a, a′)) is 2-connected.

Notation 3.5. Let XP := NGF
(GF − V (BP )). For each BP -bridge B of GF −

V (P (a, a′)), let rB denote the unique vertex in V (B) ∩ V (BP ). Note that rB ∈ XP .
Also, if r ∈ {a, a′}, then r ∈ XP .

Remark 2. Note that since GF is 2-connected, we have |XP | ≥ 2. Moreover, if B
is a BP -bridge of GF −V (P (a, a′)), then V (B)−{rB} has a neighbor in V (P (a, a′)).

The next lemma shows that if, for every BP -bridge B of GF−V (P (a, a′)), NG(B−
rB) ⊆ V (P ), then one can find efficiently a good F -chain (in fact, an up F -chain) H
as required in Theorem 3.2 by invoking Theorem 1.7.

Lemma 3.6. Suppose that for every BP -bridge B of GF − V (P (a, a′)), NG(B −
rB) ⊆ V (P ). Then there exists an a-a′ up F -chain H in G such that GF − I(H) is
2-connected, G[V (F ) ∪ I(H)] is 2-connected, and BP ⊆ GF − I(H). Moreover, such
a chain can be found in O(|V (G)||E(G)|) time.

Proof. Suppose first that r 
∈ {a, a′} (see Figure 3). Let G′ be the graph obtained
from GF by adding {a, a′} and the edges of G from {a, a′} to V (GF ) − {r}. Note
that P is a nonseparating induced a-a′ path in G′. Note also that BP is a nontrivial
block of G′ − V (P ). Let X ′

P = NG′(G′ − V (BP )).
We claim that G′−(V (BP )−X ′

P ) is (4, X ′
P ∪{a, a′})-connected. For convenience,

let K := G′ − (V (BP ) − X ′
P ). Since, for any BP -bridge B of G′ − V (P ) = GF −

V (P (a, a′)), V (B)−{rB} has a neighbor in V (P (a, a′)), it follows that K is connected
and K − (X ′

P ∪ {a, a′}) is a component of G − (X ′
P ∪ {a, a′}). Hence, because G is

4-connected, K is (4, X ′
P ∪ {a, a′})-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with G′, a, a′, P,BP , X
′
P as

G, a, b, P,BP , XP , respectively. Hence, there exists a planar a-a′ chain H in G′

such that G′ − V (H) = GF − I(H) is 2-connected and BP ⊆ G′ − V (H) = GF −
I(H). Moreover, such a chain can be found in O(|V (G′)||E(G′)|) time (and hence, in
O(|V (G)||E(G)|) time). Note also that H is an up F -chain in G. Hence, G[V (F ) ∪
I(H)] is 2-connected, so the result follows.

Now suppose that r ∈ {a, a′}, and without loss of generality, let r = a′ (see
Figure 3). Let b be the neighbor of r in P . Let G′ be the graph obtained from GF

by adding a and the edges of G from a to V (GF ) − {r}. Note that b ∈ V (G′) and
P [a, b] is a nonseparating induced path in G′. Note also that BP is a nontrivial block
of G′ − V (P [a, b]) = GF − V (P (a, r)). Let X ′

P = NG′(G′ − V (BP )). Since P is a
feasible a-r F -path, r is not a cut vertex of G′ − V (P [a, b]) = GF − V (P (a, r) (in
particular, there is no BP -bridge in G′ − V (P [a, b]) containing r).

We claim that G′− (V (BP )−X ′
P ) is (4, X ′

P ∪{a, b})-connected. For convenience,
let K := G′ − (V (BP ) − X ′

P ). Since, for any BP -bridge B of GF − V (P (a, r)),
V (B) − {rB} has at least two neighbors in V (P (a, r)) (because G is 4-connected),
it follows that V (B) − {rB} has at least one neighbor in V (P (a, b)). Hence, K is
connected and K − (X ′

P ∪ {a, b}) is a component of G − (X ′
P ∪ {a, b}). Since G is

4-connected, K is (4, X ′
P ∪ {a, b})-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with G′, a, b, P [a, b], BP , X
′
P as

G, a, b, P,BP , XP , respectively. Hence, there exists a planar a-b chain H ′ in G′ such
that G′ − V (H ′) is 2-connected and BP ⊆ G′ − V (H ′). Moreover, such a chain can
be found in O(|V (G′)||E(G′)|) time (and hence, O(|V (G)||E(G)|) time). Since b is
the only neighbor of r in V (P )−{a, r} and no BP -bridge in G′ − V (P [a, b]) contains
r, r 
∈ NG(V (H ′) − {a, b}). Thus, H := H ′ + rb is an up a-r F -chain in G (recall
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a a′F
r

P

BP

G

v

v′

H

Fig. 4. Graph H in the proof of Lemma 3.7.

a′ = r), so G[V (F ) ∪ I(H)] is 2-connected. Note also that GF − I(H) = G′ − V (H ′)
is 2-connected, and hence, the result follows.

Next, we show that if |XP | = 2, then one can find efficiently either a BP -
augmenting path or a good F -chain as required in Theorem 3.2.

Lemma 3.7. Suppose that |XP | = 2, and let v, v′ be the vertices in XP . Then
exactly one of the following holds:

(1) there exists a BP -augmenting path; or
(2) H := (GF − (V (BP ) − XP )) − vv′ is a down v-v′ F -chain in G such that

GF − I(H) is 2-connected and G[V (F ) ∪ I(H)] is 2-connected.
Moreover, one can in O(|V (G)| + |E(G)|) time either find a path as in (1) or certify
that (2) holds.

Proof. Let H := (GF − (V (BP ) − XP )) − vv′. Since GF is 2-connected and
XP = {v, v′}, H is a v-v′ chain in G and NG(H − {v, v′}) ⊆ V (F − r) ∪ {v, v′}. See
Figure 4 for an example. Let H := v0B1v1 . . . vk−1Bkvk, where v0 = v and vk = v′.
This decomposition of H into blocks can be computed in O(|V (G)|+ |E(G)|) time. If
every block of H is trivial, then H is a down F -chain, GF −I(H) = BP is 2-connected,
and G[V (F ) ∪ I(H)] is 2-connected, so (2) holds.

Thus, we may assume that H contains a nontrivial block. For each nontrivial block
Bi, let Si := V (F−r)∩NG(Bi−{vi−1, vi}), and let Gi be the graph obtained from Bi

by adding Si and the edges of G from Si to V (Bi)−{vi−1, vi}. Note that Gi−Si = Bi

is 2-connected and Bi − {vi−1, vi} is a union of components of G− (Si ∪ {vi−1, vi}).
Because G is 4-connected, Gi is (4, Si∪{vi−1, vi})-connected, and every component of
Bi − {vi−1, vi} has at least two neighbors in Si. Thus, the hypotheses of Lemma 2.3
are satisfied with Gi, Si, vi−1, vi as G,S, b, b′, respectively.

Hence, either (a) there exist ui, u
′
i ∈ Si and an induced ui-u

′
i path P ′

i in Gi

such that V (Pi) ∩ {vi−1, vi} = ∅, V (Pi) ∩ Si = {ui, u
′
i}, and Gi − (V (Pi) ∪ Si) is

connected, or (b) |Si| = 2 and the elements of Si can be labeled as ui, u
′
i such that

(Gi, vi−1, ui, vi, u
′
i) is planar. Moreover, one can in O(|V (Gi)| + |E(Gi)|) time find a

path as in (a) or certify that (b) holds. If (a) holds for some nontrivial block Bi, then
P ′
i is a BP -augmenting path for the following reasons: (i)–(iii) of Definition 3.1 hold,
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860 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

r 
∈ {u, u′} (so (iv) of Definition 3.1 holds), and there exists a v-v′ path contained
in H − V (P ′

i (ui, u
′
i)) (so BP is properly contained in BP ′

i
). If (b) holds for every

nontrivial block Bi, then H is clearly a down F -chain, G[V (F )∪ I(H)] is 2-connected
(because G is 4-connected, and so Gi −{vi−1, vi} is a ui-u

′
i chain), and GF − I(H) is

2-connected.
One can verify that either (1) or (2) holds in O(|V (G)|+ |E(G)|) time because if

(b) holds for a nontrivial block Bi, then |V (Gi)| + |E(Gi)| = O(|V (Bi)| + |E(Bi)|),
and if (a) holds for some Gi, then |V (Gi)| + |E(Gi)| = O(|V (G)| + |E(G)|). In the
latter case, we find a BP -augmenting path and we stop. Thus, this verification can
be carried out in O(|V (G)| + |E(G)|) time.

The following lemma shows that if |XP | ≥ 3 and |V (P )| = 3, then one can find
efficiently a BP -augmenting path.

Lemma 3.8. Suppose that |XP | ≥ 3 and |V (P )| = 3. Then exactly one of the
following holds:

(1) there exists a BP -augmenting path; or
(2) P is an elementary F -chain in G such that GF − I(P ) is 2-connected and

G[V (F ) ∪ I(P )] is 2-connected.
Moreover, one can in O(|V (G)| + |E(G)|) time either find a path as in (1) or certify
that (2) holds.

Proof. If GF −V (P (a, a′)) is 2-connected, then P is an elementary F -chain in G,
GF − I(P ) is 2-connected, and G[V (F ) ∪ I(P )] is 2-connected, so (2) holds. Note,
this can be checked in O(|V (G)| + |E(G)|) time.

So we may assume that GF − V (P (a, a′)) is not 2-connected. Let K be a BP -
bridge of GF − V (P (a, a′)), and let v denote the unique vertex in V (P (a, a′)). If K
is 2-connected, then let B := K and b := rK . Otherwise let B be an endblock of K
not containing rK , and let b denote the cut vertex of K contained in V (B). Since GF

is 2-connected, v ∈ NG(B − b). Note that B can be computed in O(|V (G)|+ |E(G)|)
time.

First, suppose that B is trivial, and let w be the unique vertex in V (B−b). Since
G is 4-connected, w has at least three neighbors in V (F − r)∪ {v}, and hence, it has
two neighbors u, u′ in V (F − r). Let P ′ := (u,w, u′). We claim that P ′ is a feasible
F -path. Clearly, P ′ is an induced path in G−uu′ and V (P ′)∩V (F ) = {u, u′}. Since
GF is 2-connected, GF −V (P ′(u, u′)) = GF −w is connected. Thus, P ′(u, u′) is non-
separating in GF . Also r ∈ V (BP ) and BP ⊆ GF − V (P ′(u, u′)). Therefore, since
r 
∈ {u, u′}, P ′ is a feasible F -path. Since |XP | ≥ 3, there exists a path (containing v)
with ends in XP − {rB} which is internally disjoint from V (BP ) ∪ V (B). Therefore,
BP is properly contained in BP ′ , and hence, P ′ is a BP -augmenting path.

Thus, we may assume that B is nontrivial, so B is 2-connected. Let S := NG(B−
b) − {b, v}, and let G′ be obtained from B by adding S and the edges of G from S
to V (B) − {b}. Note that S ⊆ V (F − r) and G′ − S = B is 2-connected. Since G is
4-connected, G[V (G′)∪{v}] is (4, S ∪{b, v})-connected, and hence, G′ is (3, S ∪{b})-
connected. By Lemma 2.4 (with G′, b, S as G, b, S, respectively) there exist u, u′ ∈ S
and an induced u-u′ path P ′ in G′ such that V (P ′)∩{b} = ∅, V (P ′)∩S = {u, u′}, and
G′ − (V (P ′) ∪ S) is connected. Moreover, such a path can be found in O(|V (G′)| +
|E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).

