CHAIN DECOMPOSITIONS OF 4-CONNECTED GRAPHS*

SEAN CURRAN ${ }^{\dagger}$, ORLANDO LEE ‡, AND XINGXING YU§

Abstract

In this paper we give a decomposition of a 4-connected graph G into nonseparating chains, which is similar to an ear decomposition of a 2-connected graph. We also give an $O\left(|V(G)|^{2}|E(G)|\right)$ algorithm that constructs such a decomposition. In applications, the asymptotic performance can often be improved to $O\left(|V(G)|^{3}\right)$. This decomposition will be used to find four independent spanning trees in a 4-connected graph.

Key words. connectivity, nonseparating, good chain, chain decomposition, algorithm
AMS subject classifications. 05C40, 05C85, 05C38, 05C75

DOI. 10.1137/S0895480103434592

1. Introduction. In [1], Cheriyan and Maheshwari gave an $O\left(|V(G)|^{2}\right)$ algorithm for finding a "nonseparating ear decomposition" of a 3-connected graph G, and they used this decomposition to construct three independent spanning trees in a 3 -connected graph.

In this paper we give a 4-connected version of the nonseparating ear decomposition of Cheriyan and Maheshwari and an $O\left(|V(G)|^{2}|E(G)|\right)$ algorithm for finding such a decomposition. This will be used in a forthcoming paper to find four independent spanning trees in an arbitrary 4 -connected graph G, where the asymptotic performance can be improved to $O\left(|V(G)|^{3}\right)$.

We use the definitions and notation given in [2]. Some of those definitions are quite long, so we simply refer the readers to [2]. In particular, see [2] for definitions of chain (Definition 1.3 of [2]), planar chain (Definition 1.4 of [2]), cyclic chain (Definition 4.2 of [2]), and planar cyclic chain (Definition 4.3 of [2]). Intuitively, the roles of planar chains and planar cyclic chains in our decompsitions of 4-connected graphs are similar to those of paths and cycles in ear decompositions of 2-connected graphs.

In [2], we showed how to find the first planar chain in our decomposition of 4 -connected graphs. The other chains in our decomposition can be classified into four types, as described below. The first three types are planar chains as defined in Definition 1.1. The fourth type is not a planar chain (but almost planar as we will see), and it is defined in Definition 1.2. See Figure 1 for illustrations of Definitions 1.1 and 1.2.

Definition 1.1. Let G be a graph, let F be a subgraph of G, and let $r \in$ $V(F)$. Let H be a planar $x-y$ chain in G such that $V(H)-\{x, y\} \subseteq V(G)-V(F)$.

[^0]

Fig. 1. (a) An up F-chain, (b) a down F-chain, (c) an elementary F-chain, and (d) a triangle F-chain. The dashed edges need not exist.

We say that
(a) H is an up F-chain if $\{x, y\} \subseteq V(F)$ and $N_{G}(H-\{x, y\}) \subseteq(V(G)-V(F-$ r)) $\cup\{x, y\}$;
(b) H is a down F-chain if $\{x, y\} \subseteq V(G)-V(F-r)$ and $N_{G}(H-\{x, y\}) \subseteq$ $V(F-r) \cup\{x, y\} ;$ and
(c) H is an elementary F-chain if $\{x, y\} \subseteq V(F)$ and H is an $x-y$ path of length two.
In any of the three cases above we say that H is a planar $x-y F$-chain in G (or simply, a planar F-chain). For an x - y chain H we let $I(H):=V(H)-\{x, y\}$, and for a cyclic chain H we let $I(H):=V(H)$.

For a graph G, a subgraph H of G, and $S \subseteq V(G) \cup E(G)$, we let $H+S$ denote the graph with vertex set $V(H) \cup(S \cap V(G))$ and edge set $E(H) \cup(S \cap E(G))$.

Definition 1.2. Let G be a graph, let F be a subgraph of G, and let $r \in V(F)$. Suppose that $\left\{v_{1}, v_{2}, v_{3}\right\} \subseteq V(G)-V(F)$ induces a triangle T in G, and for each $1 \leq i \leq 3$, v_{i} has exactly one neighbor x_{i} in $V(F-r)$ and exactly one neighbor y_{i} in $V(G)-(V(F) \cup V(T))$ (thus, each v_{i} has degree four in G). Moreover, assume that x_{1}, x_{2}, x_{3} are distinct and y_{1}, y_{2}, y_{3} are distinct. Then we say that $H:=T+$ $\left\{x_{1}, x_{2}, x_{3}, v_{1} x_{1}, v_{2} x_{2}, v_{3} x_{3}\right\}$ is a triangle F-chain in G. We let $I(H):=\left\{v_{1}, v_{2}, v_{3}\right\}$.

The definitions above depend on the choice of r and F, but in spite of this, whenever we use these concepts in this paper, it should be clear which pair r, F we refer to.

Definition 1.3. Let G be a graph, let F be a subgraph of G, and let $r \in V(F)$. By a good F-chain in G, we mean an up F-chain, a down F-chain, an elementary F-chain, or a triangle F-chain.

We are now ready to describe a chain decomposition, which is similar to an ear decomposition.

Definition 1.4. Let G be a graph, let $r \in V(G)$, and let H_{1}, \ldots, H_{t} be chains in G, where $t \geq 2$. We say that $\left(H_{1}, \ldots, H_{t}\right)$ is a nonseparating chain decomposition of G rooted at r if the following conditions hold:
(i) H_{1} is a planar cyclic chain in G rooted at r;
(ii) for each $i=2, \ldots, t-1, H_{i}$ is a good $G\left[\bigcup_{j=1}^{i-1} I\left(H_{j}\right)\right]$-chain in G;
(iii) $H_{t}=G-\left(\bigcup_{j=1}^{t-1} I\left(H_{j}\right)-\{r\}\right)$ is a planar cyclic chain in G rooted at r; and
(iv) for each $i=1, \ldots, t-1$, both $G\left[\bigcup_{j=1}^{i} I\left(H_{j}\right)\right]$ and $G-\left(\bigcup_{j=1}^{i} I\left(H_{j}\right)-\{r\}\right)$ are 2-connected.
The chains H_{2}, \ldots, H_{t-1} are called internal chains of the nonseparating chain decomposition. If ra is a piece of H_{1}, then we say that H_{1}, \ldots, H_{t} is a nonseparating chain decomposition of G starting at $r a$.

The main result of this paper is the following.
THEOREM 1.5. Let G be a 4-connected graph, let $r \in V(G)$, and let $r a \in E(G)$. Then G has a nonseparating chain decomposition rooted at r starting at ra, and such a decomposition can be found in $O\left(|V(G)|^{2}|E(G)|\right)$ time.

The existence of the first chain H_{1} of the chain decomposition is guaranteed by the next result which corresponds to Theorem 4.4 of [2].

THEOREM 1.6. Let G be a 4-connected graph, and let $r a \in E(G)$. Then there exists a planar cyclic chain H in G rooted at r such that ra is a piece of H and $G-$ $(V(H)-\{r\})$ is 2 -connected. Moreover, such a chain can be found in $O(|V(G) \| E(G)|)$ time.

In order to construct the internal chains of the chain decomposition in Theorem 1.5 , we need the following result which is Theorem 1.6 of [2].

Theorem 1.7. Let G be a graph, let $\{a, b\} \subseteq V(G)$, and let P be a nonseparating induced a-b path in G. Let B_{P} be a nontrivial block of $G-V(P)$, and let $X_{P}:=$ $N_{G}\left(G-V\left(B_{P}\right)\right)$. Suppose $G-\left(V\left(B_{P}\right)-X_{P}\right)$ is $\left(4, X_{P} \cup\{a, b\}\right)$-connected. Then there exists a planar a-b chain H in G such that $G-V(H)$ is 2 -connected and $B_{P} \subseteq$ $G-V(H)$. Moreover, such a chain can be found in $O(|V(G)||E(G)|)$ time.

The rest of this paper is organized as follows. In section 2 we recall some lemmas proved in [2] and provide some new auxiliary lemmas concerning nonseparating induced paths. In section 3 we prove a technical result, which will be used to find the internal chains of a nonseparating chain decomposition. Finally, in section 4 we complete the proof of Theorem 1.5.
2. Nonseparating paths. In this section we state and prove some results concerning nonseparating induced paths which will be used later. First, we state two lemmas without proof, which are Lemmas 2.3 and 2.4 of [2], respectively.

Lemma 2.1. Let G be a connected graph, $S \subseteq V(G),\left\{a, a^{\prime}\right\} \subseteq S$, and let P be an $a-a^{\prime}$ path in G. Suppose
(i) G is $(3, S)$-connected, and
(ii) $S-\left\{a, a^{\prime}\right\}$ is contained in a component U of $G-V(P)$.

Then there exists a nonseparating induced a-a' path P^{\prime} in G such that $V\left(P^{\prime}\right) \cap V(U)=$ \emptyset. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Lemma 2.2. Let G be a graph and $S:=\left\{a, a^{\prime}, b, b^{\prime}\right\} \subseteq V(G)$. Suppose that G is $(4, S)$-connected. Then exactly one of the following holds:
(1) there exists a nonseparating induced a-a' path P^{\prime} in G such that $V\left(P^{\prime}\right) \cap$ $\left\{b, b^{\prime}\right\}=\emptyset$;
(2) $\left(G, a, b, a^{\prime}, b^{\prime}\right)$ is planar.

Moreover, one can in $O(|V(G)|+|E(G)|)$ time find a path as in (i) or certify that (ii) holds.

Note our use of "prime" notation in the statements of the lemmas. The reader should not infer that the paths labeled P^{\prime} are derived from an assumed path P. We reserve P to denote a particular path specified in section 3, and we therefore label paths P^{\prime} in the statements of our lemmas. We hope this will sidestep any source of confusion when these lemmas are applied.

The next lemma is a variation of Lemma 2.1 (and Lemma 2.2 as well) in which we prove the existence of a specific nonseparating induced path. However, here it is not possible to specify the ends of the desired path. Moreover, in the hypotheses of Lemma 2.3 there are some technical conditions which arise when we try to produce an internal chain. Note that conditions (iii), (iv), and (v) of Lemma 2.3 are automatically satisfied if G is $\left(4, S \cup\left\{b, b^{\prime}\right\}\right)$-connected. Actually, this is the case in all applications of Lemma 2.3 with the exception of the proof of Lemma 3.15, where the more complicated conditions are required.

Lemma 2.3. Let G be a graph, let $S \subset V(G)$, and let $\left\{b, b^{\prime}\right\} \subseteq V(G)-S$. Suppose
(i) $G-S$ is 2-connected,
(ii) every element of S has a neighbor in $V(G)-\left(S \cup\left\{b, b^{\prime}\right\}\right)$,
(iii) G is $\left(3, S \cup\left\{b, b^{\prime}\right\}\right)$-connected,
(iv) if $|S|=2$, then G is $\left(4, S \cup\left\{b, b^{\prime}\right\}\right)$-connected, and
(v) if $|S| \geq 3$, then there exists some component of $G-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ which has at least two neighbors in S.
Then exactly one of the following holds:
(1) there exist $a, a^{\prime} \in S$ and an induced $a-a^{\prime}$ path P^{\prime} in G such that $V\left(P^{\prime}\right) \cap$ $\left\{b, b^{\prime}\right\}=\emptyset, V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$, and $G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected;
(2) $|S|=2$, and the elements of S can be labeled as a, a^{\prime} such that $\left(G, a, b, a^{\prime}, b^{\prime}\right)$ is planar.
Moreover, one can in $O(|V(G)|+|E(G)|)$ time find a path as in (1) or certify that (2) holds.

Proof. First, suppose that $|S|=2$. Let a, a^{\prime} denote the vertices in S. By (iv) G is $\left(4,\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected. Thus, by Lemma 2.2 exactly one of the following holds:
(a) there exists a nonseparating induced $a-a^{\prime}$ path P^{\prime} such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset$; or
(b) $\left(G, a, b, a^{\prime}, b^{\prime}\right)$ is planar.

Moreover, one can in $O(|V(G)|+|E(G)|)$ time find a path as in (a) or certify that (b) holds. If (a) holds, then P^{\prime} is the required path in (1). If (b) holds, then (2) holds.

Thus, we may assume that $|S| \geq 3$. First, we prove the following.
Claim. There exist $a, a^{*} \in S$ and an $a-a^{*}$ path Q in $G-\left(S-\left\{a, a^{*}\right\}\right)$ such that b and b^{\prime} are contained in a component of $G-V(Q)$. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof of Claim. We consider two cases. See Figure 2 for an illustration of the outcomes of Lemma 2.3.

Fig. 2. Outcomes in Lemma 2.3.

Case 1. $G-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ is not connected.
In this case, there exist edge-disjoint subgraphs G_{1}, G_{2} of $G-S$ such that $G_{1} \cup$ $G_{2}=G-S, V\left(G_{1}\right) \cap V\left(G_{2}\right)=\left\{b, b^{\prime}\right\}$, and $\left|V\left(G_{1}\right)\right| \geq 3 \leq\left|V\left(G_{2}\right)\right|$. Note that such a partition can be found in $O(|V(G)|+|E(G)|)$ time. Since $G-S$ is 2-connected (by (i)), both G_{1} and G_{2} are connected.

By (v) there exists some component K of $G-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ which has at least two neighbors in S. Note that such a component can be found in $O(|V(G)|+|E(G)|)$ time. We may assume that $V(K) \subseteq V\left(G_{1}\right)$. Let $a, a^{*} \in N_{G}(K) \cap S$, and let Q be an $a-a^{*}$ path in $G\left[V(K) \cup\left\{a, a^{*}\right\}\right]$. Since G_{2} is connected, b, b^{\prime} are contained in a component of $G-V(Q)$. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Case 2. $G-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ is connected.
Since $G-S$ is 2-connected by (i), one can find in $O(|V(G)|+|E(G)|)$ time two internally disjoint b - b^{\prime} paths P_{1}, P_{2} in $G-S$. Let a_{1}, a_{2}, a_{3} be distinct vertices in S. For $i=1,2,3$, let $v_{i} \in N_{G}\left(a_{i}\right) \subseteq V(G)-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ (they exist by (ii)). Since $G-\left(S \cup\left\{b, b^{\prime}\right\}\right)$ is connected by assumption, for each $i=1,2,3$, there exists a path Q_{i} from v_{i} to some vertex u_{i} in $\left(V\left(P_{1}\right) \cup V\left(P_{2}\right)\right)-\left\{b, b^{\prime}\right\}$ internally disjoint from $V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Moreover, such paths can be found in $O(|V(G)|+|E(G)|)$ time. Note that at least two (not necessarily distinct) vertices in u_{1}, u_{2}, u_{3} lie on the same path $P_{1}-\left\{b, b^{\prime}\right\}$ or $P_{2}-\left\{b, b^{\prime}\right\}$. By symmetry, we may assume that $u_{1}, u_{2} \in V\left(P_{1}\right)-\left\{b, b^{\prime}\right\}$. Then there exist disjoint paths in $G-\left(S-\left\{a_{1}, a_{2}\right\}\right)$ from a_{1} to a_{2} (the path contained in $\left.Q_{1} \cup Q_{2} \cup\left(P_{1}-\left\{b, b^{\prime}\right\}\right)\right)$ and from b to b^{\prime} (the path P_{2}), respectively. Thus, the result follows by taking $a=a_{1}$ and $a^{*}=a_{2}$. Moreover, it is not hard to see that such paths can be found in $O(|V(G)|+|E(G)|)$ time.

Now given a, a^{*} and Q, we will describe how to find $a^{\prime} \in S$ and an induced $a-a^{\prime}$ path P^{\prime} such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset, V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$, and $G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected. Let G^{\prime} be the graph obtained from G by identifying the vertices in $S-\{a\}$ to a single vertex $a^{\prime \prime}$ and removing the resulting multiple edges. Let $S^{\prime}:=$ $\left\{a, a^{\prime \prime}, b, b^{\prime}\right\}$.

We claim that G^{\prime} is $\left(3, S^{\prime}\right)$-connected. Suppose for a contradiction that there exists $T \subseteq V\left(G^{\prime}\right)$ such that $|T| \leq 2$ and $G^{\prime}-T$ has a component K with $V(K) \cap S^{\prime}=\emptyset$. Clearly $a^{\prime \prime} \in T$ because G is ($3, S \cup\left\{b, b^{\prime}\right\}$)-connected (by (iii)); then either $a \in T$ or
$T-\left\{a^{\prime \prime}\right\}$ is a vertex cut of $G-S$, which is a contradiction since $G-S$ is 2-connected (by (i)). Thus, G^{\prime} is $\left(3, S^{\prime}\right)$-connected.

Note that the $a-a^{*}$ path Q in G corresponds to an $a-a^{\prime \prime}$ path P in G^{\prime}, and $S^{\prime}-$ $\left\{a, a^{\prime \prime}\right\}=\left\{b, b^{\prime}\right\}$ is contained in a component U of $G^{\prime}-V(P)$. Thus, the hypotheses of Lemma 2.1 are satisfied with $G^{\prime}, S^{\prime}, P, a, a^{\prime \prime}, U$ as $G, S, P, a, a^{\prime}, U$, respectively. Hence, there exists a nonseparating induced $a-a^{\prime \prime}$ path $P^{\prime \prime}$ in G^{\prime} such that $V\left(P^{\prime \prime}\right) \cap V(U)=\emptyset$. Moreover, such a path $P^{\prime \prime}$ can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (hence, in $O(|V(G)|+|E(G)|)$ time $)$. The path $P^{\prime \prime}$ corresponds to an induced $a-a^{\prime}$ path P^{\prime} in G for some $a^{\prime} \in S-\{a\}$ such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset$ and $V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$. Since $P^{\prime \prime}$ is nonseparating in $G^{\prime}, G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected. Therefore, a, a^{\prime} and P^{\prime} satisfy (1), and they can be found in $O(|V(G)|+|E(G)|)$ time.

The following lemma is a variation of Lemma 2.3 (by letting $b=b^{\prime}$), and its proof is essentially the same. For the sake of completeness, we include it here.

Lemma 2.4. Let G be a graph, let $S \subseteq V(G)$, and let $b \in V(G)-S$. Suppose
(i) $G-S$ is 2-connected,
(ii) every element of S has a neighbor in $V(G)-(S \cup\{b\})$, and
(iii) G is $(3, S \cup\{b\})$-connected.