We claim that P ′ is a feasible F -path. Clearly, P ′ is an induced path in G− uu′

and V (P ′)∩ V (F ) = {u, u′}. Since G′ − (V (P ′)∪S) = B − V (P ′(u, u′)) is connected
and b 
∈ V (P ′), we have that GF − V (P ′(u, u′)) is connected. Thus, P ′(u, u′) is
nonseparating in GF . Also r ∈ V (BP ), and BP ⊆ GF − V (P ′(u, u′)). Since r 
∈ S,
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 861

a = x1

a = x1 a′F
r

P

BP

G

r1

r1

r2 r2

r3

r4 r4

y1

y1

x2x2

y2y2

x4 = y4x4 = y4

H1

H2

H4

Fig. 5. Example for Notation 3.9 with XP = {r1, r2, r3, r4}. Note that the edges r1a, r2a′ are
not contained in any Hi.

r 
∈ {u, u′}, so P ′ is a feasible F -path. Furthermore, since |XP | ≥ 3, there exists a
path (containing v) with ends in XP −{rB} which is internally disjoint from V (BP )∪
V (B). Therefore, BP is properly contained in BP ′ , and hence, P ′ is a BP -augmenting
path.

By Lemmas 3.6, 3.7, and 3.8, we need to deal only with the case where |XP | ≥ 3,
|V (P )| ≥ 4, and for some BP -bridge B of GF − V (P (a, a′)), B − rB has a neighbor
in V (F − r) − {a, a′}. Our aim is to prove that we can find either a BP -augmenting
path or a triangle F -chain H such that GF −I(H) is 2-connected. In order to do this,
we need to introduce some notation and prove auxiliary results.

Notation 3.9. For any x, y ∈ V (P ), we denote x ≤ y if x ∈ V (P [a, y]). If x ≤ y
and x 
= y, then we write x < y. In this case, we say that x is lower than y, or y is
higher than x.

Let XP := {r1, . . . , rp}. For each i, 1 ≤ i ≤ p, if ri is a cut vertex of GF −
V (P (a, a′)), then let Vi :=

⋃
V (B), where the union is taken over all the BP -bridges

B of GF − V (P (a, a′)) with rB = ri; if ri is not a cut vertex of GF − V (P (a, a′)),
then let Vi := {ri}.

For each i such that Vi 
= {ri}, let xi, yi ∈ V (P ) with xi ≤ yi such that G has
an edge from xi (yi, respectively) to Vi which is not an edge from {a, a′} to ri, and
subject to this, P [xi, yi] is maximal. Note that we may have xi = a or yi = a′, but
r 
∈ {xi, yi} because BP is a block of GF − V (P (a, a′)).

Let Pi := P [xi, yi], and let Hi be the graph obtained from G[Vi∪V (Pi)] by removing
all edges from {a, a′} to ri. Let H := {Hi : 1 ≤ i ≤ p, Vi 
= {ri}}. We say that Hi ∈ H
is adjacent to F if NG(Vi−{ri})∩(V (F−r)−{a, a′}) 
= ∅. See Figure 5 for an example.

Lemma 3.10. Every Hi ∈ H is an ri-xi (and also an ri-yi) chain. Moreover, no
vertex of Pi is a cut vertex of Hi, and Pi is contained in an endblock of Hi.

Proof. Since G[Vi] = Hi−V (Pi) is connected and because Hi has edges from both
xi and yi to Vi, no vertex of Pi is a cut vertex of Hi, and hence, Pi is contained in a
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862 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

block of Hi. We claim that if B is an endblock of Hi, then ri ∈ V (B) or V (Pi) ⊆ V (B)
(and hence, we have Lemma 3.10). Suppose for a contradiction that B is an endblock
of Hi and B contains neither ri nor any vertex in V (Pi). Let v be the cut vertex of Hi

contained in V (B). Then B − v is a component of GF − v, which is a contradiction,
since GF is 2-connected. Similarly, we can show that Hi is an ri-yi chain.

Notation 3.11. For each Hi ∈ H with xi 
= yi, let Ai denote the block of Hi

containing Pi. If Ai 
= Hi, then let bi denote the cut vertex of Hi contained in Ai. If
Ai = Hi, then let bi := ri.

The next lemma illustrates two situations when we can find a BP -augmenting
path.

Lemma 3.12. Assume that |XP | ≥ 3, and let Hi ∈ H. Suppose that one of the
following holds:

(i) xi = yi; or
(ii) xi 
= yi, and Hi contains at least three blocks or Hi contains a nontrivial block

other than Ai.
Then one can find a BP -augmenting path in O(|V (G)| + |E(G)|) time.

Proof. If xi = yi, then let H := Hi. If xi 
= yi, then let H := Hi− (V (Ai)−{bi}).
Note that H is an ri-xi chain if xi = yi, and H is an ri-bi chain if xi 
= yi. Moreover,
since (i) or (ii) holds, H is not induced by an edge.

Let H := v0B1v1 . . . vk−1Bkvk with v0 = ri, vk = xi if xi = yi, and vk = bi if
xi 
= yi. This decomposition of Hi into blocks can be computed in O(|V (G)|+ |E(G)|)
time.

Case 1. There exists j ∈ {1, . . . , k} such that Bj is nontrivial.
Let S := NG(Bj − {vj−1, vj}) − {vj−1, vj}. Note that S ⊆ V (F − r) − {a, a′}

because BP is a block of GF −V (P (a, a′)). Let G′ be the graph obtained from Bj by
adding S and the edges of G from S to V (Bj) − {vj−1, vj}. Note that G′ − S = Bj

is 2-connected and G′ is (4, S ∪ {vj−1, vj})-connected (because G is 4-connected).
Therefore, the hypotheses of Lemma 2.3 are satisfied with G′, S, vj−1, vj as G,S, b, b′,
respectively. Then by Lemma 2.3 exactly one of the following occurs:

(1) there exist u, u′ ∈ S and an induced u-u′ path P ′ in G′ such that V (P ′) ∩
{vj−1, vj} = ∅, V (P ′) ∩ S = {u, u′}, and G′ − (V (P ′) ∪ S) is connected; or

(2) |S| = 2, and the elements of S can be labeled as u, u′ such that (G′, vj−1, u, vj , u
′)

is planar.
Moreover, one can in O(V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds.

Note that since |XP | ≥ 3, there exists a path W with ends in XP −{ri} which is
internally disjoint from V (BP ) ∪ Vi.

Suppose (1) holds. We claim that P ′ is a feasible F -path. Clearly, V (P ′)∩V (F ) =
{u, u′}, and P ′ is an induced path in G−uu′. Since Bj−V (P ′(u, u′)) = G′−(V (P ′)∪S)
is connected and vj−1, vj 
∈ V (P ′), we have that GF−V (P ′(u, u′)) is connected. Thus,
P ′(u, u′) is nonseparating in GF . Also r ∈ V (BP ), and BP ⊆ GF − V (P ′(u, u′)).
Therefore, since r 
∈ {u, u′}, P ′ is a feasible F -path. Moreover, since W is also a path
in GF − V (P ′(u, u′)), BP ∪W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting path.

Now assume (2) holds. By Lemma 2.6 one can find in O(|V (G′)|+ |E(G′)|) time
(and hence, in O(|V (G)| + |E(G)|) time) an induced u-u′ path Q in G′ such that
G′−V (Q) has exactly two components K,K ′ with vj−1 ∈ V (K) and vj ∈ V (K ′). We
claim that Q is a feasible F -path. Clearly, V (Q)∩V (F ) = {u, u′}, and Q is an induced
path in G − uu′. Note that B − Q(u, u′) = G′ − V (Q) has exactly two components
(namely K and K ′), there exists a path in Hi from vj−1 ∈ V (K) to ri ∈ XP disjoint
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 863

from Q, and there exists a path from vj ∈ V (K ′) to XP in GF −V (Q(u, u′)) (because
|XP | ≥ 2). It follows that GF − V (Q(u, u′)) is connected. Also r ∈ V (BP ), and
BP ⊆ GF − V (Q(u, u′)). Since r 
∈ {u, u′}, Q is a feasible F -path. Moreover, W is a
path in GF−V (Q(u, u′)), and hence, BP ∪W ⊆ BQ. Therefore, Q is a BP -augmenting
path.

Case 2. All blocks of H are trivial.
By (ii), Hi contains at least two blocks other than Ai, and hence, k ≥ 3. So

B1 and B2 are trivial blocks of H. Since G is 4-connected, v1 has at least two
neighbors in V (F − r), say u, u′. Let P ′ := (u, v1, u

′). We claim that P ′ is a feasible
F -path. Clearly, V (P ′) ∩ V (F ) = {u, u′}, and P ′ is an induced path in G − uu′.
Since GF is 2-connected, GF − V (P ′(u, u′)) = GF − v1 is connected. Also since
BP ⊆ GF − V (P ′(u, u′)) and r 
∈ {u, u′}, it follows that P ′ is a feasible F -path.
Moreover, one can see that BP ∪ W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting
path.

Now we study the case where, for every Hi ∈ H, xi 
= yi, Hi has at most two
blocks, and if Hi has exactly two blocks, then Ai is the only nontrivial block of Hi.
We give three lemmas which deal with this case. The arguments used for many cases
in the proofs are similar, but unfortunately it seems necessary to cover all of those
cases. We frequently produce a BP -augmenting path P ′ in the following way. We
first exhibit a nontrivial path W in GF with ends in BP such that W is internally
disjoint from BP . We then produce a feasible F -path P ′ disjoint from W such that
V (BP )∪V (W ) ⊆ V (BP ′), so P ′ is BP -augmenting. For the sake of brevity, when we
state a result occurs “because of the path W ,” we are implicitly using this technique.

Recall that by Assumption 1 we may assume that if |V (P )| ≥ 4, then NG(P (a, a′))∩
V (F ) ⊆ {a, a′} ∪ {r}.

Lemma 3.13. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and, for every Hj ∈ H,
xj 
= yj. Suppose that, for every Hj ∈ H, V (Aj) − {bj , xj , yj} has no neighbor in
V (F − r)−{a, a′}. Assume that for some Hi ∈ H, Hi is adjacent to F . Then exactly
one of the following holds:

(1) there exists a BP -augmenting path; or
(2) there exists a triangle F -chain H in G such that I(H) = V (GF ) − V (BP ),

GF − I(H) is 2-connected, and G[V (F ) ∪ I(H)] is 2-connected.
Moreover, one can in O(|V (G)|+|E(G)|) time find either a path as in (1) or a triangle
F -chain as in (2).

Proof. Let us first show that (1) and (2) are mutually exclusive. Suppose that (2)
holds. It is not hard to see that there exists no BP -augmenting path because every
feasible F -path must use exactly two vertices of V (GF )−V (BP ). Thus, it remains to
show that either (1) or (2) holds and that one can determine in O(|V (G)| + |E(G)|)
time which of them occurs.

We consider two cases.
Case 1. There exist distinct m,n ∈ {1, . . . , p} − {i} such that both Vm and Vn

have a neighbor in V (P (xi, a
′)) or both Vm and Vn have a neighbor in V (P (a, yi)).

Without loss of generality, assume that both Vm and Vn have a neighbor in
V (P (xi, a

′)).
We claim that Ai contains a nonseparating induced bi-xi path Q such that V (Q)∩

(V (Pi)− {xi}) = ∅. This is obvious if V (Ai)− V (Pi) = {bi} because then bi must be
adjacent to xi, and the result follows by taking Q as the path induced by the edge bixi.
Thus, we may assume that V (Ai) − V (Pi) 
= {bi}. Let Si denote the set of vertices
in V (P (xi, yi)) which have a neighbor in (

⋃p
j=1 Vj) − Vi. Since G is 4-connected, Ai
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864 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

is (4, Si ∪ {bi, xi, yi})-connected. Moreover, Ai − (V (Pi) − {xi}) is connected and
Si ∪{yi} ⊆ V (Pi)−{xi}, so there exists a bi-xi path Q′ in Ai such that V (Pi)−{xi}
(and hence, Si ∪ {yi}) is contained in a component U of Ai − V (Q′). Therefore,
the hypotheses of Lemma 2.1 are satisfied with Ai, Si ∪ {bi, xi, yi}, bi, xi, Q

′, U as
G,S, a, a′, P, U , respectively. By Lemma 2.1 one can find in O(|V (G)|+ |E(G)|) time
a nonseparating induced bi-xi path Q in Ai such that V (Q) ∩ V (U) = ∅. Since
V (Pi) − {xi} ⊆ V (U), we have V (Q) ∩ (V (Pi) − {xi}) = ∅, and thus, Q is a path as
required.

By hypothesis, xi 
= yi, so by Lemma 3.12, we can in O(|V (G)| + |E(G)|)
time either find a BP -augmenting path or certify that Hi has at most two blocks.
Hence, we may assume that Hi has at most two blocks. Since Hi is adjacent to F
and V (Ai) − {bi, xi, yi} has no neighbors in V (F − r) − {a, a′}, it follows that Hi

has exactly two blocks, and bi is adjacent to some vertex u ∈ V (F − r) − {a, a′}.
Let P ′ := (Q ∪ P [a, xi]) + {u, biu}. By assumption, both Vm and Vn have a
neighbor on P (xi, a

′). Since P ′ is disjoint from V (Pi) − {xi}, there exists an rm-
rn path W in GF − V (P ′(a, u)) which is internally disjoint from V (BP ) ∪ Vi ∪
{xi}.

Next we show that P ′ is a BP -augmenting path. Since NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′} ∪ {r} (by Assumption 1) and P is induced in G − aa′, we have that P ′ is an
induced u-a path in G − au. Also, since Ai − V (Q) is connected, P ′(a, u) is non-
separating in GF . Note also that if r is an end of P ′, then a = r, and r is not a
cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut vertex
of GF − V (P ′(a, u)). Thus, P ′ is a feasible F -path. Since BP ∪ W ⊆ BP ′ , P ′ is a
BP -augmenting path and (1) holds.

Case 2. For any distinct m,n ∈ {1, . . . , p} − {i}, Vm and Vn do not both have a
neighbor in V (P (xi, a

′)), nor do both Vm and Vn have a neighbor in V (P (a, yi)).
By hypothesis, xi 
= yi, so by Lemma 3.12, we can in O(|V (G)| + |E(G)|) time

either find a BP -augmenting path or certify that Hi has at most two blocks. Hence,
we may assume that Hi has at most two blocks. Since Hi is adjacent to F and
Ai − {bi, xi, yi} has no neighbor in V (F − r) − {a, a′}, it follows that Hi has exactly
two blocks, and bi has at least one neighbor in V (F − r) − {a, a′}. Moreover, since
we are in Case 2, we must have |XP | = 3. Without loss of generality, we may assume
that i = 3, V1 has a neighbor in V (P (a, x3]), and V2 has a neighbor in V (P [y3, a

′)).
Moreover, V1 has no neighbor in V (P (x3, a

′)), and V2 has no neighbor in V (P (a, y3)).
Suppose b3 has two neighbors in V (F −r)−{a, a′}, say u, u′. Let P ′ := (u, b3, u

′).
Clearly, GF − V (P ′(u, u′)) = GF − b3 is connected. Since r 
∈ {u, u′}, it is not hard
to see that P ′ is a feasible F -path. Moreover, there exists an r1-r2 path which is
internally disjoint from V (BP ) ∪ Vi. Hence, P ′ is a BP -augmenting path, and (1)
holds. Clearly, P ′ can be found in O(|V (G)| + |E(G)|) time.

Thus, we may assume that b3 has exactly one neighbor in V (F − r)−{a, a′}. We
consider two subcases.

Subcase 2.1. For some j ∈ {1, 2}, say j = 1, V1 
= {r1}.
Let H1 := w0B

′
1w1 . . . ws−1B

′
sws where w0 = r1, and B′

s = A1. Since x1 
= y1 (by
assumption), then from Lemma 3.12 either s = 1 or s = 2 and B′

1 is trivial.
We claim that V (A1) = {b1, x1, y1}. Suppose for a contradiction that V (A1) −

{b1, x1, y1} 
= ∅. Then A1 − {b1, x1, y1} is a component of G − {b1, x1, y1} for the
following reasons: V (A1) − {b1, x1, y1} has no neighbor in V (F − r) − {a, a′} (by
hypothesis), V (P (x1, y1)) has no neighbor in V3 ∪ V2 (by assumption in Case 2), and
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 865

P is an induced path in G−aa′. But then {b1, x1, y1} is a 3-cut in G which contradicts
the assumption that G is 4-connected. Thus, V (A1) = {b1, x1, y1}.

Therefore, {b1, x1, y1} induces a triangle in G. Since H1 ∈ H, V1 
= {r1}. This
implies that s = 2 and B′

1 is a trivial block of H1 (and hence, r1 is adjacent to b1).
Since b1 has degree at least four in G, b1 must have some neighbor in V (F−r). Hence,
H1 is adjacent to F , and V2 and V3 have neighbors in V (P (x1, a

′)), so we can proceed
as in Case 1 and find a BP -augmenting path in O(|V (G)| + |E(G)|) time.

Subcase 2.2. For every j ∈ {1, 2}, Vj = {rj}.
Thus, r1 has a neighbor in V (P (a, x3]), and hence, x3 
= a. Similarly, y3 
= a′.
We claim that V (A3) = {b3, x3, y3}. Suppose for a contradiction that V (A3) −

{b3, x3, y3} 
= ∅. Then A3 − {b3, x3, y3} is a component of G − {b3, x3, y3} for the
following reasons: V (A3) − {b3, x3, y3} has no neighbor in V (F − r) − {a, a′} (by
hypothesis), V (P (x3, y3)) has no neighbor in V1 ∪ V2 (by assumption in Case 2),
and P is an induced path in G − aa′. But then {b3, x3, y3} is a 3-cut in G, which
contradicts the assumption that G is 4-connected. Thus, V (A3) = {b3, x3, y3}, and
A3 is a triangle.

Since GF is 2-connected and P is an induced path in G − aa′, and because
NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, it follows that V (P ) = V (P3) ∪ {a, a′}, r1
is adjacent to x3, and r2 is adjacent to y3. Let u denote the only neighbor of b3 in
V (F−r)−{a, a′}. Note that a 
= r; otherwise r1 = r (because |XP | = 3), and x3 would
have degree three in G which is a contradiction because G is 4-connected. Similarly,
a′ 
= r. If r = r1, then (r1, x3, a) is a BP -augmenting path. If r = r2, then (r2, y3, a

′)
is a BP -augmenting path. If r = r3, then (r3, b3, u) is a BP -augmenting path. Thus,
we may assume that r 
∈ {r1, r2, r3}. Therefore, H := Ai + {u, a, a′, biu, xia, yia

′} is a
triangle F -chain in G with b3, x3, y3, u, a, a

′, r3, r1, r2 as v1, v2, v3, u1, u2, u3, w1, w2, w3,
respectively, in Definition 1.2. It is easy to see that GF − I(H) = BP is 2-connected
and G[V (F ) ∪ I(H)] is 2-connected. So (2) holds.

Lemma 3.14. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and for every Hj ∈ H, xj 
= yj.
Suppose that Hi ∈ H and V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′}.
Assume that V (P (xi, yi)) has no neighbor in (

⋃p
j=1 Vj)− Vi. Then a BP -augmenting

path can be found in O(|V (G)| + |E(G)|) time.
Proof. Since GF is 2-connected and V (P (xi, yi)) has no neighbor in (

⋃p
j=1 Vj)−Vi,

there exists m ∈ {1, . . . , p} − {i} such that Vm has a neighbor in V (P (a, xi]) or in
V (P [yi, a

′)).
By symmetry we may assume that Vm has a neighbor in V (P [yi, a

′)). Then
yi 
= a′.

First, we find an endblock of Ai −{xi, yi} in O(|V (G)|+ |E(G)|) time as follows.
If Ai −{xi, yi} is 2-connected, then let B := Ai −{xi, yi}, and let b := bi. Otherwise,
let B be an endblock of Ai − {xi, yi}, and let b denote the cut vertex of Ai − {xi, yi}
contained in B so that bi 
∈ V (B − b). Note that V (P (xi, yi)) has no neighbors
in (

⋃p
j=1 Vj) − Vi, and NG(B − b) ⊆ V (F − r) ∪ {xi, yi, b}. Since r 
∈ {xi, yi} (by

the definition of xi, yi in Notation 3.9), r 
∈ NG(B − b) − {b}. Moreover, since G
is 4-connected, |NG(B − b)| ≥ 4. Note that such an endblock B can be found in
O(|V (G)| + |E(G)|) time.

Next, we consider two cases.
Case 1. yi has a neighbor in V (Ai) − ({xi, yi} ∪ V (B − b)).
Then, since Vm has a neighbor in V (P [yi, a

′)), there exists an ri-rm path W in
GF − V (P (a, xi]) which is internally disjoint from V (BP ) and intersects P [yi, a

′).
Subcase 1.1. B is trivial.
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866 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Let v denote the unique vertex in V (B)−{b}. Then NG(v) ⊆ V (F−r)∪{xi, yi, b}.
Since G is 4-connected, v has at least three neighbors in V (F − r) ∪ {xi, yi}, and
hence, it has two neighbors in V (F − r)∪ {xi}. Let u, u′ be distinct neighbors of v in
V (F − r) ∪ {xi}, and assume that u 
= xi. By the definition of xi, yi in Notation 3.9,
one can see that {u, u′}∩{a′} = ∅ and u 
= a (because yi 
= a′ and xi 
= u). If u′ 
= xi,
then let P ′ := (u, v, u′); otherwise, let P ′ := P [a, xi] + {u, v, uv, vxi}. Clearly, P ′ is a
path with ends in V (F ) which is internally disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1), and P is
induced in G − aa′. Then since NG(v) ⊆ V (F − r) ∪ {xi, yi, b} and V (P [a, xi)) has
no neighbor in V (B) (by the definition of xi in Notation 3.9), it follows that P ′ is
induced in G−uu′′. Because of the path W , and since P (a, a′) is nonseparating in GF ,
GF − V (P ′(u, u′′)) is connected. So P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′},
then since r 
∈ {u, u′}, r = u′′ = a and r is not a cut vertex of GF − V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path. Clearly, P ′

can be found in O(|V (G)| + |E(G)|) time.
Subcase 1.2. B is nontrivial.
Let S := NG(B − b) − {b, yi}, and let G′ be obtained from B by adding S and

the edges of G from S to V (B) − {b}. Since r 
∈ NG(B − b) − {b}, r 
∈ S. Since G is
4-connected, |S| ≥ 2 and G′ is (3, S∪{b})-connected (if yi 
∈ NG(B−b), then actually
|S| ≥ 3 and G′ is (4, S∪{b})-connected). Moreover, G′−S = B is 2-connected. Thus,
the hypotheses of Lemma 2.4 are satisfied with G′, S, b as G,S, b, respectively. Then
there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩ {b} = ∅,
V (Q) ∩ S = {u, u′}, and G′ − (V (Q) ∪ S) is connected. Moreover, such a path Q can
be found in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time).