Then there exist $a, a^{\prime} \in S$ and an induced $a-a^{\prime}$ path P^{\prime} in G such that $V\left(P^{\prime}\right) \cap\{b\}=\emptyset$, $V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$, and $G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof. Since G is ($3, S \cup\{b\}$)-connected (by (iii)), $|S| \geq 2$, so let $a, a^{*} \in S$. Since $G-S$ is 2 -connected (by (i)), $G-(S \cup\{b\})$ is connected. Since a and a^{*} have a neighbor in $V(G)-(S \cup\{b\})$ (by (ii)), there exists an $a-a^{*}$ path Q in $G-\left(\left(S-\left\{a, a^{*}\right\}\right) \cup\{b\}\right)$. Clearly, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Let G^{\prime} be the graph obtained from G by identifying the vertices in $S-\{a\}$ to a single vertex $a^{\prime \prime}$ and removing the resulting multiple edges. Let $S^{\prime \prime}:=\left\{a, a^{\prime \prime}, b\right\}$.

We claim that G^{\prime} is $\left(3, S^{\prime}\right)$-connected. Suppose for a contradiction that there exists $T \subseteq V\left(G^{\prime}\right)$ such that $|T| \leq 2$ and $G^{\prime}-T$ has a component K with $V(K) \cap S^{\prime}=\emptyset$. Clearly, $a^{\prime \prime} \in T$ because G is ($3, S \cup\{b\}$)-connected (by (iii)). But then either $a \in T$ or $T-\left\{a^{\prime \prime}\right\}$ is a vertex cut of $G-S$, which is a contradiction since $G-S$ is 2 -connected (by (i)). Thus, G^{\prime} is $\left(3, S^{\prime}\right)$-connected.

Note that the $a-a^{*}$ path Q in G corresponds to an $a-a^{\prime \prime}$ path P in G^{\prime}, and $S^{\prime}-$ $\left\{a, a^{\prime \prime}\right\}=\{b\}$ is contained in a component U of $G^{\prime}-V(P)$. Thus, by Lemma 2.1 (with $G^{\prime}, S^{\prime}, P, a, a^{\prime \prime}, U$ as $G, S, P, a, a^{\prime}, U$, respectively), there exists a nonseparating induced $a-a^{\prime \prime}$ path $P^{\prime \prime}$ in G^{\prime} such that $V\left(P^{\prime \prime}\right) \cap V(U)=\emptyset$. Moreover, such a path $P^{\prime \prime}$ can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time). The path $P^{\prime \prime}$ corresponds to an induced $a-a^{\prime}$ path P^{\prime} in G for some $a^{\prime} \in S-\{a\}$ such that $V\left(P^{\prime}\right) \cap\{b\}=\emptyset$ and $V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$. Since $P^{\prime \prime}$ is nonseparating in G^{\prime}, $G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected. So a, a^{\prime} and P^{\prime} are as required, and they can be found in $O(|V(G)|+|E(G)|)$ time.

Some results and algorithms which we use here require that we find an embedding of a planar graph (G, a, b, c, d) in a closed disk such that a, b, c, d occur on the boundary of the disk in that cyclic order. This can be done in linear time using an algorithm of Hopcroft and Tarjan [4] (or a more recent algorithm by Hsu and Shih [5]). For convenience, we state this result as our next lemma.

Lemma 2.5. Let (G, a, b, c, d) be a planar graph. Then one can find in $O(|V(G)|+$ $|E(G)|)$ time an embedding of G in a closed disk such that a, b, c, d occur on the boundary of the disk in that cyclic order.

Let $\left(G, a, b, a^{\prime}, b^{\prime}\right)$ be a planar graph. Then any $a-a^{\prime}$ path in $G-\left\{b, b^{\prime}\right\}$ separates b from b^{\prime}. The next lemma shows that one can find efficiently an $a-a^{\prime}$ path P^{\prime} in $G-$ $\left\{b, b^{\prime}\right\}$ such that $G-V\left(P^{\prime}\right)$ has exactly two components. This will be used in section 3.

Lemma 2.6. Let ($\left.G, a, b, a^{\prime}, b^{\prime}\right)$ be a planar graph with $|V(G)| \geq 5$ and suppose G is $\left(4,\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected. Then there exists an induced $a-a^{\prime}$ path P^{\prime} in G such that $G-V\left(P^{\prime}\right)$ has exactly two components K and K^{\prime} with $b \in V(K)$ and $b^{\prime} \in V\left(K^{\prime}\right)$. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof. Take an embedding of G in a closed disk such that $a, b, a^{\prime}, b^{\prime}$ occur on the boundary of the disk in the cyclic order listed. By Lemma 2.5, this can be done in $O(|V(G)|+|E(G)|)$ time. Let $G^{\prime}:=\left(G-b^{\prime}\right)+\left\{a b, a^{\prime} b\right\}$.

We claim that G^{\prime} is 2-connected. Suppose for a contradiction that G^{\prime} is not 2-connected. Let x be a cut vertex of G^{\prime}. Since $|V(G)| \geq 5$ and G is (4, $\left.\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$ connected, $G-\left\{b, b^{\prime}\right\}$ contains an $a-a^{\prime}$ path, and hence, $\left\{a, a^{\prime}, b\right\}$ is contained in a cycle in G^{\prime}. Therefore, $\left\{a, a^{\prime}, b\right\}$ is contained in an x-bridge of G^{\prime}, and G^{\prime} has another x-bridge B such that $(V(B)-\{x\}) \cap\left\{a, a^{\prime}, b\right\}=\emptyset$. Hence, $B-x$ is a component of $G-T$, where $T:=\left\{x, b^{\prime}\right\}$ and $(V(B)-\{x\}) \cap\left\{a, a^{\prime}, b, b^{\prime}\right\}=\emptyset$, which contradicts the assumption that G is $\left(4,\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected.

Thus, we can assume that $a b, a^{\prime} b$ are in the cycle bounding the infinite face of G^{\prime}. Let P^{\prime} be the $a-a^{\prime}$ subpath of this cycle which avoids b. Note that $N_{G}\left(b^{\prime}\right) \subseteq V\left(P^{\prime}\right)$ and P^{\prime} can be computed in $O(|V(G)|+|E(G)|)$ time.

We claim that $G^{\prime}-V\left(P^{\prime}\right)$ is connected. Suppose for a contradiction that $G^{\prime}-$ $V\left(P^{\prime}\right)$ is not connected. Let \mathcal{K} be the set of components of $G^{\prime}-V\left(P^{\prime}\right)$ which do not contain b. For any $K \in \mathcal{K}$, let $u_{K}, u_{K}^{\prime} \in V\left(P^{\prime}\right)$ such that $N_{G^{\prime}}(K) \cap V\left(P^{\prime}\right) \subseteq$ $V\left(P^{\prime}\left[u_{K}, u_{K}^{\prime}\right]\right)$ and $P^{\prime}\left[u_{K}, u_{K}^{\prime}\right]$ is minimal with respect to this property. If $|\mathcal{K}| \geq 2$, choose $K \in \mathcal{K}$ such that for any $K^{\prime} \neq K$, if $E\left(P\left[u_{K}, u_{K}^{\prime}\right]\right) \cap E\left(P\left[u_{K^{\prime}}, u_{K^{\prime}}^{\prime}\right]\right) \neq \emptyset$, then $P\left[u_{K}, u_{K}^{\prime}\right] \subseteq P\left[u_{K^{\prime}}, u_{K^{\prime}}^{\prime}\right]$; such a component must exist because of planarity. If $|\mathcal{K}|=1$, let $\mathcal{K}=\{K\}$. In either case, $N_{G}\left(P^{\prime}\left(u_{K}, u_{K}^{\prime}\right)\right) \subseteq V(K) \cup\left\{u_{K}, u_{K}^{\prime}, b^{\prime}\right\}$. Thus, $K \cup P^{\prime}\left(u_{K}, u_{K}^{\prime}\right)$ is contained in a component of $G-\left\{u_{K}, u_{K}^{\prime}, b^{\prime}\right\}$ that does not contain any vertex in $\left\{a, a^{\prime}, b, b^{\prime}\right\}$, which contradicts the assumption that G is (4, $\left.\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected.

So $G^{\prime}-V\left(P^{\prime}\right)=G-\left(V\left(P^{\prime}\right) \cup\left\{b^{\prime}\right\}\right)$ is connected. Hence, $G-V\left(P^{\prime}\right)$ has exactly two components K and K^{\prime} with $b \in V(K)$ and $b^{\prime} \in V\left(K^{\prime}\right)$.

We now show that P^{\prime} is an induced path in G. Suppose on the contrary that P^{\prime} is not induced. Let $e=x y \in E(G)-E\left(P^{\prime}\right)$ with $x, y \in V\left(P^{\prime}\right)$. Then $V\left(P^{\prime}(x, y)\right) \neq \emptyset$. Moreover, by planarity $N_{G}\left(P^{\prime}(x, y)\right) \subseteq\left\{x, y, b^{\prime}\right\}$. Then $P^{\prime}(x, y)$ is contained in a component of $G-\left\{x, y, b^{\prime}\right\}$ that does not contain any vertex in $\left\{a, a^{\prime}, b, b^{\prime}\right\}$, which contradicts again the assumption that G is $\left(4,\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected.

Thus, P^{\prime} is a path as required. Moreover, it is easy to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

We conclude this section with another lemma which concerns nonseparating induced paths in planar graphs.

Lemma 2.7. Let $\left(G, a, a^{\prime}, b, b^{\prime}\right)$ be a planar graph with $|V(G)| \geq 5$ and suppose G is $\left(4,\left\{a, a^{\prime}, b, b^{\prime}\right\}\right)$-connected and $G \neq K_{1,4}$. Then there exists a nonseparating induced $a-a^{\prime}$ path P^{\prime} in G such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset$. Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof. For convenience, let $S:=\left\{a, a^{\prime}, b, b^{\prime}\right\}$. Take an embedding of G in a closed disk such that $a, a^{\prime}, b, b^{\prime}$ occur on the boundary of the disk in the cyclic order listed. By Lemma 2.5, this can be done in $O(|V(G)|+|E(G)|)$ time. Let $G^{\prime}:=G+\left\{a b^{\prime}, a^{\prime} b\right\}$.

We claim that G^{\prime} is 2-connected. Suppose for a contradiction that G^{\prime} is not 2connected. Let x be a cut vertex of G^{\prime}. Since $|V(G)| \geq 5$ and G (and hence, G^{\prime}) is $(4, S)$-connected, it follows that any component of $G^{\prime}-x$ either contains vertices only in S or contains at least one vertex in $V(G)-S$ and at least three vertices in S. Since $a^{\prime} b, a b^{\prime} \in E\left(G^{\prime}\right), G^{\prime}-x$ cannot have both kinds of components. Therefore, every component of $G^{\prime}-x$ contains vertices only in S. Moreover, since $|V(G)| \geq 5$, $x \notin S$. But then, it is easy to see that $\left(G, a, a^{\prime}, b, b^{\prime}\right)$ must be isomorphic to $K_{1,4}$ with x as the vertex of degree four, which contradicts the hypothesis. Hence, G^{\prime} is 2-connected.

Thus, we can assume that $a b^{\prime}, a^{\prime} b$ are in the cycle bounding the infinite face of G^{\prime}. Let P^{\prime} be the $a-a^{\prime}$ subpath of this cycle which avoids b and b^{\prime}. Note that P^{\prime} is an $a-a^{\prime}$ path in G and such a path can be found in $O(|V(G)|+|E(G)|)$ time.

We claim that P^{\prime} is nonseparating in G. Suppose for a contradiction that $G^{\prime}-$ $V\left(P^{\prime}\right)$ is not connected. Note that b and b^{\prime} are contained in a component of $G-V\left(P^{\prime}\right)$. Let \mathcal{K} be the set of components of $G^{\prime}-V\left(P^{\prime}\right)$ which contain neither b nor b^{\prime}. For any $K \in \mathcal{K}$, let $u_{K}, u_{K}^{\prime} \in V\left(P^{\prime}\right)$ such that $N_{G^{\prime}}(K) \cap V\left(P^{\prime}\right) \subseteq V\left(P^{\prime}\left[u_{K}, u_{K}^{\prime}\right]\right)$ and $P^{\prime}\left[u_{K}, u_{K}^{\prime}\right]$ is minimal with respect to this property. If $|\mathcal{K}| \geq 2$, choose $K \in \mathcal{K}$ such that for any $K^{\prime} \neq K$, if $E\left(P\left[u_{K}, u_{K}^{\prime}\right]\right) \cap E\left(P\left[u_{K^{\prime}}, u_{K^{\prime}}^{\prime}\right]\right) \neq \emptyset$, then $P\left[u_{K}, u_{K}^{\prime}\right] \subseteq$ $P\left[u_{K^{\prime}}, u_{K^{\prime}}^{\prime}\right]$; such a component must exist because of planarity. If $|\mathcal{K}|=1$, let $\mathcal{K}=$ $\{K\}$. In either case, $N_{G}\left(P^{\prime}\left(u_{K}, u_{K}^{\prime}\right)\right) \subseteq V(K) \cup\left\{u_{K}, u_{K}^{\prime}\right\}$. Thus, $K \cup P^{\prime}\left(u_{K}, u_{K}^{\prime}\right)$ is contained in a component of $G-\left\{u_{K}, u_{K}^{\prime}\right\}$ that does not contain any vertex in S, which contradicts the assumption that G is $(4, S)$-connected. Thus, $G-V\left(P^{\prime}\right)$ is connected.

Next we show that P^{\prime} is an induced path in G. Suppose by contradiction that P^{\prime} is not induced. Let $e=x y \in E(G)-E\left(P^{\prime}\right)$ such that $x, y \in V\left(P^{\prime}\right)$. Then $V\left(P^{\prime}(x, y)\right) \neq \emptyset$. Moreover, by planarity $N_{G}\left(P^{\prime}(x, y)\right) \subseteq\{x, y\}$. Then $P^{\prime}(x, y)$ is contained in a component of $G-\{x, y\}$ that does not contain any vertex in S, which again contradicts the assumption that G is $(4, S)$-connected.

Thus, P^{\prime} is a nonseparating induced $a-a^{\prime}$ path in G such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset$ as required.
3. Internal chains. In this section, we prove the following theorem, which will be used to construct internal chains in a nonseparating chain decomposition. See Figure 3 for an illustration of the statement of the result. Recall that, for a graph K and $u, v \in V(K), K-u v$ denotes the graph with vertex set $V(K)$ and edge set $E(K)-\{u v\}$ (note that $u v$ need not be an edge of K).

Definition 3.1. Let G be a 4-connected graph, let F be a subgraph of G, and let $r \in V(F)$ such that $G_{F}:=G-(V(F)-\{r\})$ is 2 -connected. For any distinct $a, a^{\prime} \in V(F)$, an $a-a^{\prime}$ path in $G-a a^{\prime}$ is said to be a feasible F-path if the following hold:
(i) $V(P) \cap V(F)=\left\{a, a^{\prime}\right\}$ and P is an induced path in $G-a a^{\prime}$;
(ii) $P\left(a, a^{\prime}\right)$ is a non-separating path in G_{F};
(iii) r is contained in a nontrivial block B_{P} of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$; and
(iv) if $r \in\left\{a, a^{\prime}\right\}$, then r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$.

Remark 1. Condition (iv) in Definition 3.1 is necessary for a technical reason, and the reader may want to assume in a first reading that $r \notin\left\{a, a^{\prime}\right\}$ to become familiar with the proof of the next result.

TheOrem 3.2. Let G be a 4-connected graph, let F be a subgraph of G, and let $r \in V(F)$ such that $G_{F}:=G-(V(F)-\{r\})$ is 2-connected. Suppose that G has a feasible $a-a^{\prime} F$-path P for some $a, a^{\prime} \in V(F)$. Then there exists a good F-chain

Fig. 3. Illustration for Theorem 3.2 and Notation and Definition 3.3: one with $r \notin\left\{a, a^{\prime}\right\}$ and the other with $r \in\left\{a, a^{\prime}\right\}$.
H in G such that $G_{F}-I(H)$ is 2-connected, $G[V(F) \cup I(H)]$ is 2-connected, and $B_{P} \subseteq G_{F}-I(H)$. Moreover, such a chain can be found in $O(|V(G)||E(G)|)$ time.

Throughout the rest of this section, we fix the following notation.
Notation and definition 3.3. Let G be a 4-connected graph, let F be a subgraph of G, and let $r \in V(F)$ such that $G_{F}:=G-(V(F)-\{r\})$ is 2-connected.

Suppose G has a feasible a-a' F-path P and r is contained in a nontrivial block B_{P} of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$.

Let \mathcal{P}_{P} be the set of feasible F-paths P^{\prime} (with ends, say u, u^{\prime}) in G such that $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$. For each $P^{\prime} \in \mathcal{P}_{P}$ with ends, say u, u^{\prime}, let $B_{P^{\prime}}$ denote the block of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ which contains B_{P}. We say that $P^{\prime} \in \mathcal{P}_{P}$ is a B_{P-} augmenting path if $\left|V\left(B_{P}\right)\right|<\left|V\left(B_{P^{\prime}}\right)\right|$.

We will describe an algorithm for finding a good F-chain as required in Theorem 3.2. The idea of the algorithm is roughly the following. At the beginning of each iteration we have vertices $a, a^{\prime} \in V(F)$ and a feasible $a-a^{\prime} F$-path P in G. The algorithm iteratively tries to find a B_{P}-augmenting path P^{\prime} with ends u, u^{\prime}, and start a new iteration with $u, u^{\prime}, P^{\prime}$ as a, a^{\prime}, P, respectively. Note that $r, u, u^{\prime}, P^{\prime}, F$ and G (as r, a, a^{\prime}, P, F and G, respectively) satisfy the hypotheses of Theorem 3.2 with B_{P} enlarged to $B_{P^{\prime}}$. When the algorithm does not find such a path, it finds a good F-chain as required in Theorem 3.2.

The next lemma says that (assuming G has a feasible $a-a^{\prime} F$-path P) one can find in $O(|V(G)|+|E(G)|)$ time a feasible $u-u^{\prime} F$-path P^{\prime} such that $\left|V\left(P^{\prime}\right)\right|=3$ or $N_{G}\left(P^{\prime}\left(u, u^{\prime}\right)\right) \cap V(F) \subseteq\left\{u, u^{\prime}\right\} \cup\{r\}$. The latter condition is equivalent to requiring that $N_{G}\left(P^{\prime}\left(u, u^{\prime}\right)\right) \cap V(F)=\left\{u, u^{\prime}\right\}$ when $r \in\left\{u, u^{\prime}\right\}$ or that $N_{G}\left(P^{\prime}\left(u, u^{\prime}\right)\right) \cap V(F) \subseteq$ $\left\{u, u^{\prime}, r\right\}$ when $r \notin\left\{u, u^{\prime}\right\}$ (see Figure 3).

Lemma 3.4. There exist $u, u^{\prime} \in V(F)$ and a feasible $u-u^{\prime} F$-path P^{\prime} such that
(1) $\left|V\left(P^{\prime}\right)\right|=3$ or $N_{G}\left(P\left(u, u^{\prime}\right)\right) \cap V(F) \subseteq\left\{u, u^{\prime}\right\} \cup\{r\}$, and
(2) $B_{P} \subseteq B_{P^{\prime}}$.

Moreover, such a path can be found in $O(|V(G)|+|E(G)|)$ time.
Proof. If either $|V(P)|=3$ or $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$, then the result follows with $P^{\prime}:=P$.

Thus, assume that $|V(P)| \geq 4$ and $\left(N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F)\right)-\left(\left\{a, a^{\prime}\right\} \cup\{r\}\right) \neq \emptyset$. By symmetry, we may assume that $a \neq r$. Let $v \in V\left(P\left(a, a^{\prime}\right)\right)$ such that v has a neighbor in $V(F)-\left(\left\{a, a^{\prime}\right\} \cup\{r\}\right)$, and subject to this, $P[a, v]$ is minimal. If v has two neighbors in $V(F)-\{r, a\}$, say u and u^{\prime}, let $P^{\prime}:=\left(u, v, u^{\prime}\right)$. In this case, (1) holds with $\left|V\left(P^{\prime}\right)\right|=3$. If v has exactly one neighbor in $V(F)-\{r, a\}$, say u, then let $P^{\prime}:=P[a, v]+\{u, v u\}$ and $u^{\prime}:=a$. Note that in both cases $r \notin\left\{u, u^{\prime}\right\}$. By the choice of $v, N_{G}\left(P\left(u, u^{\prime}\right)\right) \cap V(F) \subseteq\left\{u, u^{\prime}\right\} \cup\{r\}$, and hence, (1) holds. Moreover, since $G_{F}-V\left(P\left(a, a^{\prime}\right)\right) \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$, we have $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$, and hence, (2) holds.

Finally, we show that P^{\prime} is a feasible $u-u^{\prime} F$-path. Since P is induced in $G-a a^{\prime}$, P^{\prime} is induced in $G-u u^{\prime}$. Clearly $V\left(P^{\prime}\right) \cap V(F)=\left\{u, u^{\prime}\right\}$, so (i) of Definition 3.1 holds. Since G_{F} is 2 -connected and $P\left(a, a^{\prime}\right)$ is an induced path in $G_{F}-a a^{\prime}$, if $V\left(P\left(v, a^{\prime}\right)\right) \neq \emptyset$, then $N_{G_{F}}\left(P\left(v, a^{\prime}\right)\right) \cap\left(V\left(G_{F}\right)-V\left(P\left(a, a^{\prime}\right)\right)\right) \neq \emptyset$. Thus, since $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is connected, $P^{\prime}\left(u, u^{\prime}\right)$ is nonseparating in G_{F}, so (ii) of Definition 3.1 holds. Also, r is contained in a nontrivial block of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ because $r \in B_{P} \subseteq G_{F}-$ $V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$, so (iii) of Definition 3.1 holds. Since $r \notin\left\{u, u^{\prime}\right\}$, we do not need to verify (iv) of Definition 3.1.

Therefore, P^{\prime} is a feasible F-path as required, and it is not hard to see that such a path P^{\prime} can be found in $O(|V(G)|+|E(G)|)$ time.

Assumption 1. Using Lemma 3.4, we can preprocess a feasible F-path at the beginning of each iteration (in $O(|V(G)|+|E(G)|)$ time). Henceforth, we may assume that for the (current) feasible F-path $P,|V(P)|=3$ or $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq$ $\left\{a, a^{\prime}\right\} \cup\{r\}$. We may also assume that $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is not 2-connected; otherwise, $H:=P$ gives an F-chain as required in Theorem 3.2: H is an up F-chain (where
each of its blocks is trivial), or H is an elementary F-chain. Moreover, $G_{F}-I(H)=$ $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is 2-connected.

Notation 3.5. Let $X_{P}:=N_{G_{F}}\left(G_{F}-V\left(B_{P}\right)\right)$. For each B_{P}-bridge B of $G_{F}-$ $V\left(P\left(a, a^{\prime}\right)\right)$, let r_{B} denote the unique vertex in $V(B) \cap V\left(B_{P}\right)$. Note that $r_{B} \in X_{P}$. Also, if $r \in\left\{a, a^{\prime}\right\}$, then $r \in X_{P}$.

Remark 2. Note that since G_{F} is 2-connected, we have $\left|X_{P}\right| \geq 2$. Moreover, if B is a B_{P}-bridge of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, then $V(B)-\left\{r_{B}\right\}$ has a neighbor in $V\left(P\left(a, a^{\prime}\right)\right)$.

The next lemma shows that if, for every B_{P}-bridge B of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right), N_{G}(B-$ $\left.r_{B}\right) \subseteq V(P)$, then one can find efficiently a good F-chain (in fact, an up F-chain) H as required in Theorem 3.2 by invoking Theorem 1.7.

Lemma 3.6. Suppose that for every B_{P}-bridge B of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right), N_{G}(B-$ $\left.r_{B}\right) \subseteq V(P)$. Then there exists an a-a' up F-chain H in G such that $G_{F}-I(H)$ is 2 -connected, $G[V(F) \cup I(H)]$ is 2-connected, and $B_{P} \subseteq G_{F}-I(H)$. Moreover, such a chain can be found in $O(|V(G)||E(G)|)$ time.

Proof. Suppose first that $r \notin\left\{a, a^{\prime}\right\}$ (see Figure 3). Let G^{\prime} be the graph obtained from G_{F} by adding $\left\{a, a^{\prime}\right\}$ and the edges of G from $\left\{a, a^{\prime}\right\}$ to $V\left(G_{F}\right)-\{r\}$. Note that P is a nonseparating induced $a-a^{\prime}$ path in G^{\prime}. Note also that B_{P} is a nontrivial block of $G^{\prime}-V(P)$. Let $X_{P}^{\prime}=N_{G^{\prime}}\left(G^{\prime}-V\left(B_{P}\right)\right)$.

We claim that $G^{\prime}-\left(V\left(B_{P}\right)-X_{P}^{\prime}\right)$ is $\left(4, X_{P}^{\prime} \cup\left\{a, a^{\prime}\right\}\right)$-connected. For convenience, let $K:=G^{\prime}-\left(V\left(B_{P}\right)-X_{P}^{\prime}\right)$. Since, for any B_{P}-bridge B of $G^{\prime}-V(P)=G_{F}-$ $V\left(P\left(a, a^{\prime}\right)\right), V(B)-\left\{r_{B}\right\}$ has a neighbor in $V\left(P\left(a, a^{\prime}\right)\right)$, it follows that K is connected and $K-\left(X_{P}^{\prime} \cup\left\{a, a^{\prime}\right\}\right)$ is a component of $G-\left(X_{P}^{\prime} \cup\left\{a, a^{\prime}\right\}\right)$. Hence, because G is 4 -connected, K is $\left(4, X_{P}^{\prime} \cup\left\{a, a^{\prime}\right\}\right)$-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with $G^{\prime}, a, a^{\prime}, P, B_{P}, X_{P}^{\prime}$ as G, a, b, P, B_{P}, X_{P}, respectively. Hence, there exists a planar $a-a^{\prime}$ chain H in G^{\prime} such that $G^{\prime}-V(H)=G_{F}-I(H)$ is 2-connected and $B_{P} \subseteq G^{\prime}-V(H)=G_{F}$ $I(H)$. Moreover, such a chain can be found in $O\left(\left|V\left(G^{\prime}\right)\right|\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)||E(G)|)$ time $)$. Note also that H is an up F-chain in G. Hence, $G[V(F) \cup$ $I(H)]$ is 2-connected, so the result follows.

Now suppose that $r \in\left\{a, a^{\prime}\right\}$, and without loss of generality, let $r=a^{\prime}$ (see Figure 3). Let b be the neighbor of r in P. Let G^{\prime} be the graph obtained from G_{F} by adding a and the edges of G from a to $V\left(G_{F}\right)-\{r\}$. Note that $b \in V\left(G^{\prime}\right)$ and $P[a, b]$ is a nonseparating induced path in G^{\prime}. Note also that B_{P} is a nontrivial block of $G^{\prime}-V(P[a, b])=G_{F}-V(P(a, r))$. Let $X_{P}^{\prime}=N_{G^{\prime}}\left(G^{\prime}-V\left(B_{P}\right)\right)$. Since P is a feasible a - r-path, r is not a cut vertex of $G^{\prime}-V(P[a, b])=G_{F}-V(P(a, r)$ (in particular, there is no B_{P}-bridge in $G^{\prime}-V(P[a, b])$ containing $\left.r\right)$.

We claim that $G^{\prime}-\left(V\left(B_{P}\right)-X_{P}^{\prime}\right)$ is $\left(4, X_{P}^{\prime} \cup\{a, b\}\right)$-connected. For convenience, let $K:=G^{\prime}-\left(V\left(B_{P}\right)-X_{P}^{\prime}\right)$. Since, for any B_{P}-bridge B of $G_{F}-V(P(a, r))$, $V(B)-\left\{r_{B}\right\}$ has at least two neighbors in $V(P(a, r))$ (because G is 4-connected), it follows that $V(B)-\left\{r_{B}\right\}$ has at least one neighbor in $V(P(a, b))$. Hence, K is connected and $K-\left(X_{P}^{\prime} \cup\{a, b\}\right)$ is a component of $G-\left(X_{P}^{\prime} \cup\{a, b\}\right)$. Since G is 4 -connected, K is $\left(4, X_{P}^{\prime} \cup\{a, b\}\right)$-connected.

Thus, the hypotheses of Theorem 1.7 are satisfied with $G^{\prime}, a, b, P[a, b], B_{P}, X_{P}^{\prime}$ as G, a, b, P, B_{P}, X_{P}, respectively. Hence, there exists a planar $a-b$ chain H^{\prime} in G^{\prime} such that $G^{\prime}-V\left(H^{\prime}\right)$ is 2-connected and $B_{P} \subseteq G^{\prime}-V\left(H^{\prime}\right)$. Moreover, such a chain can be found in $O\left(\left|V\left(G^{\prime}\right)\right|\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, $O(|V(G) \| E(G)|)$ time). Since b is the only neighbor of r in $V(P)-\{a, r\}$ and no B_{P}-bridge in $G^{\prime}-V(P[a, b])$ contains $r, r \notin N_{G}\left(V\left(H^{\prime}\right)-\{a, b\}\right)$. Thus, $H:=H^{\prime}+r b$ is an up a-r F-chain in G (recall

Fig. 4. Graph H in the proof of Lemma 3.7.
$\left.a^{\prime}=r\right)$, so $G[V(F) \cup I(H)]$ is 2-connected. Note also that $G_{F}-I(H)=G^{\prime}-V\left(H^{\prime}\right)$ is 2-connected, and hence, the result follows.

Next, we show that if $\left|X_{P}\right|=2$, then one can find efficiently either a B_{P} augmenting path or a good F-chain as required in Theorem 3.2.

Lemma 3.7. Suppose that $\left|X_{P}\right|=2$, and let v, v^{\prime} be the vertices in X_{P}. Then exactly one of the following holds:
(1) there exists a B_{P}-augmenting path; or
(2) $H:=\left(G_{F}-\left(V\left(B_{P}\right)-X_{P}\right)\right)-v v^{\prime}$ is a down $v-v^{\prime} F$-chain in G such that $G_{F}-I(H)$ is 2-connected and $G[V(F) \cup I(H)]$ is 2-connected.
Moreover, one can in $O(|V(G)|+|E(G)|)$ time either find a path as in (1) or certify that (2) holds.

Proof. Let $H:=\left(G_{F}-\left(V\left(B_{P}\right)-X_{P}\right)\right)-v v^{\prime}$. Since G_{F} is 2-connected and $X_{P}=\left\{v, v^{\prime}\right\}, H$ is a $v-v^{\prime}$ chain in G and $N_{G}\left(H-\left\{v, v^{\prime}\right\}\right) \subseteq V(F-r) \cup\left\{v, v^{\prime}\right\}$. See Figure 4 for an example. Let $H:=v_{0} B_{1} v_{1} \ldots v_{k-1} B_{k} v_{k}$, where $v_{0}=v$ and $v_{k}=v^{\prime}$. This decomposition of H into blocks can be computed in $O(|V(G)|+|E(G)|)$ time. If every block of H is trivial, then H is a down F-chain, $G_{F}-I(H)=B_{P}$ is 2-connected, and $G[V(F) \cup I(H)]$ is 2-connected, so (2) holds.

Thus, we may assume that H contains a nontrivial block. For each nontrivial block B_{i}, let $S_{i}:=V(F-r) \cap N_{G}\left(B_{i}-\left\{v_{i-1}, v_{i}\right\}\right)$, and let G_{i} be the graph obtained from B_{i} by adding S_{i} and the edges of G from S_{i} to $V\left(B_{i}\right)-\left\{v_{i-1}, v_{i}\right\}$. Note that $G_{i}-S_{i}=B_{i}$ is 2-connected and $B_{i}-\left\{v_{i-1}, v_{i}\right\}$ is a union of components of $G-\left(S_{i} \cup\left\{v_{i-1}, v_{i}\right\}\right)$. Because G is 4-connected, G_{i} is $\left(4, S_{i} \cup\left\{v_{i-1}, v_{i}\right\}\right)$-connected, and every component of $B_{i}-\left\{v_{i-1}, v_{i}\right\}$ has at least two neighbors in S_{i}. Thus, the hypotheses of Lemma 2.3 are satisfied with $G_{i}, S_{i}, v_{i-1}, v_{i}$ as G, S, b, b^{\prime}, respectively.

Hence, either (a) there exist $u_{i}, u_{i}^{\prime} \in S_{i}$ and an induced u_{i} - u_{i}^{\prime} path P_{i}^{\prime} in G_{i} such that $V\left(P_{i}\right) \cap\left\{v_{i-1}, v_{i}\right\}=\emptyset, V\left(P_{i}\right) \cap S_{i}=\left\{u_{i}, u_{i}^{\prime}\right\}$, and $G_{i}-\left(V\left(P_{i}\right) \cup S_{i}\right)$ is connected, or (b) $\left|S_{i}\right|=2$ and the elements of S_{i} can be labeled as u_{i}, u_{i}^{\prime} such that $\left(G_{i}, v_{i-1}, u_{i}, v_{i}, u_{i}^{\prime}\right)$ is planar. Moreover, one can in $O\left(\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|\right)$ time find a path as in (a) or certify that (b) holds. If (a) holds for some nontrivial block B_{i}, then P_{i}^{\prime} is a B_{P}-augmenting path for the following reasons: (i)-(iii) of Definition 3.1 hold,
$r \notin\left\{u, u^{\prime}\right\}$ (so (iv) of Definition 3.1 holds), and there exists a $v-v^{\prime}$ path contained in $H-V\left(P_{i}^{\prime}\left(u_{i}, u_{i}^{\prime}\right)\right.$) (so B_{P} is properly contained in $\left.B_{P_{i}^{\prime}}\right)$. If (b) holds for every nontrivial block B_{i}, then H is clearly a down F-chain, $G[V(F) \cup I(H)]$ is 2 -connected (because G is 4 -connected, and so $G_{i}-\left\{v_{i-1}, v_{i}\right\}$ is a u_{i} - u_{i}^{\prime} chain), and $G_{F}-I(H)$ is 2-connected.

One can verify that either (1) or (2) holds in $O(|V(G)|+|E(G)|)$ time because if (b) holds for a nontrivial block B_{i}, then $\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|=O\left(\left|V\left(B_{i}\right)\right|+\left|E\left(B_{i}\right)\right|\right)$, and if (a) holds for some G_{i}, then $\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|=O(|V(G)|+|E(G)|)$. In the latter case, we find a B_{P}-augmenting path and we stop. Thus, this verification can be carried out in $O(|V(G)|+|E(G)|)$ time.

The following lemma shows that if $\left|X_{P}\right| \geq 3$ and $|V(P)|=3$, then one can find efficiently a B_{P}-augmenting path.

Lemma 3.8. Suppose that $\left|X_{P}\right| \geq 3$ and $|V(P)|=3$. Then exactly one of the following holds:
(1) there exists a B_{P}-augmenting path; or
(2) P is an elementary F-chain in G such that $G_{F}-I(P)$ is 2-connected and $G[V(F) \cup I(P)]$ is 2 -connected.
Moreover, one can in $O(|V(G)|+|E(G)|)$ time either find a path as in (1) or certify that (2) holds.

Proof. If $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is 2-connected, then P is an elementary F-chain in G, $G_{F}-I(P)$ is 2-connected, and $G[V(F) \cup I(P)]$ is 2-connected, so (2) holds. Note, this can be checked in $O(|V(G)|+|E(G)|)$ time.

So we may assume that $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is not 2-connected. Let K be a B_{P-} bridge of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and let v denote the unique vertex in $V\left(P\left(a, a^{\prime}\right)\right)$. If K is 2-connected, then let $B:=K$ and $b:=r_{K}$. Otherwise let B be an endblock of K not containing r_{K}, and let b denote the cut vertex of K contained in $V(B)$. Since G_{F} is 2-connected, $v \in N_{G}(B-b)$. Note that B can be computed in $O(|V(G)|+|E(G)|)$ time.