By the definition of xi, yi in Notation 3.9 and because yi 
= a′, {u, u′} ∩ {a′} = ∅.
By symmetry we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise, let
P ′ := P [a, xi]∪Q. Clearly, P ′ is a path with ends in V (F ) which is internally disjoint
from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1), and P is
induced in G − aa′. Then since Q is induced in G′ and P [a, xi) has no neighbor in
V (B) (by the definition of xi in Notation 3.9), it follows that P ′ is induced in G−uu′′.
Since B − V (Q(u, u′)) = G′ − (V (Q) ∪ S) is connected and because of the path W ,
P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then since r 
∈ S, r = u′′ = a, and r
is not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut
vertex of GF − V (P ′(u, u′′)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path. Clearly, P ′ can be found in O(|V (G)| + |E(G)|) time.
Case 2. yi has no neighbor in V (Ai) − ({xi, yi} ∪ V (B − b)) (and hence, yi ∈

NG(B − b)).
Subcase 2.1. B is trivial.
Let v denote the unique vertex in V (B)−{b}. Then NG(v) ⊆ V (F−r)∪{xi, yi, b},

and yi is adjacent to v. Since G is 4-connected, v has at least four neighbors in
V (F − r) ∪ {xi, yi, b}, and hence, it has at least two neighbors in V (F − r) ∪ {xi}.
Let u, u′ ∈ NG(v) − {b, yi}, and assume that u 
= xi. By the definition of xi, yi in
Notation 3.9, one can see that {u, u′}∩{a′} = ∅ (because yi 
= a′) and u 
= a (because
u 
= xi).D
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 867

Suppose that there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor
in V (P [yi, a

′)). Then there exists an rm-rn path W in GF − V (P (a, yi)) which is
internally disjoint from V (BP ) and intersects P [yi, a

′). If u′ 
= xi, then let P ′ :=
(u, v, u′); otherwise, let P ′ := P [a, xi] + {u, v, uv, vxi}. Then P ′ is a path with
ends in V (F ) which is internally disjoint from V (BP ) ∪ V (F ). Next we show that
P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′. By assumption,
NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (Assumption 1) and P is induced in G − aa′.
Then, since NG(v) ⊆ V (F−r)∪{xi, yi, b} and V (P [a, xi)) has no neighbor in V (B) (by
the definition of xi in Notation 3.9), it follows that P ′ is an induced path in G−uu′′.
Because of the path W and since P (a, a′) is nonseparating in GF , GF − V (P ′(u, u′′))
is connected, and so P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then since
r 
∈ {u, u′}, r = u′′ = a, and r is not a cut vertex of GF −V (P (a, a′)). Then, because
of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′ is a feasible
F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Thus, we may assume that there exists no n ∈ {1, . . . , p} − {i,m} such that Vn

has a neighbor in V (P [yi, a
′)). Since |XP | ≥ 3 and V (P (xi, yi)) has no neighbor in

(
⋃p

j=1 Vj)−Vi, we have that xi 
= a, and there exists n ∈ {1, . . . , p}−{i,m} such that
Vn has a neighbor in V (P (a, xi]). Furthermore, xi has a neighbor in V (Ai)−{xi, yi, v};
otherwise, since yi has no neighbor in V (Ai)− ({xi, yi}∪V (B− b)), v would be a cut
vertex of Ai. Therefore, there exists an ri-rn path W in GF − V (P ′[yi, a

′)) which is
internally disjoint from V (BP ) and intersects P (a, xi].

Let P ′ := P [yi, a
′] + {u, v, uv, vyi}. Then P ′ is a path with ends in V (F ) which

is internally disjoint from V (BP ) ∪ V (F ). One can show that P ′ is an induced path
in G − ua′, and because of the path W , P ′(u, a′) is nonseparating in GF . Since
u 
= xi 
= r, r is an end of P ′ only if a′ = r. In this case, r is not a cut vertex of
GF−V (P (a, a′)), and because of the path W , r is not a cut vertex of GF−V (P ′(u, a′)).
Thus, P ′ is a feasible F -path. Since BP ∪ W ⊆ BP ′ , P ′ is a BP -augmenting path.
Note that in all above cases, such a path P ′ can be found in O(|V (G)|+ |E(G)|) time.

Subcase 2.2. B is nontrivial.
First, we define a graph G′ from B. If yi has at least two neighbors in V (B),

then let S := NG(B − b) − {b, yi}, let G′ be obtained from B by adding S ∪ {yi}
and the edges of G from S ∪ {yi} to V (B) − {b}, and let y∗ := yi. If yi has exactly
one neighbor in V (B), then let y∗ denote this vertex (note that y∗ 
= b because
yi ∈ NG(B − b) by assumption), let S := NG(B − {b, y∗}) − {b, y∗}, and let G′ be
obtained from B by adding S and the edges of G from S to V (B) − {b, y∗}. Note
that in either case S ⊆ V (F − r) ∪ {xi}. Moreover, G′ − S = B is 2-connected, and
G′ is (4, S ∪ {b, y∗})-connected (because G is 4-connected). Thus, the hypotheses in
Lemma 2.3 are satisfied with G′, S, b, y∗ as G,S, b, b′, respectively. By Lemma 2.3
exactly one of the following holds:

(1) there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩
{b, y∗} = ∅, V (Q) ∩ S = {u, u′}, and G′ − (V (Q) ∪ S) is connected; or

(2) |S| = 2, and the elements of S can be labeled as u, u′ such that (G′, u, b, u′, y∗)
is planar.

Moreover, one can in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds. Without loss of generality, we
may assume that u 
= xi.

Suppose (1) occurs. If u′ 
= xi, then let P ′ := Q; otherwise let P ′ := P [a, xi]∪Q.
Then P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪V (F ).
Since y∗ and b are in G′ − (V (Q) ∪ S) which is connected, and because Vm has a
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868 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

neighbor in V (P [yi, a
′)), there exists an ri-rm path W in GF − V (P (a, yi)) which is

internally disjoint from V (BP ) ∪ V (F ) and intersects P [yi, a
′).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
Since Q is induced in G′ and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and because P is
induced in G − aa′ and P [a, xi) has no neighbor in V (B) (by the definition of xi in
Notation 3.9), one can see that P ′ is an induced path in G−uu′′. Because of the path
W , and since P (a, a′) is nonseparating in GF , P ′(u, u′′) is nonseparating in GF . Since
r 
∈ S, if r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF − V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.
So we may assume (2) occurs. We consider two cases.
First, assume there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor

in V (P [yi, a
′)). Then there exists an rm-rn path W in GF − V (P (a, yi)) which is

internally disjoint from V (BP ) ∪ V (F ) and intersects P [yi, a
′). By Lemma 2.6 (with

G′, u, u′, b, y∗ as G, a, a′, b, b′, respectively), there exists an induced u-u′ path Q in
G′ such that G′ − V (Q) has exactly two components K and K ′ with b ∈ V (K) and
y∗ ∈ V (K ′). Moreover, such a path can be found in O(|V (G′)| + |E(G′)|) time (and
hence, in O(|V (G)| + E(G)|) time). If u′ 
= xi, then let P ′ := Q; otherwise let
P ′ := P [a, xi]∪Q. So P ′ is a path with ends in V (F ) which is internally disjoint from
V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
Since Q is induced in G′ and NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪ {r} (by Assumption 1),
and because P is induced in G − aa′ and P [a, xi) has no neighbor in V (B) (by the
definition of xi in Notation 3.9), one can see that P ′ is an induced path in G− uu′′.
Since G′−V (Q) has exactly two components, one containing b and the other containing
y∗, and because of the path W , it follows that P ′(u, u′′) is nonseparating in GF . If
r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF − V (P (a, a′)). Then,
because of the path W , r is not a cut vertex of G−V (P ′(u, u′′)). Thus, P ′ is a feasible
F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Now assume that there exists no n ∈ {1, . . . , p}−{i,m} such that Vn has a neigh-
bor in V (P [yi, a

′)). Since |XP | ≥ 3 and V (P (xi, yi)) has no neighbor in (
⋃p

j=1 Vj)−Vi,
there exists n ∈ {1, . . . , p} − {i,m} such that Vn has a neighbor in V (P (a, xi]), and
hence, xi 
= a. Note that G′ 
∼= K1,4 because B is nontrivial. By Lemma 2.7 (with
G′, u, y∗, u′, b as G, a, a′, b, b′, respectively), there exists a nonseparating induced u-y∗

path Q in G′ such that V (Q) ∩ {u′, b} = ∅. Moreover, such a path can be found
in O(|V (G′)| + |E(G′)|) time (and hence, in O(|V (G)| + |E(G)|) time). Note that
either xi has a neighbor in V (Ai) − V (B − b) or xi is in G′ − V (Q). Since Vn has
a neighbor in V (P (a, xi]), there exists an ri-rn path W in GF − V (P (xi, a

′)) which
is internally disjoint from V (BP ) ∪ V (F ) and intersects P (a, xi]. If y∗ = yi, then let
P ′ := Q∪P [yi, a

′]; otherwise, let P ′ := (Q∪P [yi, a
′])+{yi, yiy∗}. One can show that

P ′ is an induced path in G − ua′, and because of the path W , P ′(u, a′) is nonsepa-
rating in GF . If r ∈ {u, a′}, then a′ = r, r is not a cut vertex of GF − V (P ′(u, a′))
because of the path W , and because r is not a cut vertex of GF − V (P (a, a′)). Thus,
P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Lemma 3.15. Assume that |XP | ≥ 3, |V (P )| ≥ 4, and for every Hj ∈ H, xj 
= yj.
Suppose that Hi ∈ H and V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′}.
Assume that V (P (xi, yi)) has a neighbor in (

⋃p
j=1 Vj) − Vi. Then a BP -augmenting

path can be found in O(|V (G)| + |E(G)|) time.
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 869

Proof. Since |XP | ≥ 3 and V (P (xi, yi)) has a neighbor in (
⋃p

j=1 Vj) − Vi, there
exist m,n ∈ {1, . . . , p}−{i} such that both Vm and Vn have a neighbor in V (P (a, yi)),
or both Vm and Vn have a neighbor in V (P (xi, a

′)).
By symmetry we may assume that both Vm and Vn have a neighbor in V (P (xi, a

′)).
Therefore, there exists an rm-rn path W in GF − V (P (a, xi]) which is internally dis-
joint from V (BP ) ∪ V (F ) and intersects P (xi, a

′).
Let D be the graph obtained from Ai − {xi, yi} by adding a new vertex b′ and

new edges from b′ to each v ∈ V (P (xi, yi)) such that v has a neighbor in some Vj ,
j ∈ {1, . . . , p} − {i}. Since P (xi, yi) ⊆ Ai − {xi, yi}, ND(b′) ∪ {b′} is contained in a
block of D, and b′ is not a cut vertex of D. Note also that if D is not connected,
then D has exactly two components, one containing bi and the other induced by
V (P (xi, yi))∪{b′}, and the component containing b′ is a block of D since every vertex
in V (P (xi, yi)) has a neighbor in some Vj , j 
= i (because NG(P (a, a′)) ∩ V (F ) ⊆
{a, a′} ∪ {r} by Assumption 1). We consider two cases.

Case 1. D is not a bi-b
′ chain.

Then there exists an endblock B of D such that one of the following holds: (1)
b′ 
∈ V (B), and if bi ∈ V (B), then bi is a cut vertex of D, or (2) D has exactly
two components and B is the component of D containing bi (and hence, V (B) ∩
(V (P (xi, yi)) ∪ {b′}) = ∅ by the argument in the last paragraph). Note that such an
endblock can be found in O(|V (G)|+ |E(G)|) time. If (1) holds, then let b denote the
cut vertex of D contained in B. If (2) holds, then let b := bi. Since |XP | ≥ 3 and BP

is a block of GF − V (P (a, a′)), it follows from the definition of xi, yi in Notation 3.9
that r 
∈ {xi, yi}. Note that ND(b′) ∩ V (B − b) = ∅ and r 
∈ NG(B − b).