First, suppose that B is trivial, and let w be the unique vertex in $V(B-b)$. Since G is 4 -connected, w has at least three neighbors in $V(F-r) \cup\{v\}$, and hence, it has two neighbors u, u^{\prime} in $V(F-r)$. Let $P^{\prime}:=\left(u, w, u^{\prime}\right)$. We claim that P^{\prime} is a feasible F-path. Clearly, P^{\prime} is an induced path in $G-u u^{\prime}$ and $V\left(P^{\prime}\right) \cap V(F)=\left\{u, u^{\prime}\right\}$. Since G_{F} is 2-connected, $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)=G_{F}-w$ is connected. Thus, $P^{\prime}\left(u, u^{\prime}\right)$ is nonseparating in G_{F}. Also $r \in V\left(B_{P}\right)$ and $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$. Therefore, since $r \notin\left\{u, u^{\prime}\right\}, P^{\prime}$ is a feasible F-path. Since $\left|X_{P}\right| \geq 3$, there exists a path (containing v) with ends in $X_{P}-\left\{r_{B}\right\}$ which is internally disjoint from $V\left(B_{P}\right) \cup V(B)$. Therefore, B_{P} is properly contained in $B_{P^{\prime}}$, and hence, P^{\prime} is a B_{P}-augmenting path.

Thus, we may assume that B is nontrivial, so B is 2 -connected. Let $S:=N_{G}(B-$ $b)-\{b, v\}$, and let G^{\prime} be obtained from B by adding S and the edges of G from S to $V(B)-\{b\}$. Note that $S \subseteq V(F-r)$ and $G^{\prime}-S=B$ is 2-connected. Since G is 4-connected, $G\left[V\left(G^{\prime}\right) \cup\{v\}\right]$ is $(4, S \cup\{b, v\})$-connected, and hence, G^{\prime} is $(3, S \cup\{b\})$ connected. By Lemma 2.4 (with G^{\prime}, b, S as G, b, S, respectively) there exist $u, u^{\prime} \in S$ and an induced u - u^{\prime} path P^{\prime} in G^{\prime} such that $V\left(P^{\prime}\right) \cap\{b\}=\emptyset, V\left(P^{\prime}\right) \cap S=\left\{u, u^{\prime}\right\}$, and $G^{\prime}-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected. Moreover, such a path can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\right.$ $\left.\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time).

We claim that P^{\prime} is a feasible F-path. Clearly, P^{\prime} is an induced path in $G-u u^{\prime}$ and $V\left(P^{\prime}\right) \cap V(F)=\left\{u, u^{\prime}\right\}$. Since $G^{\prime}-\left(V\left(P^{\prime}\right) \cup S\right)=B-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ is connected and $b \notin V\left(P^{\prime}\right)$, we have that $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ is connected. Thus, $P^{\prime}\left(u, u^{\prime}\right)$ is nonseparating in G_{F}. Also $r \in V\left(B_{P}\right)$, and $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$. Since $r \notin S$,

Fig. 5. Example for Notation 3.9 with $X_{P}=\left\{r_{1}, r_{2}, r_{3}, r_{4}\right\}$. Note that the edges $r_{1} a, r_{2} a^{\prime}$ are not contained in any H_{i}.
$r \notin\left\{u, u^{\prime}\right\}$, so P^{\prime} is a feasible F-path. Furthermore, since $\left|X_{P}\right| \geq 3$, there exists a path (containing v) with ends in $X_{P}-\left\{r_{B}\right\}$ which is internally disjoint from $V\left(B_{P}\right) \cup$ $V(B)$. Therefore, B_{P} is properly contained in $B_{P^{\prime}}$, and hence, P^{\prime} is a B_{P}-augmenting path.

By Lemmas 3.6, 3.7, and 3.8, we need to deal only with the case where $\left|X_{P}\right| \geq 3$, $|V(P)| \geq 4$, and for some B_{P}-bridge B of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right), B-r_{B}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Our aim is to prove that we can find either a B_{P}-augmenting path or a triangle F-chain H such that $G_{F}-I(H)$ is 2-connected. In order to do this, we need to introduce some notation and prove auxiliary results.

Notation 3.9. For any $x, y \in V(P)$, we denote $x \leq y$ if $x \in V(P[a, y])$. If $x \leq y$ and $x \neq y$, then we write $x<y$. In this case, we say that x is lower than y, or y is higher than x.

Let $X_{P}:=\left\{r_{1}, \ldots, r_{p}\right\}$. For each $i, 1 \leq i \leq p$, if r_{i} is a cut vertex of $G_{F}-$ $V\left(P\left(a, a^{\prime}\right)\right)$, then let $V_{i}:=\bigcup V(B)$, where the union is taken over all the B_{P}-bridges B of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ with $r_{B}=r_{i}$; if r_{i} is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, then let $V_{i}:=\left\{r_{i}\right\}$.

For each i such that $V_{i} \neq\left\{r_{i}\right\}$, let $x_{i}, y_{i} \in V(P)$ with $x_{i} \leq y_{i}$ such that G has an edge from x_{i} (y_{i}, respectively) to V_{i} which is not an edge from $\left\{a, a^{\prime}\right\}$ to r_{i}, and subject to this, $P\left[x_{i}, y_{i}\right]$ is maximal. Note that we may have $x_{i}=a$ or $y_{i}=a^{\prime}$, but $r \notin\left\{x_{i}, y_{i}\right\}$ because B_{P} is a block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$.

Let $P_{i}:=P\left[x_{i}, y_{i}\right]$, and let H_{i} be the graph obtained from $G\left[V_{i} \cup V\left(P_{i}\right)\right]$ by removing all edges from $\left\{a, a^{\prime}\right\}$ to r_{i}. Let $\mathcal{H}:=\left\{H_{i}: 1 \leq i \leq p, V_{i} \neq\left\{r_{i}\right\}\right\}$. We say that $H_{i} \in \mathcal{H}$ is adjacent to F if $N_{G}\left(V_{i}-\left\{r_{i}\right\}\right) \cap\left(V(F-r)-\left\{a, a^{\prime}\right\}\right) \neq \emptyset$. See Figure 5 for an example.

Lemma 3.10. Every $H_{i} \in \mathcal{H}$ is an $r_{i}-x_{i}$ (and also an $r_{i}-y_{i}$) chain. Moreover, no vertex of P_{i} is a cut vertex of H_{i}, and P_{i} is contained in an endblock of H_{i}.

Proof. Since $G\left[V_{i}\right]=H_{i}-V\left(P_{i}\right)$ is connected and because H_{i} has edges from both x_{i} and y_{i} to V_{i}, no vertex of P_{i} is a cut vertex of H_{i}, and hence, P_{i} is contained in a
block of H_{i}. We claim that if B is an endblock of H_{i}, then $r_{i} \in V(B)$ or $V\left(P_{i}\right) \subseteq V(B)$ (and hence, we have Lemma 3.10). Suppose for a contradiction that B is an endblock of H_{i} and B contains neither r_{i} nor any vertex in $V\left(P_{i}\right)$. Let v be the cut vertex of H_{i} contained in $V(B)$. Then $B-v$ is a component of $G_{F}-v$, which is a contradiction, since G_{F} is 2-connected. Similarly, we can show that H_{i} is an $r_{i}-y_{i}$ chain.

Notation 3.11. For each $H_{i} \in \mathcal{H}$ with $x_{i} \neq y_{i}$, let A_{i} denote the block of H_{i} containing P_{i}. If $A_{i} \neq H_{i}$, then let b_{i} denote the cut vertex of H_{i} contained in A_{i}. If $A_{i}=H_{i}$, then let $b_{i}:=r_{i}$.

The next lemma illustrates two situations when we can find a B_{P}-augmenting path.

Lemma 3.12. Assume that $\left|X_{P}\right| \geq 3$, and let $H_{i} \in \mathcal{H}$. Suppose that one of the following holds:
(i) $x_{i}=y_{i}$; or
(ii) $x_{i} \neq y_{i}$, and H_{i} contains at least three blocks or H_{i} contains a nontrivial block other than A_{i}.
Then one can find a B_{P}-augmenting path in $O(|V(G)|+|E(G)|)$ time.
Proof. If $x_{i}=y_{i}$, then let $H:=H_{i}$. If $x_{i} \neq y_{i}$, then let $H:=H_{i}-\left(V\left(A_{i}\right)-\left\{b_{i}\right\}\right)$. Note that H is an $r_{i}-x_{i}$ chain if $x_{i}=y_{i}$, and H is an $r_{i}-b_{i}$ chain if $x_{i} \neq y_{i}$. Moreover, since (i) or (ii) holds, H is not induced by an edge.

Let $H:=v_{0} B_{1} v_{1} \ldots v_{k-1} B_{k} v_{k}$ with $v_{0}=r_{i}, v_{k}=x_{i}$ if $x_{i}=y_{i}$, and $v_{k}=b_{i}$ if $x_{i} \neq y_{i}$. This decomposition of H_{i} into blocks can be computed in $O(|V(G)|+|E(G)|)$ time.

Case 1. There exists $j \in\{1, \ldots, k\}$ such that B_{j} is nontrivial.
Let $S:=N_{G}\left(B_{j}-\left\{v_{j-1}, v_{j}\right\}\right)-\left\{v_{j-1}, v_{j}\right\}$. Note that $S \subseteq V(F-r)-\left\{a, a^{\prime}\right\}$ because B_{P} is a block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Let G^{\prime} be the graph obtained from B_{j} by adding S and the edges of G from S to $V\left(B_{j}\right)-\left\{v_{j-1}, v_{j}\right\}$. Note that $G^{\prime}-S=B_{j}$ is 2 -connected and G^{\prime} is ($4, S \cup\left\{v_{j-1}, v_{j}\right\}$)-connected (because G is 4 -connected). Therefore, the hypotheses of Lemma 2.3 are satisfied with $G^{\prime}, S, v_{j-1}, v_{j}$ as G, S, b, b^{\prime}, respectively. Then by Lemma 2.3 exactly one of the following occurs:
(1) there exist $u, u^{\prime} \in S$ and an induced $u-u^{\prime}$ path P^{\prime} in G^{\prime} such that $V\left(P^{\prime}\right) \cap$ $\left\{v_{j-1}, v_{j}\right\}=\emptyset, V\left(P^{\prime}\right) \cap S=\left\{u, u^{\prime}\right\}$, and $G^{\prime}-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected; or
(2) $|S|=2$, and the elements of S can be labeled as u, u^{\prime} such that $\left(G^{\prime}, v_{j-1}, u, v_{j}, u^{\prime}\right)$ is planar.
Moreover, one can in $O\left(V\left(G^{\prime}\right)\left|+\left|E\left(G^{\prime}\right)\right|\right)\right.$ time (and hence, in $O(|V(G)|+|E(G)|$) time) find a path as in (1) or certify that (2) holds.

Note that since $\left|X_{P}\right| \geq 3$, there exists a path W with ends in $X_{P}-\left\{r_{i}\right\}$ which is internally disjoint from $V\left(B_{P}\right) \cup V_{i}$.

Suppose (1) holds. We claim that P^{\prime} is a feasible F-path. Clearly, $V\left(P^{\prime}\right) \cap V(F)=$ $\left\{u, u^{\prime}\right\}$, and P^{\prime} is an induced path in $G-u u^{\prime}$. Since $B_{j}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)=G^{\prime}-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected and $v_{j-1}, v_{j} \notin V\left(P^{\prime}\right)$, we have that $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ is connected. Thus, $P^{\prime}\left(u, u^{\prime}\right)$ is nonseparating in G_{F}. Also $r \in V\left(B_{P}\right)$, and $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$. Therefore, since $r \notin\left\{u, u^{\prime}\right\}, P^{\prime}$ is a feasible F-path. Moreover, since W is also a path in $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right), B_{P} \cup W \subseteq B_{P^{\prime}}$. Therefore, P^{\prime} is a B_{P}-augmenting path.

Now assume (2) holds. By Lemma 2.6 one can find in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time) an induced $u-u^{\prime}$ path Q in G^{\prime} such that $G^{\prime}-V(Q)$ has exactly two components K, K^{\prime} with $v_{j-1} \in V(K)$ and $v_{j} \in V\left(K^{\prime}\right)$. We claim that Q is a feasible F-path. Clearly, $V(Q) \cap V(F)=\left\{u, u^{\prime}\right\}$, and Q is an induced path in $G-u u^{\prime}$. Note that $B-Q\left(u, u^{\prime}\right)=G^{\prime}-V(Q)$ has exactly two components (namely K and K^{\prime}), there exists a path in H_{i} from $v_{j-1} \in V(K)$ to $r_{i} \in X_{P}$ disjoint
from Q, and there exists a path from $v_{j} \in V\left(K^{\prime}\right)$ to X_{P} in $G_{F}-V\left(Q\left(u, u^{\prime}\right)\right)$ (because $\left.\left|X_{P}\right| \geq 2\right)$. It follows that $G_{F}-V\left(Q\left(u, u^{\prime}\right)\right)$ is connected. Also $r \in V\left(B_{P}\right)$, and $B_{P} \subseteq G_{F}-V\left(Q\left(u, u^{\prime}\right)\right)$. Since $r \notin\left\{u, u^{\prime}\right\}, Q$ is a feasible F-path. Moreover, W is a path in $G_{F}-V\left(Q\left(u, u^{\prime}\right)\right)$, and hence, $B_{P} \cup W \subseteq B_{Q}$. Therefore, Q is a B_{P}-augmenting path.

Case 2. All blocks of H are trivial.
By (ii), H_{i} contains at least two blocks other than A_{i}, and hence, $k \geq 3$. So B_{1} and B_{2} are trivial blocks of H. Since G is 4 -connected, v_{1} has at least two neighbors in $V(F-r)$, say u, u^{\prime}. Let $P^{\prime}:=\left(u, v_{1}, u^{\prime}\right)$. We claim that P^{\prime} is a feasible F-path. Clearly, $V\left(P^{\prime}\right) \cap V(F)=\left\{u, u^{\prime}\right\}$, and P^{\prime} is an induced path in $G-u u^{\prime}$. Since G_{F} is 2-connected, $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)=G_{F}-v_{1}$ is connected. Also since $B_{P} \subseteq G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)$ and $r \notin\left\{u, u^{\prime}\right\}$, it follows that P^{\prime} is a feasible F-path. Moreover, one can see that $B_{P} \cup W \subseteq B_{P^{\prime}}$. Therefore, P^{\prime} is a B_{P}-augmenting path.

Now we study the case where, for every $H_{i} \in \mathcal{H}, x_{i} \neq y_{i}, H_{i}$ has at most two blocks, and if H_{i} has exactly two blocks, then A_{i} is the only nontrivial block of H_{i}. We give three lemmas which deal with this case. The arguments used for many cases in the proofs are similar, but unfortunately it seems necessary to cover all of those cases. We frequently produce a B_{P}-augmenting path P^{\prime} in the following way. We first exhibit a nontrivial path W in G_{F} with ends in B_{P} such that W is internally disjoint from B_{P}. We then produce a feasible F-path P^{\prime} disjoint from W such that $V\left(B_{P}\right) \cup V(W) \subseteq V\left(B_{P^{\prime}}\right)$, so P^{\prime} is B_{P}-augmenting. For the sake of brevity, when we state a result occurs "because of the path W," we are implicitly using this technique.

Recall that by Assumption 1 we may assume that if $|V(P)| \geq 4$, then $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap$ $V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$.

Lemma 3.13. Assume that $\left|X_{P}\right| \geq 3,|V(P)| \geq 4$, and, for every $H_{j} \in \mathcal{H}$, $x_{j} \neq y_{j}$. Suppose that, for every $H_{j} \in \mathcal{H}, V\left(A_{j}\right)-\left\{b_{j}, x_{j}, y_{j}\right\}$ has no neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Assume that for some $H_{i} \in \mathcal{H}, H_{i}$ is adjacent to F. Then exactly one of the following holds:
(1) there exists a B_{P}-augmenting path; or
(2) there exists a triangle F-chain H in G such that $I(H)=V\left(G_{F}\right)-V\left(B_{P}\right)$, $G_{F}-I(H)$ is 2-connected, and $G[V(F) \cup I(H)]$ is 2-connected.
Moreover, one can in $O(|V(G)|+|E(G)|)$ time find either a path as in (1) or a triangle F-chain as in (2).

Proof. Let us first show that (1) and (2) are mutually exclusive. Suppose that (2) holds. It is not hard to see that there exists no B_{P}-augmenting path because every feasible F-path must use exactly two vertices of $V\left(G_{F}\right)-V\left(B_{P}\right)$. Thus, it remains to show that either (1) or (2) holds and that one can determine in $O(|V(G)|+|E(G)|)$ time which of them occurs.

We consider two cases.
Case 1. There exist distinct $m, n \in\{1, \ldots, p\}-\{i\}$ such that both V_{m} and V_{n} have a neighbor in $V\left(P\left(x_{i}, a^{\prime}\right)\right)$ or both V_{m} and V_{n} have a neighbor in $V\left(P\left(a, y_{i}\right)\right)$.

Without loss of generality, assume that both V_{m} and V_{n} have a neighbor in $V\left(P\left(x_{i}, a^{\prime}\right)\right)$.

We claim that A_{i} contains a nonseparating induced $b_{i}-x_{i}$ path Q such that $V(Q) \cap$ $\left(V\left(P_{i}\right)-\left\{x_{i}\right\}\right)=\emptyset$. This is obvious if $V\left(A_{i}\right)-V\left(P_{i}\right)=\left\{b_{i}\right\}$ because then b_{i} must be adjacent to x_{i}, and the result follows by taking Q as the path induced by the edge $b_{i} x_{i}$. Thus, we may assume that $V\left(A_{i}\right)-V\left(P_{i}\right) \neq\left\{b_{i}\right\}$. Let S_{i} denote the set of vertices in $V\left(P\left(x_{i}, y_{i}\right)\right)$ which have a neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$. Since G is 4 -connected, A_{i}
is $\left(4, S_{i} \cup\left\{b_{i}, x_{i}, y_{i}\right\}\right)$-connected. Moreover, $A_{i}-\left(V\left(P_{i}\right)-\left\{x_{i}\right\}\right)$ is connected and $S_{i} \cup\left\{y_{i}\right\} \subseteq V\left(P_{i}\right)-\left\{x_{i}\right\}$, so there exists a $b_{i}-x_{i}$ path Q^{\prime} in A_{i} such that $V\left(P_{i}\right)-\left\{x_{i}\right\}$ (and hence, $\left.S_{i} \cup\left\{y_{i}\right\}\right)$ is contained in a component U of $A_{i}-V\left(Q^{\prime}\right)$. Therefore, the hypotheses of Lemma 2.1 are satisfied with $A_{i}, S_{i} \cup\left\{b_{i}, x_{i}, y_{i}\right\}, b_{i}, x_{i}, Q^{\prime}, U$ as $G, S, a, a^{\prime}, P, U$, respectively. By Lemma 2.1 one can find in $O(|V(G)|+|E(G)|)$ time a nonseparating induced $b_{i}-x_{i}$ path Q in A_{i} such that $V(Q) \cap V(U)=\emptyset$. Since $V\left(P_{i}\right)-\left\{x_{i}\right\} \subseteq V(U)$, we have $V(Q) \cap\left(V\left(P_{i}\right)-\left\{x_{i}\right\}\right)=\emptyset$, and thus, Q is a path as required.

By hypothesis, $x_{i} \neq y_{i}$, so by Lemma 3.12, we can in $O(|V(G)|+|E(G)|)$ time either find a B_{P}-augmenting path or certify that H_{i} has at most two blocks. Hence, we may assume that H_{i} has at most two blocks. Since H_{i} is adjacent to F and $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has no neighbors in $V(F-r)-\left\{a, a^{\prime}\right\}$, it follows that H_{i} has exactly two blocks, and b_{i} is adjacent to some vertex $u \in V(F-r)-\left\{a, a^{\prime}\right\}$. Let $P^{\prime}:=\left(Q \cup P\left[a, x_{i}\right]\right)+\left\{u, b_{i} u\right\}$. By assumption, both V_{m} and V_{n} have a neighbor on $P\left(x_{i}, a^{\prime}\right)$. Since P^{\prime} is disjoint from $V\left(P_{i}\right)-\left\{x_{i}\right\}$, there exists an $r_{m^{-}}$ r_{n} path W in $G_{F}-V\left(P^{\prime}(a, u)\right)$ which is internally disjoint from $V\left(B_{P}\right) \cup V_{i} \cup$ $\left\{x_{i}\right\}$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Since $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq$ $\left\{a, a^{\prime}\right\} \cup\{r\}$ (by Assumption 1) and P is induced in $G-a a^{\prime}$, we have that P^{\prime} is an induced $u-a$ path in $G-a u$. Also, since $A_{i}-V(Q)$ is connected, $P^{\prime}(a, u)$ is nonseparating in G_{F}. Note also that if r is an end of P^{\prime}, then $a=r$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}(a, u)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path and (1) holds.

Case 2. For any distinct $m, n \in\{1, \ldots, p\}-\{i\}, V_{m}$ and V_{n} do not both have a neighbor in $V\left(P\left(x_{i}, a^{\prime}\right)\right)$, nor do both V_{m} and V_{n} have a neighbor in $V\left(P\left(a, y_{i}\right)\right)$.

By hypothesis, $x_{i} \neq y_{i}$, so by Lemma 3.12, we can in $O(|V(G)|+|E(G)|)$ time either find a B_{P}-augmenting path or certify that H_{i} has at most two blocks. Hence, we may assume that H_{i} has at most two blocks. Since H_{i} is adjacent to F and $A_{i}-\left\{b_{i}, x_{i}, y_{i}\right\}$ has no neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$, it follows that H_{i} has exactly two blocks, and b_{i} has at least one neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Moreover, since we are in Case 2, we must have $\left|X_{P}\right|=3$. Without loss of generality, we may assume that $i=3, V_{1}$ has a neighbor in $V\left(P\left(a, x_{3}\right]\right)$, and V_{2} has a neighbor in $V\left(P\left[y_{3}, a^{\prime}\right)\right)$. Moreover, V_{1} has no neighbor in $V\left(P\left(x_{3}, a^{\prime}\right)\right)$, and V_{2} has no neighbor in $V\left(P\left(a, y_{3}\right)\right)$.

Suppose b_{3} has two neighbors in $V(F-r)-\left\{a, a^{\prime}\right\}$, say u, u^{\prime}. Let $P^{\prime}:=\left(u, b_{3}, u^{\prime}\right)$. Clearly, $G_{F}-V\left(P^{\prime}\left(u, u^{\prime}\right)\right)=G_{F}-b_{3}$ is connected. Since $r \notin\left\{u, u^{\prime}\right\}$, it is not hard to see that P^{\prime} is a feasible F-path. Moreover, there exists an $r_{1}-r_{2}$ path which is internally disjoint from $V\left(B_{P}\right) \cup V_{i}$. Hence, P^{\prime} is a B_{P}-augmenting path, and (1) holds. Clearly, P^{\prime} can be found in $O(|V(G)|+|E(G)|)$ time.

Thus, we may assume that b_{3} has exactly one neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. We consider two subcases.

Subcase 2.1. For some $j \in\{1,2\}$, say $j=1, V_{1} \neq\left\{r_{1}\right\}$.
Let $H_{1}:=w_{0} B_{1}^{\prime} w_{1} \ldots w_{s-1} B_{s}^{\prime} w_{s}$ where $w_{0}=r_{1}$, and $B_{s}^{\prime}=A_{1}$. Since $x_{1} \neq y_{1}$ (by assumption), then from Lemma 3.12 either $s=1$ or $s=2$ and B_{1}^{\prime} is trivial.

We claim that $V\left(A_{1}\right)=\left\{b_{1}, x_{1}, y_{1}\right\}$. Suppose for a contradiction that $V\left(A_{1}\right)-$ $\left\{b_{1}, x_{1}, y_{1}\right\} \neq \emptyset$. Then $A_{1}-\left\{b_{1}, x_{1}, y_{1}\right\}$ is a component of $G-\left\{b_{1}, x_{1}, y_{1}\right\}$ for the following reasons: $V\left(A_{1}\right)-\left\{b_{1}, x_{1}, y_{1}\right\}$ has no neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ (by hypothesis), $V\left(P\left(x_{1}, y_{1}\right)\right)$ has no neighbor in $V_{3} \cup V_{2}$ (by assumption in Case 2), and
P is an induced path in $G-a a^{\prime}$. But then $\left\{b_{1}, x_{1}, y_{1}\right\}$ is a 3 -cut in G which contradicts the assumption that G is 4-connected. Thus, $V\left(A_{1}\right)=\left\{b_{1}, x_{1}, y_{1}\right\}$.

Therefore, $\left\{b_{1}, x_{1}, y_{1}\right\}$ induces a triangle in G. Since $H_{1} \in \mathcal{H}, V_{1} \neq\left\{r_{1}\right\}$. This implies that $s=2$ and B_{1}^{\prime} is a trivial block of H_{1} (and hence, r_{1} is adjacent to b_{1}). Since b_{1} has degree at least four in G, b_{1} must have some neighbor in $V(F-r)$. Hence, H_{1} is adjacent to F, and V_{2} and V_{3} have neighbors in $V\left(P\left(x_{1}, a^{\prime}\right)\right)$, so we can proceed as in Case 1 and find a B_{P}-augmenting path in $O(|V(G)|+|E(G)|)$ time.

Subcase 2.2. For every $j \in\{1,2\}, V_{j}=\left\{r_{j}\right\}$.
Thus, r_{1} has a neighbor in $V\left(P\left(a, x_{3}\right]\right)$, and hence, $x_{3} \neq a$. Similarly, $y_{3} \neq a^{\prime}$.
We claim that $V\left(A_{3}\right)=\left\{b_{3}, x_{3}, y_{3}\right\}$. Suppose for a contradiction that $V\left(A_{3}\right)-$ $\left\{b_{3}, x_{3}, y_{3}\right\} \neq \emptyset$. Then $A_{3}-\left\{b_{3}, x_{3}, y_{3}\right\}$ is a component of $G-\left\{b_{3}, x_{3}, y_{3}\right\}$ for the following reasons: $V\left(A_{3}\right)-\left\{b_{3}, x_{3}, y_{3}\right\}$ has no neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ (by hypothesis), $V\left(P\left(x_{3}, y_{3}\right)\right)$ has no neighbor in $V_{1} \cup V_{2}$ (by assumption in Case 2), and P is an induced path in $G-a a^{\prime}$. But then $\left\{b_{3}, x_{3}, y_{3}\right\}$ is a 3-cut in G, which contradicts the assumption that G is 4 -connected. Thus, $V\left(A_{3}\right)=\left\{b_{3}, x_{3}, y_{3}\right\}$, and A_{3} is a triangle.

Since G_{F} is 2-connected and P is an induced path in $G-a a^{\prime}$, and because $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$, it follows that $V(P)=V\left(P_{3}\right) \cup\left\{a, a^{\prime}\right\}, r_{1}$ is adjacent to x_{3}, and r_{2} is adjacent to y_{3}. Let u denote the only neighbor of b_{3} in $V(F-r)-\left\{a, a^{\prime}\right\}$. Note that $a \neq r$; otherwise $r_{1}=r$ (because $\left|X_{P}\right|=3$), and x_{3} would have degree three in G which is a contradiction because G is 4 -connected. Similarly, $a^{\prime} \neq r$. If $r=r_{1}$, then $\left(r_{1}, x_{3}, a\right)$ is a B_{P}-augmenting path. If $r=r_{2}$, then $\left(r_{2}, y_{3}, a^{\prime}\right)$ is a B_{P}-augmenting path. If $r=r_{3}$, then $\left(r_{3}, b_{3}, u\right)$ is a B_{P}-augmenting path. Thus, we may assume that $r \notin\left\{r_{1}, r_{2}, r_{3}\right\}$. Therefore, $H:=A_{i}+\left\{u, a, a^{\prime}, b_{i} u, x_{i} a, y_{i} a^{\prime}\right\}$ is a triangle F-chain in G with $b_{3}, x_{3}, y_{3}, u, a, a^{\prime}, r_{3}, r_{1}, r_{2}$ as $v_{1}, v_{2}, v_{3}, u_{1}, u_{2}, u_{3}, w_{1}, w_{2}, w_{3}$, respectively, in Definition 1.2. It is easy to see that $G_{F}-I(H)=B_{P}$ is 2-connected and $G[V(F) \cup I(H)]$ is 2-connected. So (2) holds.

Lemma 3.14. Assume that $\left|X_{P}\right| \geq 3,|V(P)| \geq 4$, and for every $H_{j} \in \mathcal{H}, x_{j} \neq y_{j}$. Suppose that $H_{i} \in \mathcal{H}$ and $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Assume that $V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$. Then a B_{P}-augmenting path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof. Since G_{F} is 2-connected and $V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, there exists $m \in\{1, \ldots, p\}-\{i\}$ such that V_{m} has a neighbor in $V\left(P\left(a, x_{i}\right]\right)$ or in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$.

By symmetry we may assume that V_{m} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$. Then $y_{i} \neq a^{\prime}$.

First, we find an endblock of $A_{i}-\left\{x_{i}, y_{i}\right\}$ in $O(|V(G)|+|E(G)|)$ time as follows. If $A_{i}-\left\{x_{i}, y_{i}\right\}$ is 2-connected, then let $B:=A_{i}-\left\{x_{i}, y_{i}\right\}$, and let $b:=b_{i}$. Otherwise, let B be an endblock of $A_{i}-\left\{x_{i}, y_{i}\right\}$, and let b denote the cut vertex of $A_{i}-\left\{x_{i}, y_{i}\right\}$ contained in B so that $b_{i} \notin V(B-b)$. Note that $V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbors in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, and $N_{G}(B-b) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$. Since $r \notin\left\{x_{i}, y_{i}\right\}$ (by the definition of x_{i}, y_{i} in Notation 3.9), $r \notin N_{G}(B-b)-\{b\}$. Moreover, since G is 4-connected, $\left|N_{G}(B-b)\right| \geq 4$. Note that such an endblock B can be found in $O(|V(G)|+|E(G)|)$ time.

Next, we consider two cases.
Case 1. y_{i} has a neighbor in $V\left(A_{i}\right)-\left(\left\{x_{i}, y_{i}\right\} \cup V(B-b)\right)$.
Then, since V_{m} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$, there exists an $r_{i}-r_{m}$ path W in $G_{F}-V\left(P\left(a, x_{i}\right]\right)$ which is internally disjoint from $V\left(B_{P}\right)$ and intersects $P\left[y_{i}, a^{\prime}\right)$.

Subcase 1.1. B is trivial.

Let v denote the unique vertex in $V(B)-\{b\}$. Then $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$. Since G is 4 -connected, v has at least three neighbors in $V(F-r) \cup\left\{x_{i}, y_{i}\right\}$, and hence, it has two neighbors in $V(F-r) \cup\left\{x_{i}\right\}$. Let u, u^{\prime} be distinct neighbors of v in $V(F-r) \cup\left\{x_{i}\right\}$, and assume that $u \neq x_{i}$. By the definition of x_{i}, y_{i} in Notation 3.9, one can see that $\left\{u, u^{\prime}\right\} \cap\left\{a^{\prime}\right\}=\emptyset$ and $u \neq a$ (because $y_{i} \neq a^{\prime}$ and $x_{i} \neq u$). If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=\left(u, v, u^{\prime}\right)$; otherwise, let $P^{\prime}:=P\left[a, x_{i}\right]+\left\{u, v, u v, v x_{i}\right\}$. Clearly, P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. By assumption, $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (Assumption 1), and P is induced in $G-a a^{\prime}$. Then since $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$ and $V\left(P\left[a, x_{i}\right)\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), it follows that P^{\prime} is induced in $G-u u^{\prime \prime}$. Because of the path W, and since $P\left(a, a^{\prime}\right)$ is nonseparating in G_{F}, $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$ is connected. So $P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then since $r \notin\left\{u, u^{\prime}\right\}, r=u^{\prime \prime}=a$ and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path. Clearly, P^{\prime} can be found in $O(|V(G)|+|E(G)|)$ time.

Subcase 1.2. B is nontrivial.
Let $S:=N_{G}(B-b)-\left\{b, y_{i}\right\}$, and let G^{\prime} be obtained from B by adding S and the edges of G from S to $V(B)-\{b\}$. Since $r \notin N_{G}(B-b)-\{b\}, r \notin S$. Since G is 4-connected, $|S| \geq 2$ and G^{\prime} is (3, $S \cup\{b\}$)-connected (if $y_{i} \notin N_{G}(B-b)$, then actually $|S| \geq 3$ and G^{\prime} is $(4, S \cup\{b\})$-connected). Moreover, $G^{\prime}-S=B$ is 2-connected. Thus, the hypotheses of Lemma 2.4 are satisfied with G^{\prime}, S, b as G, S, b, respectively. Then there exist $u, u^{\prime} \in S$ and an induced $u-u^{\prime}$ path Q in G^{\prime} such that $V(Q) \cap\{b\}=\emptyset$, $V(Q) \cap S=\left\{u, u^{\prime}\right\}$, and $G^{\prime}-(V(Q) \cup S)$ is connected. Moreover, such a path Q can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time).

By the definition of x_{i}, y_{i} in Notation 3.9 and because $y_{i} \neq a^{\prime},\left\{u, u^{\prime}\right\} \cap\left\{a^{\prime}\right\}=\emptyset$. By symmetry we may assume that $u \neq x_{i}$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=Q$; otherwise, let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$. Clearly, P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. By assumption, $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (Assumption 1), and P is induced in $G-a a^{\prime}$. Then since Q is induced in G^{\prime} and $P\left[a, x_{i}\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), it follows that P^{\prime} is induced in $G-u u^{\prime \prime}$. Since $B-V\left(Q\left(u, u^{\prime}\right)\right)=G^{\prime}-(V(Q) \cup S)$ is connected and because of the path W, $P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then since $r \notin S, r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path. Clearly, P^{\prime} can be found in $O(|V(G)|+|E(G)|)$ time.

Case 2. y_{i} has no neighbor in $V\left(A_{i}\right)-\left(\left\{x_{i}, y_{i}\right\} \cup V(B-b)\right)$ (and hence, $y_{i} \in$ $\left.N_{G}(B-b)\right)$.

Subcase 2.1. B is trivial.
Let v denote the unique vertex in $V(B)-\{b\}$. Then $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$, and y_{i} is adjacent to v. Since G is 4-connected, v has at least four neighbors in $V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$, and hence, it has at least two neighbors in $V(F-r) \cup\left\{x_{i}\right\}$. Let $u, u^{\prime} \in N_{G}(v)-\left\{b, y_{i}\right\}$, and assume that $u \neq x_{i}$. By the definition of x_{i}, y_{i} in Notation 3.9, one can see that $\left\{u, u^{\prime}\right\} \cap\left\{a^{\prime}\right\}=\emptyset$ (because $y_{i} \neq a^{\prime}$) and $u \neq a$ (because $u \neq x_{i}$) .

Suppose that there exists $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$. Then there exists an $r_{m}-r_{n}$ path W in $G_{F}-V\left(P\left(a, y_{i}\right)\right)$ which is internally disjoint from $V\left(B_{P}\right)$ and intersects $P\left[y_{i}, a^{\prime}\right)$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=$ $\left(u, v, u^{\prime}\right)$; otherwise, let $P^{\prime}:=P\left[a, x_{i}\right]+\left\{u, v, u v, v x_{i}\right\}$. Then P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. By assumption, $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (Assumption 1) and P is induced in $G-a a^{\prime}$. Then, since $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$ and $V\left(P\left[a, x_{i}\right)\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), it follows that P^{\prime} is an induced path in $G-u u^{\prime \prime}$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in $G_{F}, G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$ is connected, and so $P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then since $r \notin\left\{u, u^{\prime}\right\}, r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Thus, we may assume that there exists no $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$. Since $\left|X_{P}\right| \geq 3$ and $V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, we have that $x_{i} \neq a$, and there exists $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left(a, x_{i}\right]\right)$. Furthermore, x_{i} has a neighbor in $V\left(A_{i}\right)-\left\{x_{i}, y_{i}, v\right\}$; otherwise, since y_{i} has no neighbor in $V\left(A_{i}\right)-\left(\left\{x_{i}, y_{i}\right\} \cup V(B-b)\right), v$ would be a cut vertex of A_{i}. Therefore, there exists an $r_{i}-r_{n}$ path W in $G_{F}-V\left(P^{\prime}\left[y_{i}, a^{\prime}\right)\right)$ which is internally disjoint from $V\left(B_{P}\right)$ and intersects $P\left(a, x_{i}\right]$.