Subcase 1.1. B is trivial.
Let v denote the only vertex in V (B) − {b}. Note that NG(v) ⊆ V (F − r) ∪

{xi, yi, b}. Since G is 4-connected and ND(b′) ∩ V (B − b) = ∅, v has at least three
neighbors in V (F −r)∪{xi, yi}. Let u, u′ be two distinct neighbors of v in V (F −r)∪
{xi}. By symmetry, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := (u, v, u′).
If u′ = xi, then let P ′ := P [a, xi] + {u, v, uv, vxi}. Then P ′ is a path with ends in
V (F ) which is internally disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P ′.
By assumption, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and P is induced in G − aa′.
Since NG(v) ⊆ V (F − r)∪{xi, yi, b} and V (P [a, xi)) has no neighbor in V (B) (by the
definition of xi in Notation 3.9), it follows that P ′ is induced in G−uu′′. Because of the
path W and since P (a, a′) is nonseparating in GF , P ′(u, u′′) is nonseparating in GF .
Moreover, if r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF−V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, a)). Thus, P ′ is
a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.

Subcase 1.2. B is nontrivial.
Let S := NG(B− b)−{yi, b}, and let G′ be obtained from B by adding S and the

edges of G from S to V (B)−{b}. Note that since r 
∈ {xi, yi} and r 
∈ NG(B−b), r 
∈ S.
Since G is 4-connected and yi is the only possible neighbor of V (B− b) not in S∪{b},
G′ is (3, S ∪ {b})-connected. By Lemma 2.4 (with G′, S, b as G,S, b, respectively)
there exist u, u′ ∈ S and an induced u-u′ path Q in G′ such that V (Q) ∩ {b} = ∅,
V (Q)∩S = {u, u′}, and G′ − (V (Q)∪S) is connected. Moreover, such a path can be
found in O(|V (G′)|+ |E(G′)|) time (and hence, in O(|V (G)|+ |E(G)|) time). Without
loss of generality, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise
let P ′ := P [a, xi]∪Q. Then P ′ is a path with ends in V (F ) which is internally disjoint
from V (BP ) ∪ V (F ).
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870 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Next we prove that P ′ is a BP -augmenting path. Let u, u′′ denote the ends
of P ′. Note that Q is induced in G − uu′′, NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (by
Assumption 1), and P is induced in G−aa′. Then since NG(v) ⊆ V (F−r)∪{xi, yi, b}
and V (P [a, xi)) has no neighbor in V (B) (by the definition of xi in Notation 3.9), it
follows that P ′ is induced in G−uu′′. Because of the path W and since G′−(V (Q)∪S)
is connected, P ′(u, u′′) is nonseparating in GF . If r ∈ {u, u′′}, then r = u′′ = a, and
r is not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a
cut vertex of GF −V (P ′(u, u′′)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ ,
P ′ is a BP -augmenting path.

Case 2. D is a bi-b
′ chain.

Let D := w0B1w1 . . . wl−1Blwl where w0 := bi and wl = b′. Note that this block
decomposition can be found in O(|V (G)| + |E(G)|) time.

For each nontrivial block Bj with 1 ≤ j ≤ l − 1, let Sj := NG(Bj − {wj−1, wj}).
If Bl is nontrivial, then let Sl := NG(Bl − {wl−1, wl}) −XP , namely, Sl contains all
neighbors of V (Bl−{wl−1, wl}) except the neighbors of ND(b′) contained in XP . For
each nontrivial block Bj with 1 ≤ j ≤ l, let Gj be obtained from Bj by adding Sj and
the edges of G from Sj to V (Bj). Note that ND(b′)∪{b′} ⊆ Bl, and for 1 ≤ j ≤ l−1,
V (Bj)∩ (ND(b′)∪{b′}) ⊆ {wl−1}. Hence, for 1 ≤ j ≤ l− 1, Sj ⊆ V (F − r)∪{xi, yi}.
Moreover, r 
∈ {xi, yi} by Notation 3.9. Thus, r 
∈ Sj for 1 ≤ j ≤ l − 1. Also if Bl is
nontrivial, then no vertex in V (Bl −ND(b′)) is adjacent to r, and by the definition of
Sl, r 
∈ Sl. First, we prove the following.

Claim. One can in O(|V (G)|+ |E(G)|) time either find a BP -augmenting path or
certify that the following statements hold:

(I) for each nontrivial block Bj with 1 ≤ j ≤ l − 1, |Sj | = 2, yi ∈ Sj , and if u
denotes the vertex in Sj − {yi}, then (Gj , yi, wj−1, u, wj) is planar;

(II) for each 1 ≤ j ≤ l − 2 for which both Bj , Bj+1 are trivial, |NG(wj) −
{wj−1, wj+1}| = 2, and yi ∈ NG(wj); and

(III) if Bl is nontrivial, then Sl ∩ (V (F − r) − {a, a′}) = ∅.
Proof of Claim. We will show that if one of (I)–(III) does not hold, then one can

find in O(|V (G)| + |E(G)|) time a BP -augmenting path.
Proof of (I). Suppose that j ∈ {1, . . . , l− 1} and Bj is nontrivial. Note that Gj −

Sj = Bj is 2-connected. Moreover, since G is 4-connected, Gj is (4, Sj ∪ {wj−1, wj})-
connected. Thus, the hypotheses of Lemma 2.3 are satisfied with Gj , Sj , wj−1, wj as
G,S, b, b′, respectively. By Lemma 2.3 exactly one of the following holds:

(1) there exist u, u′ ∈ Sj and an induced u-u′ path Q such that V (Q)∩{wj−1, wj} =
∅, V (Q) ∩ Sj = {u, u′}, and Gj − (V (Q) ∪ Sj) is connected; or

(2) |Sj | = 2, and the elements of Sj can be labeled as u, u′ such that (Gj , u, wj−1,
u′, wj) is planar.

Moreover, one can in O(|V (Gj)| + |E(Gj)|) time (and hence, in O(|V (G)| + |E(G)|)
time) find a path as in (1) or certify that (2) holds.

Suppose that (1) holds. Define P ′ as follows.
(a) if {u, u′} ∩ {xi, yi} = ∅, then let P ′ := Q;
(b) if {u, u′} = {xi, yi}, then let P ′ := (P − V (P (xi, yi))) ∪Q;
(c) if {u, u′} ∩ {xi, yi} = {xi}, then let P ′ := P [a, xi] ∪Q; and
(d) if {u, u′} ∩ {xi, yi} = {yi}, then let P ′ := P [yi, a

′] ∪Q.
We claim that P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪
V (F ). If (a) or (b) occurs, then clearly P ′ is a path as claimed. Suppose (c) occurs,
that is, {u, u′} ∩ {xi, yi} = {xi}. If a 
∈ {u, u′}, then clearly P ′ is a path as claimed;
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 871

if a ∈ {u, u′}, then by the definition of xi in Notation 3.9, xi = a, and hence, P ′ is a
path as claimed. Similarly, if (d) occurs, then P ′ is a path as claimed.

Next we show that P ′ is a BP -augmenting path. Let u1, u2 denote the ends of P ′.
Since Q is induced in Gj and NG(P (a, a′))∩ V (F ) ⊆ {a, a} ∪ {r} (by Assumption 1),
and because P is induced in G−aa′ and P [a, xi)∪P (yi, a

′] has no neighbor in V (Bj)
(by the definition of xi and yi in Notation 3.9), one can show that P ′ is an induced
path in G−u1u2. Since Gj−(V (Q)∪Sj) is connected, it is easy to see that P ′(u1, u2)
is nonseparating in GF . If r ∈ {u1, u2}, then since r 
∈ {u, u′} ⊆ Sj , (b), (c), or (d)
occurs and either r = a or r = a′. In this case, r is not a cut vertex of GF−V (P (a, a′)),
and since |XP | ≥ 3, r is not a cut vertex of GF −V (P ′(u1, u2)). Thus, P ′ is a feasible
F -path. Since there exists a wj−1-wj path in Gj − (V (Q) ∪ Sj), there exists an ri-
b′ path in D − V (P ′(u1, u2)). By the definition of b′, the vertex adjacent to b′ in
this path has a neighbor in Vt for some t ∈ {1, . . . , p} − {i}. Hence, BP is properly
contained in a block of GF − V (P ′(u1, u2)), and therefore, P ′ is a BP -augmenting
path.

So assume that (2) holds. If yi ∈ {u, u′}, then (I) holds, so we may assume that
yi 
∈ {u, u′}. By Lemma 2.6 with Gj , u, u

′, wj−1, wj as G, a, a′, b, b′, respectively, one
can find in O(|V (Gj)| + |E(Gj)|) time an induced u-u′ path Q such that Gj − V (Q)
has exactly two components K and K ′ with wj−1 ∈ V (K) and wj ∈ V (K). Without
loss of generality, we may assume that u 
= xi. If u′ 
= xi, then let P ′ := Q; otherwise,
let P ′ := P [a, xi] ∪ Q. Clearly, P ′ is a path with ends in V (F ) which is internally
disjoint from V (BP ) ∪ V (F ).

Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of
P ′. Since Q is induced in Gj and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r}, and because
P is an induced path in G− aa′ and P [a, xi) has no neighbor in V (Bj)− {wj−1, wj}
(by the definition of xi in Notation 3.9), one can show that P ′ is an induced path in
G−uu′′. Since Gj −V (Q) has exactly two components, one containing wj−1 and the
other containing wj , and because of the path W , it follows that G − V (P ′(u, u′′)) is
connected, so P ′ is nonseparating in GF . If r ∈ {u, u′′}, then r = u′′ = a, and r is
not a cut vertex of GF − V (P (a, a′)). Then, because of the path W , r is not a cut
vertex of GF − V (P ′(u, u′′). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path.
Proof of (II). Suppose that for some j ∈ {1, . . . , l − 1} both Bj and Bj+1 are

trivial. If yi ∈ NG(wj) and |NG(wj) − {wj−1, wj}| = 2, then (II) holds, so we may
assume that yi 
∈ NG(wj) or |NG(wj) − {wj−1, wj}| 
= 2. Therefore, |NG(wj) −
{wj−1, wj , yi}| ≥ 2. Let u, u′ be distinct vertices in NG(wj) − {wj−1, wj , yi}. Note
that r 
∈ {u, u′} because BP is a block of GF −V (P (a, a′)). Without loss of generality
we may assume that u 
= xi. If u′ 
= xi, then let P ′ := (u,wj , u

′). If u′ = xi, then let
P ′ := P [a, xi] + {u,wj , wjxi, uwj}. By the definition of xi, yi in Notation 3.9, u 
= a
when u′ = xi. So P ′ is a path with ends in V (F ) which is internally disjoint from
V (BP ) ∪ V (F ). Note that V (P ′) ∩ V (P (xi, a

′)) = ∅.
Next we show that P ′ is a BP -augmenting path. Let u, u′′ denote the ends of P .

Since P is an induced path in G − aa′, and because wj has no neighbor in P [a, xi)
(by the definition of xi in Notation 3.9), one can see that P ′ is induced in G − uu′′.
Because of the path W and since P (a, a′) is nonseparating in GF , P ′ is nonseparating
in GF . If r ∈ {u, u′′}, then r = u′′ = a, and r is not a cut vertex of GF −V (P (a, a′)).
Then, because of the path W , r is not a cut vertex of GF − V (P ′(u, u′′)). Thus, P ′

is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′ is a BP -augmenting path.
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872 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Proof of (III). Suppose Bl is nontrivial. If Sl ∩ (V (F − r) − {a, a′}) = ∅, then
(III) holds, so we may assume that Sl ∩ (V (F − r) − {a, a′}) 
= ∅. We want to apply
Lemma 2.3 to find a BP -augmenting path, so we need to show that Gl, Sl, wl−1, wl = b′

(as G,S, b, b′, respectively) satisfy the hypotheses in the statement of Lemma 2.3.
Clearly, Gl − Sl = Bl is 2-connected and by definition, every vertex in Sl has a
neighbor in V (Bl) − {wl−1, wl}. Since P is an induced path in G − aa′ and G is
4-connected, Gl − b′ ⊆ G is (4, Sl ∪ {wl−1} ∪ND(b′))-connected. Hence, Gl is (3, Sl ∪
{wl−1, b

′})-connected. Recall that r 
∈ Sl (see the definition of Sl), V (P (xi, yi)) has
no neighbor in V (F − r) − {a, a′} unless xi = a or yi = a′ (by Assumption 1),
and Ai − V (Pi) is connected. Thus, since Sl ∩ (V (F − r) − {a, a′}) 
= ∅, V (Bl) −
({wl−1, wl} ∪ V (P (xi, yi))) 
= ∅. This implies that V (P (xi, yi)) ⊆ V (Bl)− {wl−1, wl}
(and hence, xi, yi ∈ Sl); otherwise, wl−1 ∈ V (P (xi, yi)), contradicting the fact that
Ai−V (Pi) is connected. Thus, |Sl| ≥ 3, and there exists a component K of Gl− (Sl∪
{wl−1, wl}) = Bl − {wl−1, wl} which contains V (P (xi, yi)). Note that K has at least
two neighbors in Sl, namely, xi, yi. Thus, the hypotheses of Lemma 2.3 are satisfied
with Gl, Sl, wl−1, wl as G,S, b, b′, respectively.