Let $P^{\prime}:=P\left[y_{i}, a^{\prime}\right]+\left\{u, v, u v, v y_{i}\right\}$. Then P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. One can show that P^{\prime} is an induced path in $G-u a^{\prime}$, and because of the path $W, P^{\prime}\left(u, a^{\prime}\right)$ is nonseparating in G_{F}. Since $u \neq x_{i} \neq r, r$ is an end of P^{\prime} only if $a^{\prime}=r$. In this case, r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, a^{\prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path. Note that in all above cases, such a path P^{\prime} can be found in $O(|V(G)|+|E(G)|)$ time.

Subcase 2.2. B is nontrivial.
First, we define a graph G^{\prime} from B. If y_{i} has at least two neighbors in $V(B)$, then let $S:=N_{G}(B-b)-\left\{b, y_{i}\right\}$, let G^{\prime} be obtained from B by adding $S \cup\left\{y_{i}\right\}$ and the edges of G from $S \cup\left\{y_{i}\right\}$ to $V(B)-\{b\}$, and let $y^{*}:=y_{i}$. If y_{i} has exactly one neighbor in $V(B)$, then let y^{*} denote this vertex (note that $y^{*} \neq b$ because $y_{i} \in N_{G}(B-b)$ by assumption), let $S:=N_{G}\left(B-\left\{b, y^{*}\right\}\right)-\left\{b, y^{*}\right\}$, and let G^{\prime} be obtained from B by adding S and the edges of G from S to $V(B)-\left\{b, y^{*}\right\}$. Note that in either case $S \subseteq V(F-r) \cup\left\{x_{i}\right\}$. Moreover, $G^{\prime}-S=B$ is 2 -connected, and G^{\prime} is $\left(4, S \cup\left\{b, y^{*}\right\}\right)$-connected (because G is 4 -connected). Thus, the hypotheses in Lemma 2.3 are satisfied with G^{\prime}, S, b, y^{*} as G, S, b, b^{\prime}, respectively. By Lemma 2.3 exactly one of the following holds:
(1) there exist $u, u^{\prime} \in S$ and an induced $u-u^{\prime}$ path Q in G^{\prime} such that $V(Q) \cap$ $\left\{b, y^{*}\right\}=\emptyset, V(Q) \cap S=\left\{u, u^{\prime}\right\}$, and $G^{\prime}-(V(Q) \cup S)$ is connected; or
(2) $|S|=2$, and the elements of S can be labeled as u, u^{\prime} such that ($G^{\prime}, u, b, u^{\prime}, y^{*}$) is planar.
Moreover, one can in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|$) time) find a path as in (1) or certify that (2) holds. Without loss of generality, we may assume that $u \neq x_{i}$.

Suppose (1) occurs. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=Q$; otherwise let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$. Then P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. Since y^{*} and b are in $G^{\prime}-(V(Q) \cup S)$ which is connected, and because V_{m} has a
neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$, there exists an $r_{i}-r_{m}$ path W in $G_{F}-V\left(P\left(a, y_{i}\right)\right)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$ and intersects $P\left[y_{i}, a^{\prime}\right)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. Since Q is induced in G^{\prime} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$, and because P is induced in $G-a a^{\prime}$ and $P\left[a, x_{i}\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), one can see that P^{\prime} is an induced path in $G-u u^{\prime \prime}$. Because of the path W, and since $P\left(a, a^{\prime}\right)$ is nonseparating in $G_{F}, P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. Since $r \notin S$, if $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

So we may assume (2) occurs. We consider two cases.
First, assume there exists $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$. Then there exists an $r_{m}-r_{n}$ path W in $G_{F}-V\left(P\left(a, y_{i}\right)\right)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$ and intersects $P\left[y_{i}, a^{\prime}\right)$. By Lemma 2.6 (with $G^{\prime}, u, u^{\prime}, b, y^{*}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists an induced $u-u^{\prime}$ path Q in G^{\prime} such that $G^{\prime}-V(Q)$ has exactly two components K and K^{\prime} with $b \in V(K)$ and $y^{*} \in V\left(K^{\prime}\right)$. Moreover, such a path can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+E(G) \mid)$ time). If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=Q$; otherwise let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$. So P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. Since Q is induced in G^{\prime} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (by Assumption 1), and because P is induced in $G-a a^{\prime}$ and $P\left[a, x_{i}\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), one can see that P^{\prime} is an induced path in $G-u u^{\prime \prime}$. Since $G^{\prime}-V(Q)$ has exactly two components, one containing b and the other containing y^{*}, and because of the path W, it follows that $P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Now assume that there exists no $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left[y_{i}, a^{\prime}\right)\right)$. Since $\left|X_{P}\right| \geq 3$ and $V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, there exists $n \in\{1, \ldots, p\}-\{i, m\}$ such that V_{n} has a neighbor in $V\left(P\left(a, x_{i}\right]\right)$, and hence, $x_{i} \neq a$. Note that $G^{\prime} \neq K_{1,4}$ because B is nontrivial. By Lemma 2.7 (with $G^{\prime}, u, y^{*}, u^{\prime}, b$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists a nonseparating induced $u-y^{*}$ path Q in G^{\prime} such that $V(Q) \cap\left\{u^{\prime}, b\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right.$) time (and hence, in $O(|V(G)|+|E(G)|)$ time). Note that either x_{i} has a neighbor in $V\left(A_{i}\right)-V(B-b)$ or x_{i} is in $G^{\prime}-V(Q)$. Since V_{n} has a neighbor in $V\left(P\left(a, x_{i}\right]\right)$, there exists an $r_{i}-r_{n}$ path W in $G_{F}-V\left(P\left(x_{i}, a^{\prime}\right)\right)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$ and intersects $P\left(a, x_{i}\right]$. If $y^{*}=y_{i}$, then let $P^{\prime}:=Q \cup P\left[y_{i}, a^{\prime}\right]$; otherwise, let $P^{\prime}:=\left(Q \cup P\left[y_{i}, a^{\prime}\right]\right)+\left\{y_{i}, y_{i} y^{*}\right\}$. One can show that P^{\prime} is an induced path in $G-u a^{\prime}$, and because of the path $W, P^{\prime}\left(u, a^{\prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, a^{\prime}\right\}$, then $a^{\prime}=r, r$ is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, a^{\prime}\right)\right)$ because of the path W, and because r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Lemma 3.15. Assume that $\left|X_{P}\right| \geq 3,|V(P)| \geq 4$, and for every $H_{j} \in \mathcal{H}, x_{j} \neq y_{j}$. Suppose that $H_{i} \in \mathcal{H}$ and $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Assume that $V\left(P\left(x_{i}, y_{i}\right)\right)$ has a neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$. Then a B_{P}-augmenting path can be found in $O(|V(G)|+|E(G)|)$ time.

Proof. Since $\left|X_{P}\right| \geq 3$ and $V\left(P\left(x_{i}, y_{i}\right)\right)$ has a neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, there exist $m, n \in\{1, \ldots, p\}-\{i\}$ such that both V_{m} and V_{n} have a neighbor in $V\left(P\left(a, y_{i}\right)\right)$, or both V_{m} and V_{n} have a neighbor in $V\left(P\left(x_{i}, a^{\prime}\right)\right)$.

By symmetry we may assume that both V_{m} and V_{n} have a neighbor in $V\left(P\left(x_{i}, a^{\prime}\right)\right)$. Therefore, there exists an $r_{m}-r_{n}$ path W in $G_{F}-V\left(P\left(a, x_{i}\right]\right)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$ and intersects $P\left(x_{i}, a^{\prime}\right)$.

Let D be the graph obtained from $A_{i}-\left\{x_{i}, y_{i}\right\}$ by adding a new vertex b^{\prime} and new edges from b^{\prime} to each $v \in V\left(P\left(x_{i}, y_{i}\right)\right)$ such that v has a neighbor in some V_{j}, $j \in\{1, \ldots, p\}-\{i\}$. Since $P\left(x_{i}, y_{i}\right) \subseteq A_{i}-\left\{x_{i}, y_{i}\right\}, N_{D}\left(b^{\prime}\right) \cup\left\{b^{\prime}\right\}$ is contained in a block of D, and b^{\prime} is not a cut vertex of D. Note also that if D is not connected, then D has exactly two components, one containing b_{i} and the other induced by $V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b^{\prime}\right\}$, and the component containing b^{\prime} is a block of D since every vertex in $V\left(P\left(x_{i}, y_{i}\right)\right)$ has a neighbor in some $V_{j}, j \neq i$ (because $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq$ $\left\{a, a^{\prime}\right\} \cup\{r\}$ by Assumption 1). We consider two cases.

Case 1. D is not a $b_{i}-b^{\prime}$ chain.
Then there exists an endblock B of D such that one of the following holds: (1) $b^{\prime} \notin V(B)$, and if $b_{i} \in V(B)$, then b_{i} is a cut vertex of D, or (2) D has exactly two components and B is the component of D containing b_{i} (and hence, $V(B) \cap$ $\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b^{\prime}\right\}\right)=\emptyset$ by the argument in the last paragraph). Note that such an endblock can be found in $O(|V(G)|+|E(G)|)$ time. If (1) holds, then let b denote the cut vertex of D contained in B. If (2) holds, then let $b:=b_{i}$. Since $\left|X_{P}\right| \geq 3$ and B_{P} is a block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, it follows from the definition of x_{i}, y_{i} in Notation 3.9 that $r \notin\left\{x_{i}, y_{i}\right\}$. Note that $N_{D}\left(b^{\prime}\right) \cap V(B-b)=\emptyset$ and $r \notin N_{G}(B-b)$.

Subcase 1.1. B is trivial.
Let v denote the only vertex in $V(B)-\{b\}$. Note that $N_{G}(v) \subseteq V(F-r) \cup$ $\left\{x_{i}, y_{i}, b\right\}$. Since G is 4-connected and $N_{D}\left(b^{\prime}\right) \cap V(B-b)=\emptyset, v$ has at least three neighbors in $V(F-r) \cup\left\{x_{i}, y_{i}\right\}$. Let u, u^{\prime} be two distinct neighbors of v in $V(F-r) \cup$ $\left\{x_{i}\right\}$. By symmetry, we may assume that $u \neq x_{i}$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=\left(u, v, u^{\prime}\right)$. If $u^{\prime}=x_{i}$, then let $P^{\prime}:=P\left[a, x_{i}\right]+\left\{u, v, u v, v x_{i}\right\}$. Then P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. By assumption, $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$, and P is induced in $G-a a^{\prime}$. Since $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$ and $V\left(P\left[a, x_{i}\right)\right)$ has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), it follows that P^{\prime} is induced in $G-u u^{\prime \prime}$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in $G_{F}, P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. Moreover, if $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}(u, a)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Subcase 1.2. B is nontrivial.
Let $S:=N_{G}(B-b)-\left\{y_{i}, b\right\}$, and let G^{\prime} be obtained from B by adding S and the edges of G from S to $V(B)-\{b\}$. Note that since $r \notin\left\{x_{i}, y_{i}\right\}$ and $r \notin N_{G}(B-b), r \notin S$. Since G is 4-connected and y_{i} is the only possible neighbor of $V(B-b)$ not in $S \cup\{b\}$, G^{\prime} is $(3, S \cup\{b\})$-connected. By Lemma 2.4 (with G^{\prime}, S, b as G, S, b, respectively) there exist $u, u^{\prime} \in S$ and an induced $u-u^{\prime}$ path Q in G^{\prime} such that $V(Q) \cap\{b\}=\emptyset$, $V(Q) \cap S=\left\{u, u^{\prime}\right\}$, and $G^{\prime}-(V(Q) \cup S)$ is connected. Moreover, such a path can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time). Without loss of generality, we may assume that $u \neq x_{i}$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=Q$; otherwise let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$. Then P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we prove that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. Note that Q is induced in $G-u u^{\prime \prime}, N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (by Assumption 1), and P is induced in $G-a a^{\prime}$. Then since $N_{G}(v) \subseteq V(F-r) \cup\left\{x_{i}, y_{i}, b\right\}$ and $V\left(P\left[a, x_{i}\right)\right.$) has no neighbor in $V(B)$ (by the definition of x_{i} in Notation 3.9), it follows that P^{\prime} is induced in $G-u u^{\prime \prime}$. Because of the path W and since $G^{\prime}-(V(Q) \cup S)$ is connected, $P^{\prime}\left(u, u^{\prime \prime}\right)$ is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}$, P^{\prime} is a B_{P}-augmenting path.

Case 2. D is a $b_{i}-b^{\prime}$ chain.
Let $D:=w_{0} B_{1} w_{1} \ldots w_{l-1} B_{l} w_{l}$ where $w_{0}:=b_{i}$ and $w_{l}=b^{\prime}$. Note that this block decomposition can be found in $O(|V(G)|+|E(G)|)$ time.

For each nontrivial block B_{j} with $1 \leq j \leq l-1$, let $S_{j}:=N_{G}\left(B_{j}-\left\{w_{j-1}, w_{j}\right\}\right)$. If B_{l} is nontrivial, then let $S_{l}:=N_{G}\left(B_{l}-\left\{w_{l-1}, w_{l}\right\}\right)-X_{P}$, namely, S_{l} contains all neighbors of $V\left(B_{l}-\left\{w_{l-1}, w_{l}\right\}\right)$ except the neighbors of $N_{D}\left(b^{\prime}\right)$ contained in X_{P}. For each nontrivial block B_{j} with $1 \leq j \leq l$, let G_{j} be obtained from B_{j} by adding S_{j} and the edges of G from S_{j} to $V\left(B_{j}\right)$. Note that $N_{D}\left(b^{\prime}\right) \cup\left\{b^{\prime}\right\} \subseteq B_{l}$, and for $1 \leq j \leq l-1$, $V\left(B_{j}\right) \cap\left(N_{D}\left(b^{\prime}\right) \cup\left\{b^{\prime}\right\}\right) \subseteq\left\{w_{l-1}\right\}$. Hence, for $1 \leq j \leq l-1, S_{j} \subseteq V(F-r) \cup\left\{x_{i}, y_{i}\right\}$. Moreover, $r \notin\left\{x_{i}, y_{i}\right\}$ by Notation 3.9. Thus, $r \notin S_{j}$ for $1 \leq j \leq l-1$. Also if B_{l} is nontrivial, then no vertex in $V\left(B_{l}-N_{D}\left(b^{\prime}\right)\right)$ is adjacent to r, and by the definition of $S_{l}, r \notin S_{l}$. First, we prove the following.

Claim. One can in $O(|V(G)|+|E(G)|)$ time either find a B_{P}-augmenting path or certify that the following statements hold:
(I) for each nontrivial block B_{j} with $1 \leq j \leq l-1,\left|S_{j}\right|=2, y_{i} \in S_{j}$, and if u denotes the vertex in $S_{j}-\left\{y_{i}\right\}$, then $\left(G_{j}, y_{i}, w_{j-1}, u, w_{j}\right)$ is planar;
(II) for each $1 \leq j \leq l-2$ for which both B_{j}, B_{j+1} are trivial, $\mid N_{G}\left(w_{j}\right)-$ $\left\{w_{j-1}, w_{j+1}\right\} \mid=2$, and $y_{i} \in N_{G}\left(w_{j}\right)$; and
(III) if B_{l} is nontrivial, then $S_{l} \cap\left(V(F-r)-\left\{a, a^{\prime}\right\}\right)=\emptyset$.

Proof of Claim. We will show that if one of (I)-(III) does not hold, then one can find in $O(|V(G)|+|E(G)|)$ time a B_{P}-augmenting path.

Proof of (I). Suppose that $j \in\{1, \ldots, l-1\}$ and B_{j} is nontrivial. Note that $G_{j}-$ $S_{j}=B_{j}$ is 2-connected. Moreover, since G is 4-connected, G_{j} is $\left(4, S_{j} \cup\left\{w_{j-1}, w_{j}\right\}\right)$ connected. Thus, the hypotheses of Lemma 2.3 are satisfied with $G_{j}, S_{j}, w_{j-1}, w_{j}$ as G, S, b, b^{\prime}, respectively. By Lemma 2.3 exactly one of the following holds:
(1) there exist $u, u^{\prime} \in S_{j}$ and an induced $u-u^{\prime}$ path Q such that $V(Q) \cap\left\{w_{j-1}, w_{j}\right\}=$ $\emptyset, V(Q) \cap S_{j}=\left\{u, u^{\prime}\right\}$, and $G_{j}-\left(V(Q) \cup S_{j}\right)$ is connected; or
(2) $\left|S_{j}\right|=2$, and the elements of S_{j} can be labeled as u, u^{\prime} such that $\left(G_{j}, u, w_{j-1}\right.$, $\left.u^{\prime}, w_{j}\right)$ is planar.
Moreover, one can in $O\left(\left|V\left(G_{j}\right)\right|+\left|E\left(G_{j}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time) find a path as in (1) or certify that (2) holds.

Suppose that (1) holds. Define P^{\prime} as follows.
(a) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\emptyset$, then let $P^{\prime}:=Q$;
(b) if $\left\{u, u^{\prime}\right\}=\left\{x_{i}, y_{i}\right\}$, then let $P^{\prime}:=\left(P-V\left(P\left(x_{i}, y_{i}\right)\right)\right) \cup Q$;
(c) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\left\{x_{i}\right\}$, then let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$; and
(d) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\left\{y_{i}\right\}$, then let $P^{\prime}:=P\left[y_{i}, a^{\prime}\right] \cup Q$.

We claim that P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup$ $V(F)$. If (a) or (b) occurs, then clearly P^{\prime} is a path as claimed. Suppose (c) occurs, that is, $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\left\{x_{i}\right\}$. If $a \notin\left\{u, u^{\prime}\right\}$, then clearly P^{\prime} is a path as claimed;
if $a \in\left\{u, u^{\prime}\right\}$, then by the definition of x_{i} in Notation 3.9, $x_{i}=a$, and hence, P^{\prime} is a path as claimed. Similarly, if (d) occurs, then P^{\prime} is a path as claimed.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let u_{1}, u_{2} denote the ends of P^{\prime}. Since Q is induced in G_{j} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\{a, a\} \cup\{r\}$ (by Assumption 1), and because P is induced in $G-a a^{\prime}$ and $P\left[a, x_{i}\right) \cup P\left(y_{i}, a^{\prime}\right]$ has no neighbor in $V\left(B_{j}\right)$ (by the definition of x_{i} and y_{i} in Notation 3.9), one can show that P^{\prime} is an induced path in $G-u_{1} u_{2}$. Since $G_{j}-\left(V(Q) \cup S_{j}\right)$ is connected, it is easy to see that $P^{\prime}\left(u_{1}, u_{2}\right)$ is nonseparating in G_{F}. If $r \in\left\{u_{1}, u_{2}\right\}$, then since $r \notin\left\{u, u^{\prime}\right\} \subseteq S_{j}$, (b), (c), or (d) occurs and either $r=a$ or $r=a^{\prime}$. In this case, r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and since $\left|X_{P}\right| \geq 3, r$ is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since there exists a $w_{j-1}-w_{j}$ path in $G_{j}-\left(V(Q) \cup S_{j}\right)$, there exists an $r_{i^{-}}$ b^{\prime} path in $D-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$. By the definition of b^{\prime}, the vertex adjacent to b^{\prime} in this path has a neighbor in V_{t} for some $t \in\{1, \ldots, p\}-\{i\}$. Hence, B_{P} is properly contained in a block of $G_{F}-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$, and therefore, P^{\prime} is a B_{P}-augmenting path.

So assume that (2) holds. If $y_{i} \in\left\{u, u^{\prime}\right\}$, then (I) holds, so we may assume that $y_{i} \notin\left\{u, u^{\prime}\right\}$. By Lemma 2.6 with $G_{j}, u, u^{\prime}, w_{j-1}, w_{j}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively, one can find in $O\left(\left|V\left(G_{j}\right)\right|+\left|E\left(G_{j}\right)\right|\right)$ time an induced u - u^{\prime} path Q such that $G_{j}-V(Q)$ has exactly two components K and K^{\prime} with $w_{j-1} \in V(K)$ and $w_{j} \in V(K)$. Without loss of generality, we may assume that $u \neq x_{i}$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=Q$; otherwise, let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$. Clearly, P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P^{\prime}. Since Q is induced in G_{j} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$, and because P is an induced path in $G-a a^{\prime}$ and $P\left[a, x_{i}\right)$ has no neighbor in $V\left(B_{j}\right)-\left\{w_{j-1}, w_{j}\right\}$ (by the definition of x_{i} in Notation 3.9), one can show that P^{\prime} is an induced path in $G-u u^{\prime \prime}$. Since $G_{j}-V(Q)$ has exactly two components, one containing w_{j-1} and the other containing w_{j}, and because of the path W, it follows that $G-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$ is connected, so P^{\prime} is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right.$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Proof of (II). Suppose that for some $j \in\{1, \ldots, l-1\}$ both B_{j} and B_{j+1} are trivial. If $y_{i} \in N_{G}\left(w_{j}\right)$ and $\left|N_{G}\left(w_{j}\right)-\left\{w_{j-1}, w_{j}\right\}\right|=2$, then (II) holds, so we may assume that $y_{i} \notin N_{G}\left(w_{j}\right)$ or $\left|N_{G}\left(w_{j}\right)-\left\{w_{j-1}, w_{j}\right\}\right| \neq 2$. Therefore, $\mid N_{G}\left(w_{j}\right)-$ $\left\{w_{j-1}, w_{j}, y_{i}\right\} \mid \geq 2$. Let u, u^{\prime} be distinct vertices in $N_{G}\left(w_{j}\right)-\left\{w_{j-1}, w_{j}, y_{i}\right\}$. Note that $r \notin\left\{u, u^{\prime}\right\}$ because B_{P} is a block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Without loss of generality we may assume that $u \neq x_{i}$. If $u^{\prime} \neq x_{i}$, then let $P^{\prime}:=\left(u, w_{j}, u^{\prime}\right)$. If $u^{\prime}=x_{i}$, then let $P^{\prime}:=P\left[a, x_{i}\right]+\left\{u, w_{j}, w_{j} x_{i}, u w_{j}\right\}$. By the definition of x_{i}, y_{i} in Notation 3.9, $u \neq a$ when $u^{\prime}=x_{i}$. So P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. Note that $V\left(P^{\prime}\right) \cap V\left(P\left(x_{i}, a^{\prime}\right)\right)=\emptyset$.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let $u, u^{\prime \prime}$ denote the ends of P. Since P is an induced path in $G-a a^{\prime}$, and because w_{j} has no neighbor in $P\left[a, x_{i}\right)$ (by the definition of x_{i} in Notation 3.9), one can see that P^{\prime} is induced in $G-u u^{\prime \prime}$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in G_{F}, P^{\prime} is nonseparating in G_{F}. If $r \in\left\{u, u^{\prime \prime}\right\}$, then $r=u^{\prime \prime}=a$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. Then, because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, u^{\prime \prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.

Proof of (III). Suppose B_{l} is nontrivial. If $S_{l} \cap\left(V(F-r)-\left\{a, a^{\prime}\right\}\right)=\emptyset$, then (III) holds, so we may assume that $S_{l} \cap\left(V(F-r)-\left\{a, a^{\prime}\right\}\right) \neq \emptyset$. We want to apply Lemma 2.3 to find a B_{P}-augmenting path, so we need to show that $G_{l}, S_{l}, w_{l-1}, w_{l}=b^{\prime}$ (as G, S, b, b^{\prime}, respectively) satisfy the hypotheses in the statement of Lemma 2.3. Clearly, $G_{l}-S_{l}=B_{l}$ is 2-connected and by definition, every vertex in S_{l} has a neighbor in $V\left(B_{l}\right)-\left\{w_{l-1}, w_{l}\right\}$. Since P is an induced path in $G-a a^{\prime}$ and G is 4 -connected, $G_{l}-b^{\prime} \subseteq G$ is $\left(4, S_{l} \cup\left\{w_{l-1}\right\} \cup N_{D}\left(b^{\prime}\right)\right)$-connected. Hence, G_{l} is $\left(3, S_{l} \cup\right.$ $\left.\left\{w_{l-1}, b^{\prime}\right\}\right)$-connected. Recall that $r \notin S_{l}$ (see the definition of $\left.S_{l}\right), V\left(P\left(x_{i}, y_{i}\right)\right)$ has no neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ unless $x_{i}=a$ or $y_{i}=a^{\prime}$ (by Assumption 1), and $A_{i}-V\left(P_{i}\right)$ is connected. Thus, since $S_{l} \cap\left(V(F-r)-\left\{a, a^{\prime}\right\}\right) \neq \emptyset, V\left(B_{l}\right)-$ $\left(\left\{w_{l-1}, w_{l}\right\} \cup V\left(P\left(x_{i}, y_{i}\right)\right)\right) \neq \emptyset$. This implies that $V\left(P\left(x_{i}, y_{i}\right)\right) \subseteq V\left(B_{l}\right)-\left\{w_{l-1}, w_{l}\right\}$ (and hence, $\left.x_{i}, y_{i} \in S_{l}\right)$; otherwise, $w_{l-1} \in V\left(P\left(x_{i}, y_{i}\right)\right)$, contradicting the fact that $A_{i}-V\left(P_{i}\right)$ is connected. Thus, $\left|S_{l}\right| \geq 3$, and there exists a component K of $G_{l}-\left(S_{l} \cup\right.$ $\left.\left\{w_{l-1}, w_{l}\right\}\right)=B_{l}-\left\{w_{l-1}, w_{l}\right\}$ which contains $V\left(P\left(x_{i}, y_{i}\right)\right)$. Note that K has at least two neighbors in S_{l}, namely, x_{i}, y_{i}. Thus, the hypotheses of Lemma 2.3 are satisfied with $G_{l}, S_{l}, w_{l-1}, w_{l}$ as G, S, b, b^{\prime}, respectively.

Therefore, by Lemma 2.3 there exist $u, u^{\prime} \in S_{l}$ and an induced path Q in G_{l} such that $V(Q) \cap\left\{w_{l-1}, w_{l}\right\}=\emptyset, V(Q) \cap S_{l}=\left\{u, u^{\prime}\right\}$, and $G_{l}-\left(V(Q) \cup S_{l}\right)$ is connected. Define P^{\prime} as follows:
(a) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\emptyset$, then let $P^{\prime}:=Q$;
(b) if $\left\{u, u^{\prime}\right\}=\left\{x_{i}, y_{i}\right\}$, then let $P^{\prime}:=\left(P-V\left(P\left(x_{i}, y_{i}\right)\right)\right) \cup Q$;
(c) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\left\{x_{i}\right\}$, then let $P^{\prime}:=P\left[a, x_{i}\right] \cup Q$; and
(d) if $\left\{u, u^{\prime}\right\} \cap\left\{x_{i}, y_{i}\right\}=\left\{y_{i}\right\}$, then let $P^{\prime}:=P\left[y_{i}, a^{\prime}\right] \cup Q$.

We claim that P^{\prime} is a path with ends in $V(F)$ which is internally disjoint from $V\left(B_{P}\right) \cup$ $V(F)$. Clearly, this is true if (a) or (b) occurs. Suppose (c) occurs, that is, $\left\{u, u^{\prime}\right\} \cap$ $\left\{x_{i}, y_{i}\right\}=\left\{x_{i}\right\}$. If $a \notin\left\{u, u^{\prime}\right\}$, then P^{\prime} is a path as claimed. If $a \in\left\{u, u^{\prime}\right\}$, then by the definition of x_{i} in Notation 3.9, $a=x_{i}$. Again, P^{\prime} is a path as claimed. Similarly, if (d) occurs, then P^{\prime} is a path as claimed.

Next we show that P^{\prime} is a B_{P}-augmenting path. Let u_{1}, u_{2} denote the ends of P^{\prime}. Since Q is induced in G_{l} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\{a, a\} \cup\{r\}$, and because P is induced in $G-a a^{\prime}$ and $P\left[a, x_{i}\right) \cup P\left(y_{i}, a^{\prime}\right]$ has no neighbor in B_{l} (by the definition of x_{i} and y_{i} in Notation 3.9), one can see that P^{\prime} is an induced path in $G-u_{1} u_{2}$. Since $G_{l}-\left(V(Q) \cup S_{l}\right)$ is connected and $V\left(P\left(x_{i}, y_{i}\right)\right)$ has a neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$, it is easy to see that $P^{\prime}\left(u_{1}, u_{2}\right)$ is nonseparating in G_{F}. If $r \in\left\{u_{1}, u_{2}\right\}$, then since $r \notin S_{l}$, (b), (c), or (d) occurs, and either $r=a$ or $r=a^{\prime}$. In this case, r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and since $\left|X_{P}\right| \geq 3, r$ is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Moreover, since there exists a $w_{l-1}-w_{l}$ path W^{\prime} in $G_{l}-\left(V(Q) \cup S_{l}\right)$, there exists an $r_{i}-b^{\prime}$ path $W^{\prime \prime}$ in $D-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$. By the definition of b^{\prime}, the vertex adjacent to b^{\prime} in $W^{\prime \prime}$ has a neighbor in V_{t} for some $t \in\{1, \ldots, p\}-\{i\}$. Hence, B_{P} is properly contained in a block of $G_{F}-V\left(P^{\prime}\left(u_{1}, u_{2}\right)\right)$, and therefore, P^{\prime} is a B_{P}-augmenting path.

This concludes the proof of the claim.
By the above claim, we may assume that (I), (II), and (III) hold. Therefore, by (III) and since $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$, we have $l \geq 2$. We consider three subcases.

Subcase 2.1. x_{i} has at least two neighbors in $V\left(B_{l}\right)$.
Thus, B_{l} is nontrivial (because x_{i} is not adjacent to b^{\prime} in D). We claim that $P\left(x_{i}, y_{i}\right) \subseteq B_{l}-w_{l-1}$. Suppose for a contradiction that $P\left(x_{i}, y_{i}\right) \nsubseteq B_{l}-w_{l-1}$. Then $w_{l-1} \in V\left(P\left(x_{i}, y_{i}\right)\right)$. Since $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is connected, $B_{l}-b^{\prime} \subseteq P\left(x_{i}, y_{i}\right)$. But
then x_{i} has at most one neighbor in $V\left(B_{l}\right)$ because P is an induced path in $G_{F}-a a^{\prime}$, a contradiction. Therefore, $P\left(x_{i}, y_{i}\right) \subseteq B_{l}-w_{l-1}$.

Since $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ and $S_{l} \cap(V(F-$ $\left.r)-\left\{a, a^{\prime}\right\}\right)=\emptyset$ by (III), there exists $q \in\{1, \ldots, l-1\}$ such that $V\left(B_{q}-w_{q-1}\right)$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Choose q to be maximum with this property, and let u be a neighbor of $V\left(B_{q}-w_{q-1}\right)$ in $V(F-r)-\left\{a, a^{\prime}\right\}$.

Next we define a $u-w_{q}$ path Q_{q} in G_{q}. If B_{q} is trivial or u is adjacent to w_{q}, then let Q_{q} be the path induced by the edge $u w_{q}$. Otherwise, B_{q} is nontrivial, $S_{q}=\left\{u, y_{i}\right\}$, and ($G_{q}, y_{i}, w_{q-1}, u, w_{q}$) is planar (by (I)). By Lemma 2.7 (with $G_{q}, u, w_{q}, y_{i}, w_{q-1}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists a nonseparating induced $u-w_{q}$ path Q_{q} in G_{q} such that $V\left(Q_{q}\right) \cap\left\{y_{i}, w_{q-1}\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G_{q}\right)\right|+\left|E\left(G_{q}\right)\right|\right)$ time.

By the maximality of q, for $q+1 \leq j \leq l-1$, the following holds: If B_{j} is nontrivial, then $S_{j}=\left\{x_{i}, y_{i}\right\}$ and ($G_{j}, y_{i}, w_{j-1}, x_{i}, w_{j}$) is planar (by (I)), and if B_{j} and B_{j+1} are trivial, then $N_{G}\left(w_{j}\right)-\left\{w_{j-1}, w_{j+1}\right\}=\left\{x_{i}, y_{i}\right\}$ (by (II)). Note also that $x_{i} \in S_{l}$ because $P\left(x_{i}, y_{i}\right) \subseteq B_{l}-w_{l-1}$.

Choose the minimum $t \in\{q+1, \ldots, l\}$ such that $x_{i} \in N_{G}\left(B_{t}-w_{t}\right)$. Thus, by the choice of q and t, B_{j} is trivial for every $j \in\{q+1, \ldots, t-1\}$. For each $j \in\{q+1, \ldots, t-1\}$, let Z_{j} denote the path induced by the edge $w_{j-1} w_{j}$.

If B_{t} is trivial, then let Q_{t} denote the path induced by the edge $w_{t-1} x_{i}$. If B_{t} is nontrivial, then we define a path Q_{t} according to the following two cases.

- $t<l$. Then $S_{t}=\left\{x_{i}, y_{i}\right\}$, and $\left(G_{t}, w_{t-1}, x_{i}, w_{t}, y_{i}\right)$ is planar. By Lemma 2.7 with $G_{t}, w_{t-1}, x_{i}, w_{t}, y_{i}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively, there exists a nonseparating induced $w_{t-1}-x_{i}$ path Q_{t} in G_{t} such that $V\left(Q_{t}\right) \cap\left\{w_{t}, y_{i}\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G_{t}\right)\right|+\left|E\left(G_{t}\right)\right|\right)$ time.
- $t=l$. Since P is induced in $G-a a^{\prime}$ and x_{i} has at least two neighbors in $V\left(B_{l}\right), x_{i}$ has a neighbor in $V\left(B_{l}\right)-V\left(P\left(x_{i}, y_{i}\right)\right)$. Moreover, $B_{l}-V\left(P\left(x_{i}, y_{i}\right)\right)$ is connected because $A_{i}-V\left(P_{i}\right)$ is connected, and hence, there exists a $w_{l-1^{-}}$ x_{i} path Q^{\prime} in $B_{l}-V\left(P\left(x_{i}, y_{i}\right)\right)$. Let $G^{\prime}:=G_{l}-b^{\prime}$, and let $S^{\prime}:=N_{D}\left(b^{\prime}\right) \cup$ $S_{l} \cup\left\{w_{l-1}\right\}$. Then G^{\prime} is $\left(4, S^{\prime}\right)$-connected, and $S^{\prime}-\left\{w_{l-1}, x_{i}\right\}$ is contained in a component U of $G^{\prime}-V\left(Q^{\prime}\right)$. By Lemma 2.1 (with $G^{\prime}, S^{\prime}, w_{l-1}, x_{i}, U$ as G, S, a, a^{\prime}, U, respectively) there exists a nonseparating induced $w_{l-1}-x_{i}$ path Q_{l} in G^{\prime} such that $V\left(Q_{l}\right) \cap V(U)=\emptyset$ (and hence, $\left.V\left(Q_{l}\right) \cap V\left(P\left(x_{i}, y_{i}\right)\right)=\emptyset\right)$. Moreover, such a path can be found in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time).
Let $P^{\prime}:=Q_{q} \cup Z_{q+1} \cup \cdots \cup Z_{t-1} \cup Q_{t} \cup P\left[a, x_{i}\right]$. Then P^{\prime} is a $u-a$ path in G such that $V\left(P^{\prime}\right) \cap V(F)=\{u, a\}$. Moreover, it is not hard to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Next we show that P^{\prime} is a B_{P}-augmenting path. It is not hard to see that P^{\prime} is an induced path in $G-u a$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in $G_{F}, P^{\prime}(u, a)$ is nonseparating in G_{F}. If $a=r$, then r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}(u, a)\right)$. Thus, P^{\prime} is a feasible F-path. Moreover, since $V\left(P^{\prime}\right) \cap V\left(P\left(x_{i}, a^{\prime}\right]\right)=\emptyset, B_{P} \cup W \subseteq$ $B_{P^{\prime}}$. Therefore, P^{\prime} is a B_{P}-augmenting path.

Subcase 2.2. x_{i} has at most one neighbor in $V\left(B_{l}\right)$, and x_{i} has a neighbor in $V\left(A_{i}\right)-\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b_{i}\right\}\right)$.

Then since A_{i} is 2-connected, x_{i} has a neighbor in $V(D)-\left(V\left(B_{l}\right) \cup\left\{b_{i}\right\}\right)$. Therefore, since $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ and by (I), (II),
and (III), there exist $u \in V(F-r)-\left\{a, a^{\prime}\right\}$ and $q, t \in\{1, \ldots, l-1\}$ with $q \leq t$ such that one of the following holds:
(a) $u \in N_{G}\left(B_{q}-w_{q-1}\right)$, and $x_{i} \in N_{G}\left(B_{t}-w_{t}\right)$; or
(b) $x_{i} \in N_{G}\left(B_{q}-w_{q-1}\right)$, and $u \in N_{G}\left(B_{t}-w_{t}\right)$.