Therefore, by Lemma 2.3 there exist u, u′ ∈ Sl and an induced path Q in Gl such
that V (Q) ∩ {wl−1, wl} = ∅, V (Q) ∩ Sl = {u, u′}, and Gl − (V (Q) ∪ Sl) is connected.
Define P ′ as follows:

(a) if {u, u′} ∩ {xi, yi} = ∅, then let P ′ := Q;
(b) if {u, u′} = {xi, yi}, then let P ′ := (P − V (P (xi, yi))) ∪Q;
(c) if {u, u′} ∩ {xi, yi} = {xi}, then let P ′ := P [a, xi] ∪Q; and
(d) if {u, u′} ∩ {xi, yi} = {yi}, then let P ′ := P [yi, a

′] ∪Q.
We claim that P ′ is a path with ends in V (F ) which is internally disjoint from V (BP )∪
V (F ). Clearly, this is true if (a) or (b) occurs. Suppose (c) occurs, that is, {u, u′} ∩
{xi, yi} = {xi}. If a 
∈ {u, u′}, then P ′ is a path as claimed. If a ∈ {u, u′}, then by
the definition of xi in Notation 3.9, a = xi. Again, P ′ is a path as claimed. Similarly,
if (d) occurs, then P ′ is a path as claimed.

Next we show that P ′ is a BP -augmenting path. Let u1, u2 denote the ends of P ′.
Since Q is induced in Gl and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a} ∪ {r}, and because P is
induced in G− aa′ and P [a, xi)∪P (yi, a

′] has no neighbor in Bl (by the definition of
xi and yi in Notation 3.9), one can see that P ′ is an induced path in G− u1u2. Since
Gl − (V (Q)∪Sl) is connected and V (P (xi, yi)) has a neighbor in (

⋃p
j=1 Vj)−Vi, it is

easy to see that P ′(u1, u2) is nonseparating in GF . If r ∈ {u1, u2}, then since r 
∈ Sl,
(b), (c), or (d) occurs, and either r = a or r = a′. In this case, r is not a cut vertex
of GF − V (P (a, a′)), and since |XP | ≥ 3, r is not a cut vertex of GF − V (P ′(u1, u2)).
Thus, P ′ is a feasible F -path. Moreover, since there exists a wl−1-wl path W ′ in
Gl−(V (Q)∪Sl), there exists an ri-b

′ path W ′′ in D−V (P ′(u1, u2)). By the definition
of b′, the vertex adjacent to b′ in W ′′ has a neighbor in Vt for some t ∈ {1, . . . , p}−{i}.
Hence, BP is properly contained in a block of GF − V (P ′(u1, u2)), and therefore, P ′

is a BP -augmenting path.
This concludes the proof of the claim.
By the above claim, we may assume that (I), (II), and (III) hold. Therefore, by

(III) and since V (Ai)−{bi, xi, yi} has a neighbor in V (F −r)−{a, a′}, we have l ≥ 2.
We consider three subcases.

Subcase 2.1. xi has at least two neighbors in V (Bl).
Thus, Bl is nontrivial (because xi is not adjacent to b′ in D). We claim that

P (xi, yi) ⊆ Bl − wl−1. Suppose for a contradiction that P (xi, yi) 
⊆ Bl − wl−1. Then
wl−1 ∈ V (P (xi, yi)). Since GF − V (P (a, a′)) is connected, Bl − b′ ⊆ P (xi, yi). But
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 873

then xi has at most one neighbor in V (Bl) because P is an induced path in GF −aa′,
a contradiction. Therefore, P (xi, yi) ⊆ Bl − wl−1.

Since V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′} and Sl ∩ (V (F −
r) − {a, a′}) = ∅ by (III), there exists q ∈ {1, . . . , l − 1} such that V (Bq − wq−1) has
a neighbor in V (F − r) − {a, a′}. Choose q to be maximum with this property, and
let u be a neighbor of V (Bq − wq−1) in V (F − r) − {a, a′}.

Next we define a u-wq path Qq in Gq. If Bq is trivial or u is adjacent to wq, then let
Qq be the path induced by the edge uwq. Otherwise, Bq is nontrivial, Sq = {u, yi},
and (Gq, yi, wq−1, u, wq) is planar (by (I)). By Lemma 2.7 (with Gq, u, wq, yi, wq−1

as G, a, a′, b, b′, respectively), there exists a nonseparating induced u-wq path Qq

in Gq such that V (Qq) ∩ {yi, wq−1} = ∅. Moreover, such a path can be found in
O(|V (Gq)| + |E(Gq)|) time.

By the maximality of q, for q + 1 ≤ j ≤ l − 1, the following holds: If Bj is
nontrivial, then Sj = {xi, yi} and (Gj , yi, wj−1, xi, wj) is planar (by (I)), and if Bj

and Bj+1 are trivial, then NG(wj)−{wj−1, wj+1} = {xi, yi} (by (II)). Note also that
xi ∈ Sl because P (xi, yi) ⊆ Bl − wl−1.

Choose the minimum t ∈ {q + 1, . . . , l} such that xi ∈ NG(Bt − wt). Thus,
by the choice of q and t, Bj is trivial for every j ∈ {q + 1, . . . , t − 1}. For each
j ∈ {q + 1, . . . , t− 1}, let Zj denote the path induced by the edge wj−1wj .

If Bt is trivial, then let Qt denote the path induced by the edge wt−1xi. If Bt is
nontrivial, then we define a path Qt according to the following two cases.

• t < l. Then St = {xi, yi}, and (Gt, wt−1, xi, wt, yi) is planar. By Lemma 2.7
with Gt, wt−1, xi, wt, yi as G, a, a′, b, b′, respectively, there exists a nonseparat-
ing induced wt−1-xi path Qt in Gt such that V (Qt)∩{wt, yi} = ∅. Moreover,
such a path can be found in O(|V (Gt)| + |E(Gt)|) time.

• t = l. Since P is induced in G − aa′ and xi has at least two neighbors in
V (Bl), xi has a neighbor in V (Bl)−V (P (xi, yi)). Moreover, Bl−V (P (xi, yi))
is connected because Ai−V (Pi) is connected, and hence, there exists a wl−1-
xi path Q′ in Bl − V (P (xi, yi)). Let G′ := Gl − b′, and let S′ := ND(b′) ∪
Sl ∪ {wl−1}. Then G′ is (4, S′)-connected, and S′ − {wl−1, xi} is contained
in a component U of G′ − V (Q′). By Lemma 2.1 (with G′, S′, wl−1, xi, U as
G,S, a, a′, U , respectively) there exists a nonseparating induced wl−1-xi path
Ql in G′ such that V (Ql)∩ V (U) = ∅ (and hence, V (Ql)∩ V (P (xi, yi)) = ∅).
Moreover, such a path can be found in O(|V (G′)|+ |E(G′)|) time (and hence,
in O(|V (G)| + |E(G)|) time).

Let P ′ := Qq ∪Zq+1 ∪ · · · ∪Zt−1 ∪Qt ∪P [a, xi]. Then P ′ is a u-a path in G such
that V (P ′) ∩ V (F ) = {u, a}. Moreover, it is not hard to see that such a path can be
found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. It is not hard to see that P ′ is an
induced path in G − ua. Because of the path W and since P (a, a′) is nonseparating
in GF , P ′(u, a) is nonseparating in GF . If a = r, then r is not a cut vertex of
GF−V (P (a, a′)), and because of the path W , r is not a cut vertex of GF−V (P ′(u, a)).
Thus, P ′ is a feasible F -path. Moreover, since V (P ′) ∩ V (P (xi, a

′]) = ∅, BP ∪W ⊆
BP ′ . Therefore, P ′ is a BP -augmenting path.

Subcase 2.2. xi has at most one neighbor in V (Bl), and xi has a neighbor in
V (Ai) − (V (P (xi, yi)) ∪ {bi}).

Then since Ai is 2-connected, xi has a neighbor in V (D)− (V (Bl)∪{bi}). There-
fore, since V (Ai) − {bi, xi, yi} has a neighbor in V (F − r) − {a, a′} and by (I), (II),
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874 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

and (III), there exist u ∈ V (F − r) − {a, a′} and q, t ∈ {1, . . . , l − 1} with q ≤ t such
that one of the following holds:

(a) u ∈ NG(Bq − wq−1), and xi ∈ NG(Bt − wt); or
(b) xi ∈ NG(Bq − wq−1), and u ∈ NG(Bt − wt).

Choose q, t so that t− q is minimum and (a) or (b) holds. Note that q < t because in
(I) we must have yj ∈ Sj and in (II) we must have yj ∈ NG(wj).

We may assume that (a) holds because the other case is symmetric.
By the minimality of t− q and by (I), Bj is trivial for every j ∈ {q+1, . . . , t− 1}.

Using (II), one can also show that t− q ≤ 2. For q + 1 ≤ j ≤ t− 1, let Zj denote the
path induced by the edge wj−1wj .

If Bq is trivial, then let Qq be the path induced by the edge uwq. Otherwise (by
(I)) Bq is nontrivial, Sq = {u, yi}, and (Gq, yi, wq−1, u, wq) is planar . By Lemma 2.7
(with Gq, u, wq, yi, wq−1 as G, a, a′, b, b′, respectively), there exists a nonseparating
induced u-wq path Qq in Gq such that V (Qq)∩{yi, wq−1} = ∅. Moreover, such a path
can be found in O(|V (Gq)| + |E(Gq)|) time.

Similarly, if Bt is trivial, then let Qt be the path induced by the edge xiwt−1.
Otherwise (by (I)) Bt is nontrivial, St = {xi, yi}, and (Gt, yi, wt−1, xi, wt) is planar.
By Lemma 2.7 (with Gt, xi, wt−1, yi, wt as G, a, a′, b, b′, respectively) there exists a
nonseparating induced xi-wt−1 path Qt in Gt such that V (Qt) ∩ {yi, wt} = ∅. More-
over, such a path can be found in O(|V (Gt)| + |E(Gt)|) time.

Let P ′ := Qq ∪ Zq+1 ∪ · · · ∪ Zt−1 ∪Qt ∪ P [a, xi]. Then P ′ is a u-a path which is
internally disjoint from V (BP ) ∪ V (F ). Moreover, it is not hard to see that such a
path can be found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. Since Qq, Qt are nonseparating
and induced in Gq, Gt, respectively, it is not hard to see that P ′ is an induced path in
G− ua. Because of the path W and since P (a, a′) is nonseparating in GF , P ′(u, a) is
non-separating in GF . If a = r, then r is not a cut vertex of GF −V (P (a, a′)), and be-
cause of the path W , r is not a cut vertex of GF−V (P ′(u, a)). Thus, P ′ is a feasible F -
path. Since V (P ′)∩V (Pi−xi) = ∅, BP ∪W ⊆ BP ′ . Therefore, P ′ is a BP -augmenting
path.

Subcase 2.3. xi has at most one neighbor in V (Bl), and xi has no neighbor in
V (Ai) − (V (P (xi, yi)) ∪ {bi}).

In this case, since Ai is 2-connected, bi is the only neighbor of xi in Ai not
contained in V (P (xi, yi)). We consider two cases according to whether xi = a or
xi 
= a.

(A) xi = a.
Then by the definition of xi in Notation 3.9, bi 
= ri. Since V (Ai)−{bi, xi, yi} has

a neighbor in V (F − r) − {a, a′} and (III) holds, there exists some q ∈ {1, . . . , l − 1}
such that V (Bq−wq−1) has a neighbor in V (F−r)−{a, a′}. Choose q to be minimum
with this property.

Therefore, since bi is the only neighbor of xi in Ai not contained in V (Pi) and (I)
holds, Bj is trivial for every j ∈ {1, . . . , q − 1}. Using (II), one can show that either
q = 1 or q = 2. For each j ∈ {1, . . . , q − 1} let Zj be the path induced by the edge
wj−1wj .

If Bq is trivial (in this case q = 1), then, by the choice of q, wq has a neighbor
u in V (F − r), and let Qq := (wq−1, wq, u). If Bq is nontrivial, then by (I) Sq =
{u, yi} for some u ∈ V (F − r)− {a, a′}, and (Gq, yi, wq−1, u, wq) is planar. Note that
u 
= a because xi has no neighbor in V (Ai) − (V (Pi) ∪ {bi}). By Lemma 2.7 (with
Gq, u, wq−1, yi, wq as G, a, a′, b, b′, respectively), there exists a nonseparating induced
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 875

u-wq−1 path Qq in Gq such that V (Qq)∩ {yi, wq} = ∅. Moreover, such a path can be
found in O(|V (Gq)| + |E(Gq)|) time.

Let P ′ := (Z1 ∪ · · · ∪ Zq−1 ∪ Qq) + {xi, xibi}. Then P ′ is a u-a path which is
internally disjoint from V (BP ) ∪ V (F ). Moreover, it is not hard to see that such a
path can be found in O(|V (G)| + |E(G)|) time.

Next we show that P ′ is a BP -augmenting path. It is not hard to see that P ′ is
an induced path in G−ua. Because of the path W and since P (a, a′) is nonseparating
in GF and Qq is nonseparating in Gq, P

′(u, a) is nonseparating in GF . If a = r, then
r is not a cut vertex of GF − V (P (a, a′)), and because of the path W , r is not a cut
vertex of GF − V (P ′(u, a)). Thus, P ′ is a feasible F -path. Since BP ∪W ⊆ BP ′ , P ′

is a BP -augmenting path.
(B) xi 
= a.
In this case, it is possible that bi = ri. Note that xi has degree at least four

in G (because G is 4-connected), P is induced in G − aa′, and xi has no neighbor
in V (Ai) − (V (Pi) ∪ {bi}) (by assumption in this subcase). So xi has a neighbor in
(
⋃p

j=1 Vj) − Vi. Let t ∈ {1, . . . , p} − {i} such that xi has a neighbor in Vt.
Suppose that for some j ∈ {1, . . . , l − 1}, Bj is nontrivial. Then by (I) and by

our assumption that xi has no neighbor in V (Ai)− (V (P (xi, yi))∪{bi}), Sj = {u, yi}
for some u ∈ V (F − r), and (Gj , yi, wj−1, u, wj) is planar. Note that u 
= a′ by
the definition of yi in Notation 3.9 and because u 
= yi. Also u 
= a because xi 
=
a. By Lemma 2.6 (with Gj , yi, u, wj−1, wj as G, a, a′, b, b′, respectively), there exists
a nonseparating induced u-yi path Q in Gj such that Gj − V (Q) has exactly two
components K and K ′ with wj−1 ∈ V (K) and wj ∈ V (K ′). Moreover, such a path
can be found in O(|V (Gj)|+ |E(Gj)|) time (and hence, in O(|V (G)|+ |E(G)|) time).
Let P ′ := Q∪P [yi, a

′]. Then P ′ is a u-a′ path in G such that V (P ′)∩V (F ) = {u, a′}.
Moreover, it is not hard to see that such a path can be found in O(|V (G)| + |E(G)|)
time.

Next we show that P ′ is a BP -augmenting path. Since Q is induced in Gj and
NG(P (a, a′))∩V (F ) ⊆ {a, a′}∪ {r} (by Assumption 1), and because P is an induced
path in G − aa′ and P ((yi, a

′]) has no neighbor in V (Bj) (by the definition of yi in
Notation 3.9), one can see that P ′ is an induced path in G − ua′. Since Gj − V (Q)
has exactly two components, one containing wj−1 and the other containing wj , and
because xi has a neighbor in Vt, it is not hard to show that P ′ is nonseparating in GF .
If r ∈ {u, a′}, then r = a′ and r is not a cut vertex of GF − V (P (a, a′)). In this case,
because xi has a neighbor in Vt, r is not a cut vertex of GF − V (P ′(u, a′)). Thus, P ′

is a feasible F -path. Moreover, since bi is adjacent to xi and xi has a neighbor in Vt,
it follows that P ′ is a BP -augmenting path.

Thus, we may assume that Bj is trivial for every j ∈ {1, . . . , l− 1}. If l ≥ 3, then
B1 and B2 are trivial, and by (II), NG(w1)−{w0, w2} = {u, yi} for some u ∈ V (F−r).
Note that u 
∈ {a, a′} because xi 
= a and yi 
= u. By an argument similar to the above
paragraph, one can show that P ′ := (u,w1, yi) ∪ P [yi, a

′] is a BP -augmenting path.
So we may assume that l = 2 and B1 is trivial. This implies that V (P (xi, yi)) ⊆

V (B2). Hence, B2 is nontrivial, so S2 = {xi, yi} (by (III)). Since V (Ai) − {bi, xi, yi}
has a neighbor in V (F − r) − {a, a′} (by assumption in this lemma) and (III) holds,
w1 is adjacent to some u ∈ V (F − r)−{a, a′}. Let x′, y′ denote the vertices in ND(b′)
(see Notation 3.9) which are the lowest and the highest in P , respectively. Since B2

is 2-connected, V (B2) − (V (P (xi, yi)) ∪ {b′}) has a neighbor in V (P (x′, yi)). Since
B2−(V (P (xi, yi))∪{b′}) is connected (because Ai−V (Pi) is connected), there exists a
w1-yi path Q′ in G2 such that xi and b′ are contained in a component U of G2−V (Q′).
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876 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

Moreover, recall that G2 is (3, {w1, xi, yi, b
′})-connected. Thus, the hypotheses of

Lemma 2.1 are satisfied with G2, {w1, xi, yi, b
′}, w1, yi, U as G,S, a, a′, U , respectively.

By Lemma 2.1 there exists a nonseparating induced w1-yi path Q in G2 such that
V (Q)∩V (U) = ∅ (and hence, V (Q)∩{xi, b

′} = ∅). Moreover, such a path can be found
in O(|V (G2)| + |E(G2)|) time (and hence, in O(|V (G)| + |E(G)|) time). Let P ′ :=
(P [yi, a

′]∪Q)+{u, uw1}. Then P ′ is a u-a′ path in G such that V (P ′)∩V (F ) = {u, a′}.
Moreover, it is not hard to see that such a path can be found in O(|V (G)| + |E(G)|)
time.

We conclude the proof by showing that P ′ is a BP -augmenting path. Since Q
is induced in G2 and NG(P (a, a′)) ∩ V (F ) ⊆ {a, a′} ∪ {r} (by Assumption 1), and
because P is an induced path in G − aa′ and P ((yi, a

′]) has no neighbor in V (B2)
(by the definition of yi in Notation 3.9), one can see that P ′ is an induced path in
G−ua′. Since G2 −V (Q) is connected, and because xi has a neighbor in Vt, it is not
hard to see that P ′ is nonseparating in GF . If r ∈ {u, a′}, then r = a′, and r is not a
cut vertex of GF − V (P (a, a′)). In this case, because xi has a neighbor in Vt, r is not
a cut vertex of GF − V (P ′(u, a′)). Thus, P ′ is a feasible F -path. Moreover, since bi
is adjacent to xi and xi has a neighbor in Vt, it follows that P ′ is a BP -augmenting
path.

We are now ready to prove the main result of this section, which implies Theo-
rem 3.2. Consider Algorithm 1.

Theorem 3.16. Algorithm 1 is correct and runs in O(|V (G)||E(G)|) time.
Proof. First, we will prove the correctness of the algorithm.
At the start of each iteration of the main loop, P is a feasible a-a′ F -path, and

BP is a nontrivial block of GF := G − V (F − r) containing r. As the algorithm
progresses, |V (BP )| increases.

If GF − V (P (a, a′)) is 2-connected, then the algorithm stops at line 5. Since P is
an induced path in GF − aa′, H := P is either an elementary F -chain or an up a-a′

F -chain whose blocks are all trivial. Moreover, GF − I(H) = GF − V (P (a, a′)) and
G[V (F ) ∪ I(H)] = F ∪ P are 2-connected.

If for every BP -bridge B of GF − V (P (a, a′)), NG(B − rB) ⊆ V (P ), then by
Lemma 3.6 the a-a′ F -chain H in line 8 exists, and GF − I(H) and G[V (F ) ∪ I(H)]
are 2-connected. Thus, if the algorithm stops at line 9, it returns a correct
answer.

If |XP | = 2, then by Lemma 3.7 either the subgraph H defined in line 12 is a
down F -chain or there exists a BP -augmenting path. Thus, if the algorithm stops at
line 14, then H is a down F -chain and GF − I(H) = BP and G[V (F ) ∪ I(H)] are
2-connected. Otherwise, the algorithm increases BP by executing lines 16 and 17.

In line 19, if |V (P )| = 3 (and hence, |XP | ≥ 3), then GF − V (P (a, a′)) is not
2-connected; for otherwise, Algorithm 1 would have stopped at line 5. By Lemma 3.8
a BP -augmenting path exists, and the algorithm increases BP .

Suppose then that |XP | ≥ 3 and |V (P )| ≥ 4. Let Hi ∈ H be adjacent to F (see
Notation 3.9). If xi = yi, then by Lemma 3.12 the BP -augmenting path in line 24
exists, and the algorithm increases BP . If xi 
= yi, then by Lemmas 3.12, 3.13, 3.14,
and 3.15 either the subgraph H defined in line 26 is a triangle chain, or there exists
a BP -augmenting path. Thus, if the algorithm stops at line 28, then H is a triangle
F -chain such that GF − I(H) = BP and G[V (F )∪ I(H)] are 2-connected. Otherwise,
the algorithm increases BP by executing lines 30 and 31.

Since |V (BP )| increases at each iteration, the main loop at line 1 eventually stops
and a good F -chain in G is returned. Hence, Algorithm 1 is correct.
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 877

Algorithm 1. Internal Chain.

Require: G, r, F, a, a′, P,BP satisfying the hypotheses of Theorem 3.2.
Return: A good F -chain H in G such that GF − I(H) and G[V (F ) ∪ I(H)] are

2-connected.
1: loop
2: Apply Lemma 3.4 to P , and let P denote the resulting path;
3: Let a, a′ denote the ends of P ;
4: if GF − V (P (a, a′)) is 2-connected then
5: Return H := P and stop;
6: Compute XP (as defined in Notation 3.5);
7: if for every BP -bridge B of GF − V (P (a, a′)), NG(B − rB) ⊆ V (P ) then
8: Find an up a-a′ F -chain H by applying Lemma 3.6;
9: Return H and stop;

10: if |XP | = 2 then
11: Let v, v′ be the vertices in XP ;
12: H ← (GF − (V (BP ) −XP )) − vv′;
13: if H is a down F -chain in G then
14: Return H and stop;
15: else
16: Find a BP -augmenting path P ′ as in Lemma 3.7;
17: Set P ← P ′ and start a new iteration;
18: if |V (P )| = 3 then
19: Find a BP -augmenting path P ′ as in Lemma 3.8;
20: Set P ← P ′ and start a new iteration;
21: Compute H;
22: Let Hi ∈ H be adjacent to F ;
23: if xi = yi then
24: Find a BP -augmenting path P ′ as in Lemma 3.12
25: P ← P ′ and start a new iteration;
26: Let H be obtained from Ai by adding NG(Ai) ∩ V (F ) and all the edges of G

from V (Ai) to V (F );
27: if GF − V (BP ) = Ai and H is a triangle chain of F then
28: Return H and stop;
29: else
30: Find a BP -augmenting path P ′ as in Lemmas 3.12, 3.13, 3.14, and 3.15;
31: Set P ← P ′ and start a new iteration;

Now we discuss the running time of the algorithm.
The loop in line 1 is executed at most |V (G)| times since |V (BP )| increases at

each iteration.
By Lemma 3.4, the step in line 2 can be performed in O(|V (G)| + |E(G)|) time.
The test in line 4 and the steps in line 6 can be executed in O(|V (G)| + |E(G)|)

time by standard graph search techniques [6].
The steps in lines 7–9 can be executed in O(|V (G)|+ |E(G)|) time by Lemma 3.6.
The steps in lines 10–17 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.7.
The steps in lines 18–20 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.8.
The steps in lines 21–22 can be executed in O(|V (G)|+ |E(G)|) time by standard

graph search techniques [6].
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878 SEAN CURRAN, ORLANDO LEE, AND XINGXING YU

The steps in lines 23–25 can be executed in O(|V (G)|+|E(G)|) time by Lemma 3.12.
Finally, the steps in lines 26–31 can be executed in O(|V (G)| + |E(G)|) time by

Lemmas 3.12, 3.13, 3.14, and 3.15.
Therefore, the running time of the Algorithm 1 is O(|V (G)||E(G)|).

4. Chain decomposition. In this section, we describe how to construct a non-
separating chain decomposition of a 4-connected graph G.

The idea is the following. Suppose we have found a partial chain decomposition
H1, H2, . . . , Hi−1 of G and we want to find the next chain Hi. Let F := G[

⋃i−1
j=1 I(Hj)],

and assume that GF := G − (V (F ) − {r}) is 2-connected. If GF is a planar cyclic
chain rooted at r, then we obtain our desired decomposition by taking Hi := GF and
t := i. If GF is not a planar cyclic chain, then we want to use Theorem 3.2. In order
to apply it, we need to efficiently find vertices a, a′ ∈ V (F ) and a feasible a-a′ F -path
P . This will follow from Lemma 4.2 below.

We need the following result, proved in [7] and [1], which was used in [2].
Theorem 4.1. Let G be a 3-connected graph, let e ∈ E(G), and let u ∈ V (G) be

nonincident to e. Then there exists a nonseparating induced cycle in G through e and
avoiding u. Moreover, such a cycle can be found in O(|V (G)| + |E(G)|) time.

Lemma 4.2. Let G be a 4-connected graph, let r ∈ V (G), and let F be a connected
subgraph of G such that r ∈ V (F ), |V (F )| ≥ 2, and GF := G − (V (F ) − {r}) is 2-
connected. Then one of the following holds:

(1) GF is a planar cyclic chain in G rooted at r; or
(2) there exists a feasible a-a′ F -path P in G, that is,

(i) V (P ) ∩ V (F ) = {a, a′} and P is an induced path in G− aa′;
(ii) P (a, a′) is nonseparating in GF ;
(iii) r is contained in a nontrivial block of GF − V (P (a, a′)); and
(iv) if r ∈ {a, a′}, then r is not a cut vertex of GF − V (P (a, a′)).

Moreover, one can in O(|V (G)|+ |E(G)|) time certify that (1) holds or find a path as
in (2).

Proof. First, suppose that GF is 3-connected. Let G′ be obtained from G by
contracting F − r to a single vertex, say v′. Then G′ is 4-connected; otherwise, there
exists a 3-cut T in G′. Since G is 4-connected, v′ ∈ T . But then T − {v′} is a
2-cut in GF , which is a contradiction. By Theorem 4.1, we can find a nonseparating
induced cycle C in G′ through rv′ in O(|V (G)| + |E(G)|) time. The path C − rv′ in
G′ corresponds to an induced path P in G from r to some vertex a′ ∈ V (F −r). Since
G is 4-connected, r has at least two neighbors in GF − V (P (r, a′)). Moreover, since
C is nonseparating in G′, r is not a cut vertex of GF −V (P (r, a′)), and r is contained
in a nontrivial block of GF − V (P (r, a′)). Thus, P , a := r, and a′ satisfy (2).

So we may assume that GF is 2-connected but not 3-connected. Let {b, b′} be
a 2-cut of GF . Let H1, H2 be edge-disjoint subgraphs of GF such that r ∈ V (H1),
V (H1) ∩ V (H2) = {b, b′}, H1 ∪ H2 = GF , |V (H1)| ≥ 3, and |V (H2)| ≥ 3. Choose
H1, H2 such that H2 is minimal. Note that b, b′, H1, H2 can be found in O(|V (G)| +
|E(G)|) time using the algorithm in [3] for finding the 3-connected components of
GF . Let S := NG(H2 − {b, b′}) − {b, b′}, and let G′ be obtained from H2 by adding
S and the edges of G from S to V (H2) − {b, b′}. Note that S ⊆ V (F ), |S| ≥ 2,
and r 
∈ S because {b, b′} is a 2-cut of GF and r 
∈ V (H2) − {b, b′}. Moreover, G′ is
(4, S ∪ {b, b′})-connected.

Suppose that |V (H2)| ≥ 4. Then by minimality of H2, H2 is 2-connected and
G′, b, b′, S satisfy (i)–(v) of Lemma 2.3 (with G′ as G). Therefore, we can in O(|V (G′)|+
|E(G′)|) time either
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CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS 879

(I) find a, a′ ∈ S and an induced a-a′ path P ′ in G′ such that V (P ′)∩{b, b′} = ∅,
V (P ′) ∩ S = {a, a′}, and G− (V (P ′) ∪ S) is connected, or

(II) certify that |S| = 2, and the vertices in S can be labeled as a, a′ such that
(G′, a, b, a′, b′) is planar.

If (I) occurs, then r is contained in a nontrivial block of G − V (P ′) since there
exists a b-b′ path in H2 − V (P (a, a′)). Since r 
∈ S, we have r 
∈ {a, a′}. Hence,
P := P ′ is a path that satisfies (2).

So we may assume that one of the following holds: |V (H2)| ≥ 4 and (II) occurs,
or |V (H2)| = 3.

We claim that one can find in O(|V (G′)|+ |E(G′)|) time a path P in G′ with ends
a, a′ in S such that G′−(V (P )∪S) has exactly two components K,K ′ with b ∈ V (K)
and b′ ∈ V (K ′). If |V (H2)| ≥ 4 and (II) occurs, then this follows from Lemma 2.6. If
|V (H2)| = 3, then let v be the only vertex in V (H2)−V (H1). Then v has degree two
in GF , and since G is 4-connected, v has at least two neighbors in V (F ), say a, a′.
Then P := (a, v, a′) is the required path.

Therefore, GF − V (P (a, a′)) is connected. If r is contained in a nontrivial block
of H1, then r is contained in a nontrivial block of GF − V (P (a, a′)), and since r 
∈ S,
r 
∈ {a, a′}. In this case, P satisfies (2).

So assume that r is contained only in trivial blocks of H1.
Since GF is 2-connected, H1 is a b-b′ chain. Moreover, either r is a cut vertex

of H1, or r ∈ {b, b′}. In both cases, GF is a cyclic chain rooted at r. Let GF :=
v0B1v1 · · · vk−1Bkvk for some integer k ≥ 2 (where v0 = vk = r). Note that either
H2 = Bj for some 1 ≤ j ≤ k (when |V (H2)| ≥ 4), or H2 = Bj ∪ Bj+1 for some
1 ≤ j ≤ k − 1 where Bj , Bj+1 are trivial (when |V (H2)| = 3).

If all the Bi’s are trivial, then GF is a planar cyclic chain and (2) holds. So
assume that not all Bi’s are trivial. For each 2-connected Bi, let Si := NG(Bi −
{vi−1, vi}) − {vi−1, vi}, and let Gi be obtained from Bi by adding Si and the edges
of G from Si to V (Bi). Then Si ⊆ V (F − r), because {vi−1, vi} is a 2-cut of GF , and
r 
∈ V (Bi) − {vi−1, vi}. Note that Gi, Si, vi−1, vi (as G,S, b, b′, respectively) satisfy
(i)–(v) of Lemma 2.3 because Gi−Si = Bi is 2-connected and Gi is (4, Si∪{vi−1, vi})-
connected. Thus, one can in O(|V (Gi)|+ |E(Gi)|) time either (a) find ai, a

′
i ∈ Si and

an induced ai-a
′
i path Pi in G such that V (Pi)∩{vi−1, vi} = ∅, V (Pi)∩Si = {ai, a′i},

and Gi − (V (Pi) ∪ Si) = Bi − V (Pi(ai, a
′
i)) is connected, or (b) certify that |Si| = 2,

and the vertices in Si can be labeled as ai, a
′
i such that (Gi, vi−1, ai, vi, a

′
i) is planar.

Since G is 4-connected, if (b) occurs, then Bi − {vi−1, vi} = Gi − (Si ∪ {vi−1, vi}) is
connected.

If GF is not a planar cyclic chain rooted at r, then (a) must hold for some 2-
connected Bi, and hence, P := Pi satisfies (2) (because r 
∈ Si). Otherwise, (1)
holds.

It is not hard to see that all the steps described above can be executed in
O(|V (G)| + |E(G)|) time.

Thus, combining Lemma 4.2 and Theorem 3.2 we obtain the following.
Theorem 4.3. Let G be a 4-connected graph, let F be a subgraph of G, and let

r ∈ V (F ) such that GF := G−(V (F )−{r}) is 2-connected. Then one of the following
holds:

(1) there exists a good F -chain H in G such that GF −I(H) and G[V (F )∪I(H)]
are 2-connected; or

(2) GF is a planar cyclic chain rooted at r.
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Moreover, one can in O(|V (G)|+ |E(G)|) time find a good F -chain as in (1) or certify
that (2) holds.

We are now ready to prove the main result in this paper.
Proof of Theorem 1.5. A nonseparating chain decomposition of G starting at ra

can be found as follows. The first chain H1 can be found in O(|V (G)||E(G)|) time
by Theorem 1.6. The internal chains can be found iteratively as follows. Suppose we
have found a partial chain decomposition H1, . . . , Hi−1 (i ≥ 2) of G and we want to

find Hi. Let F := G[
⋃i−1

j=1 I(Hj)]. Apply Theorem 4.3 to G, F , and r. Then one of
the following holds:

(1) there exists a good F -chain H in G such that GF −I(H) and G[V (F )∪I(H)]
are 2-connected; or

(2) GF is a planar cyclic chain rooted at r.
Moreover, one can in O(|V (G)|+ |E(G)|) time find a planar chain as in (1) or certify
that (2) holds. If (1) holds, then let Hi := H and set i ← i + 1. If (2) holds, then
H1, . . . , Hi := GF is the desired chain decomposition.

Since the number of chains is at most |V (G)|, the above algorithm has time
complexity O(|V (G)|2|E(G)|).
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