Choose q, t so that $t-q$ is minimum and (a) or (b) holds. Note that $q<t$ because in (I) we must have $y_{j} \in S_{j}$ and in (II) we must have $y_{j} \in N_{G}\left(w_{j}\right)$.

We may assume that (a) holds because the other case is symmetric.
By the minimality of $t-q$ and by (I), B_{j} is trivial for every $j \in\{q+1, \ldots, t-1\}$. Using (II), one can also show that $t-q \leq 2$. For $q+1 \leq j \leq t-1$, let Z_{j} denote the path induced by the edge $w_{j-1} w_{j}$.

If B_{q} is trivial, then let Q_{q} be the path induced by the edge $u w_{q}$. Otherwise (by (I)) B_{q} is nontrivial, $S_{q}=\left\{u, y_{i}\right\}$, and $\left(G_{q}, y_{i}, w_{q-1}, u, w_{q}\right)$ is planar. By Lemma 2.7 (with $G_{q}, u, w_{q}, y_{i}, w_{q-1}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists a nonseparating induced $u-w_{q}$ path Q_{q} in G_{q} such that $V\left(Q_{q}\right) \cap\left\{y_{i}, w_{q-1}\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G_{q}\right)\right|+\left|E\left(G_{q}\right)\right|\right)$ time.

Similarly, if B_{t} is trivial, then let Q_{t} be the path induced by the edge $x_{i} w_{t-1}$. Otherwise (by (I)) B_{t} is nontrivial, $S_{t}=\left\{x_{i}, y_{i}\right\}$, and ($G_{t}, y_{i}, w_{t-1}, x_{i}, w_{t}$) is planar. By Lemma 2.7 (with $G_{t}, x_{i}, w_{t-1}, y_{i}, w_{t}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively) there exists a nonseparating induced $x_{i}-w_{t-1}$ path Q_{t} in G_{t} such that $V\left(Q_{t}\right) \cap\left\{y_{i}, w_{t}\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G_{t}\right)\right|+\left|E\left(G_{t}\right)\right|\right)$ time.

Let $P^{\prime}:=Q_{q} \cup Z_{q+1} \cup \cdots \cup Z_{t-1} \cup Q_{t} \cup P\left[a, x_{i}\right]$. Then P^{\prime} is a u - a path which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. Moreover, it is not hard to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Next we show that P^{\prime} is a B_{P}-augmenting path. Since Q_{q}, Q_{t} are nonseparating and induced in G_{q}, G_{t}, respectively, it is not hard to see that P^{\prime} is an induced path in $G-u a$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in $G_{F}, P^{\prime}(u, a)$ is non-separating in G_{F}. If $a=r$, then r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}(u, a)\right)$. Thus, P^{\prime} is a feasible F path. Since $V\left(P^{\prime}\right) \cap V\left(P_{i}-x_{i}\right)=\emptyset, B_{P} \cup W \subseteq B_{P^{\prime}}$. Therefore, P^{\prime} is a B_{P}-augmenting path.

Subcase 2.3. x_{i} has at most one neighbor in $V\left(B_{l}\right)$, and x_{i} has no neighbor in $V\left(A_{i}\right)-\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b_{i}\right\}\right)$.

In this case, since A_{i} is 2-connected, b_{i} is the only neighbor of x_{i} in A_{i} not contained in $V\left(P\left(x_{i}, y_{i}\right)\right)$. We consider two cases according to whether $x_{i}=a$ or $x_{i} \neq a$.
(A) $x_{i}=a$.

Then by the definition of x_{i} in Notation 3.9, $b_{i} \neq r_{i}$. Since $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ and (III) holds, there exists some $q \in\{1, \ldots, l-1\}$ such that $V\left(B_{q}-w_{q-1}\right)$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$. Choose q to be minimum with this property.

Therefore, since b_{i} is the only neighbor of x_{i} in A_{i} not contained in $V\left(P_{i}\right)$ and (I) holds, B_{j} is trivial for every $j \in\{1, \ldots, q-1\}$. Using (II), one can show that either $q=1$ or $q=2$. For each $j \in\{1, \ldots, q-1\}$ let Z_{j} be the path induced by the edge $w_{j-1} w_{j}$.

If B_{q} is trivial (in this case $q=1$), then, by the choice of q, w_{q} has a neighbor u in $V(F-r)$, and let $Q_{q}:=\left(w_{q-1}, w_{q}, u\right)$. If B_{q} is nontrivial, then by (I) $S_{q}=$ $\left\{u, y_{i}\right\}$ for some $u \in V(F-r)-\left\{a, a^{\prime}\right\}$, and $\left(G_{q}, y_{i}, w_{q-1}, u, w_{q}\right)$ is planar. Note that $u \neq a$ because x_{i} has no neighbor in $V\left(A_{i}\right)-\left(V\left(P_{i}\right) \cup\left\{b_{i}\right\}\right)$. By Lemma 2.7 (with $G_{q}, u, w_{q-1}, y_{i}, w_{q}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists a nonseparating induced
$u-w_{q-1}$ path Q_{q} in G_{q} such that $V\left(Q_{q}\right) \cap\left\{y_{i}, w_{q}\right\}=\emptyset$. Moreover, such a path can be found in $O\left(\left|V\left(G_{q}\right)\right|+\left|E\left(G_{q}\right)\right|\right)$ time.

Let $P^{\prime}:=\left(Z_{1} \cup \cdots \cup Z_{q-1} \cup Q_{q}\right)+\left\{x_{i}, x_{i} b_{i}\right\}$. Then P^{\prime} is a $u-a$ path which is internally disjoint from $V\left(B_{P}\right) \cup V(F)$. Moreover, it is not hard to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Next we show that P^{\prime} is a B_{P}-augmenting path. It is not hard to see that P^{\prime} is an induced path in $G-u a$. Because of the path W and since $P\left(a, a^{\prime}\right)$ is nonseparating in G_{F} and Q_{q} is nonseparating in $G_{q}, P^{\prime}(u, a)$ is nonseparating in G_{F}. If $a=r$, then r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and because of the path W, r is not a cut vertex of $G_{F}-V\left(P^{\prime}(u, a)\right)$. Thus, P^{\prime} is a feasible F-path. Since $B_{P} \cup W \subseteq B_{P^{\prime}}, P^{\prime}$ is a B_{P}-augmenting path.
(B) $x_{i} \neq a$.

In this case, it is possible that $b_{i}=r_{i}$. Note that x_{i} has degree at least four in G (because G is 4 -connected), P is induced in $G-a a^{\prime}$, and x_{i} has no neighbor in $V\left(A_{i}\right)-\left(V\left(P_{i}\right) \cup\left\{b_{i}\right\}\right)$ (by assumption in this subcase). So x_{i} has a neighbor in $\left(\bigcup_{j=1}^{p} V_{j}\right)-V_{i}$. Let $t \in\{1, \ldots, p\}-\{i\}$ such that x_{i} has a neighbor in V_{t}.

Suppose that for some $j \in\{1, \ldots, l-1\}, B_{j}$ is nontrivial. Then by (I) and by our assumption that x_{i} has no neighbor in $V\left(A_{i}\right)-\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b_{i}\right\}\right), S_{j}=\left\{u, y_{i}\right\}$ for some $u \in V(F-r)$, and $\left(G_{j}, y_{i}, w_{j-1}, u, w_{j}\right)$ is planar. Note that $u \neq a^{\prime}$ by the definition of y_{i} in Notation 3.9 and because $u \neq y_{i}$. Also $u \neq a$ because $x_{i} \neq$ a. By Lemma 2.6 (with $G_{j}, y_{i}, u, w_{j-1}, w_{j}$ as $G, a, a^{\prime}, b, b^{\prime}$, respectively), there exists a nonseparating induced $u-y_{i}$ path Q in G_{j} such that $G_{j}-V(Q)$ has exactly two components K and K^{\prime} with $w_{j-1} \in V(K)$ and $w_{j} \in V\left(K^{\prime}\right)$. Moreover, such a path can be found in $O\left(\left|V\left(G_{j}\right)\right|+\left|E\left(G_{j}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time). Let $P^{\prime}:=Q \cup P\left[y_{i}, a^{\prime}\right]$. Then P^{\prime} is a $u-a^{\prime}$ path in G such that $V\left(P^{\prime}\right) \cap V(F)=\left\{u, a^{\prime}\right\}$. Moreover, it is not hard to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

Next we show that P^{\prime} is a B_{P}-augmenting path. Since Q is induced in G_{j} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (by Assumption 1), and because P is an induced path in $G-a a^{\prime}$ and $P\left(\left(y_{i}, a^{\prime}\right]\right)$ has no neighbor in $V\left(B_{j}\right)$ (by the definition of y_{i} in Notation 3.9), one can see that P^{\prime} is an induced path in $G-u a^{\prime}$. Since $G_{j}-V(Q)$ has exactly two components, one containing w_{j-1} and the other containing w_{j}, and because x_{i} has a neighbor in V_{t}, it is not hard to show that P^{\prime} is nonseparating in G_{F}. If $r \in\left\{u, a^{\prime}\right\}$, then $r=a^{\prime}$ and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. In this case, because x_{i} has a neighbor in V_{t}, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, a^{\prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Moreover, since b_{i} is adjacent to x_{i} and x_{i} has a neighbor in V_{t}, it follows that P^{\prime} is a B_{P}-augmenting path.

Thus, we may assume that B_{j} is trivial for every $j \in\{1, \ldots, l-1\}$. If $l \geq 3$, then B_{1} and B_{2} are trivial, and by (II), $N_{G}\left(w_{1}\right)-\left\{w_{0}, w_{2}\right\}=\left\{u, y_{i}\right\}$ for some $u \in V(F-r)$. Note that $u \notin\left\{a, a^{\prime}\right\}$ because $x_{i} \neq a$ and $y_{i} \neq u$. By an argument similar to the above paragraph, one can show that $P^{\prime}:=\left(u, w_{1}, y_{i}\right) \cup P\left[y_{i}, a^{\prime}\right]$ is a B_{P}-augmenting path.

So we may assume that $l=2$ and B_{1} is trivial. This implies that $V\left(P\left(x_{i}, y_{i}\right)\right) \subseteq$ $V\left(B_{2}\right)$. Hence, B_{2} is nontrivial, so $S_{2}=\left\{x_{i}, y_{i}\right\}$ (by (III)). Since $V\left(A_{i}\right)-\left\{b_{i}, x_{i}, y_{i}\right\}$ has a neighbor in $V(F-r)-\left\{a, a^{\prime}\right\}$ (by assumption in this lemma) and (III) holds, w_{1} is adjacent to some $u \in V(F-r)-\left\{a, a^{\prime}\right\}$. Let x^{\prime}, y^{\prime} denote the vertices in $N_{D}\left(b^{\prime}\right)$ (see Notation 3.9) which are the lowest and the highest in P, respectively. Since B_{2} is 2-connected, $V\left(B_{2}\right)-\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b^{\prime}\right\}\right)$ has a neighbor in $V\left(P\left(x^{\prime}, y_{i}\right)\right)$. Since $B_{2}-\left(V\left(P\left(x_{i}, y_{i}\right)\right) \cup\left\{b^{\prime}\right\}\right)$ is connected (because $A_{i}-V\left(P_{i}\right)$ is connected), there exists a $w_{1}-y_{i}$ path Q^{\prime} in G_{2} such that x_{i} and b^{\prime} are contained in a component U of $G_{2}-V\left(Q^{\prime}\right)$.

Moreover, recall that G_{2} is $\left(3,\left\{w_{1}, x_{i}, y_{i}, b^{\prime}\right\}\right)$-connected. Thus, the hypotheses of Lemma 2.1 are satisfied with $G_{2},\left\{w_{1}, x_{i}, y_{i}, b^{\prime}\right\}, w_{1}, y_{i}, U$ as G, S, a, a^{\prime}, U, respectively. By Lemma 2.1 there exists a nonseparating induced $w_{1}-y_{i}$ path Q in G_{2} such that $V(Q) \cap V(U)=\emptyset$ (and hence, $V(Q) \cap\left\{x_{i}, b^{\prime}\right\}=\emptyset$). Moreover, such a path can be found in $O\left(\left|V\left(G_{2}\right)\right|+\left|E\left(G_{2}\right)\right|\right)$ time (and hence, in $O(|V(G)|+|E(G)|)$ time). Let $P^{\prime}:=$ $\left(P\left[y_{i}, a^{\prime}\right] \cup Q\right)+\left\{u, u w_{1}\right\}$. Then P^{\prime} is a $u-a^{\prime}$ path in G such that $V\left(P^{\prime}\right) \cap V(F)=\left\{u, a^{\prime}\right\}$. Moreover, it is not hard to see that such a path can be found in $O(|V(G)|+|E(G)|)$ time.

We conclude the proof by showing that P^{\prime} is a B_{P}-augmenting path. Since Q is induced in G_{2} and $N_{G}\left(P\left(a, a^{\prime}\right)\right) \cap V(F) \subseteq\left\{a, a^{\prime}\right\} \cup\{r\}$ (by Assumption 1), and because P is an induced path in $G-a a^{\prime}$ and $P\left(\left(y_{i}, a^{\prime}\right]\right)$ has no neighbor in $V\left(B_{2}\right)$ (by the definition of y_{i} in Notation 3.9), one can see that P^{\prime} is an induced path in $G-u a^{\prime}$. Since $G_{2}-V(Q)$ is connected, and because x_{i} has a neighbor in V_{t}, it is not hard to see that P^{\prime} is nonseparating in G_{F}. If $r \in\left\{u, a^{\prime}\right\}$, then $r=a^{\prime}$, and r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$. In this case, because x_{i} has a neighbor in V_{t}, r is not a cut vertex of $G_{F}-V\left(P^{\prime}\left(u, a^{\prime}\right)\right)$. Thus, P^{\prime} is a feasible F-path. Moreover, since b_{i} is adjacent to x_{i} and x_{i} has a neighbor in V_{t}, it follows that P^{\prime} is a B_{P}-augmenting path.

We are now ready to prove the main result of this section, which implies Theorem 3.2. Consider Algorithm 1.

Theorem 3.16. Algorithm 1 is correct and runs in $O(|V(G) \| E(G)|)$ time.
Proof. First, we will prove the correctness of the algorithm.
At the start of each iteration of the main loop, P is a feasible $a-a^{\prime} F$-path, and B_{P} is a nontrivial block of $G_{F}:=G-V(F-r)$ containing r. As the algorithm progresses, $\left|V\left(B_{P}\right)\right|$ increases.

If $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is 2-connected, then the algorithm stops at line 5 . Since P is an induced path in $G_{F}-a a^{\prime}, H:=P$ is either an elementary F-chain or an up a - a^{\prime} F-chain whose blocks are all trivial. Moreover, $G_{F}-I(H)=G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ and $G[V(F) \cup I(H)]=F \cup P$ are 2-connected.

If for every B_{P}-bridge B of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right), N_{G}\left(B-r_{B}\right) \subseteq V(P)$, then by Lemma 3.6 the a - $a^{\prime} F$-chain H in line 8 exists, and $G_{F}-I(H)$ and $G[V(F) \cup I(H)]$ are 2 -connected. Thus, if the algorithm stops at line 9 , it returns a correct answer.

If $\left|X_{P}\right|=2$, then by Lemma 3.7 either the subgraph H defined in line 12 is a down F-chain or there exists a B_{P}-augmenting path. Thus, if the algorithm stops at line 14 , then H is a down F-chain and $G_{F}-I(H)=B_{P}$ and $G[V(F) \cup I(H)]$ are 2-connected. Otherwise, the algorithm increases B_{P} by executing lines 16 and 17 .

In line 19 , if $|V(P)|=3$ (and hence, $\left|X_{P}\right| \geq 3$), then $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is not 2-connected; for otherwise, Algorithm 1 would have stopped at line 5. By Lemma 3.8 a B_{P}-augmenting path exists, and the algorithm increases B_{P}.

Suppose then that $\left|X_{P}\right| \geq 3$ and $|V(P)| \geq 4$. Let $H_{i} \in \mathcal{H}$ be adjacent to F (see Notation 3.9). If $x_{i}=y_{i}$, then by Lemma 3.12 the B_{P}-augmenting path in line 24 exists, and the algorithm increases B_{P}. If $x_{i} \neq y_{i}$, then by Lemmas 3.12, 3.13, 3.14, and 3.15 either the subgraph H defined in line 26 is a triangle chain, or there exists a B_{P}-augmenting path. Thus, if the algorithm stops at line 28 , then H is a triangle F-chain such that $G_{F}-I(H)=B_{P}$ and $G[V(F) \cup I(H)]$ are 2-connected. Otherwise, the algorithm increases B_{P} by executing lines 30 and 31 .

Since $\left|V\left(B_{P}\right)\right|$ increases at each iteration, the main loop at line 1 eventually stops and a good F-chain in G is returned. Hence, Algorithm 1 is correct.

```
Algorithm 1. Internal Chain.
Require: \(G, r, F, a, a^{\prime}, P, B_{P}\) satisfying the hypotheses of Theorem 3.2.
Return: A good \(F\)-chain \(H\) in \(G\) such that \(G_{F}-I(H)\) and \(G[V(F) \cup I(H)]\) are
    2-connected.
    loop
        Apply Lemma 3.4 to \(P\), and let \(P\) denote the resulting path;
        Let \(a, a^{\prime}\) denote the ends of \(P\);
        if \(G_{F}-V\left(P\left(a, a^{\prime}\right)\right)\) is 2-connected then
            Return \(H:=P\) and stop;
        Compute \(X_{P}\) (as defined in Notation 3.5);
        if for every \(B_{P}\)-bridge \(B\) of \(G_{F}-V\left(P\left(a, a^{\prime}\right)\right), N_{G}\left(B-r_{B}\right) \subseteq V(P)\) then
            Find an up \(a-a^{\prime} F\)-chain \(H\) by applying Lemma 3.6;
            Return \(H\) and stop;
        if \(\left|X_{P}\right|=2\) then
            Let \(v, v^{\prime}\) be the vertices in \(X_{P}\);
            \(H \leftarrow\left(G_{F}-\left(V\left(B_{P}\right)-X_{P}\right)\right)-v v^{\prime} ;\)
            if \(H\) is a down \(F\)-chain in \(G\) then
                Return \(H\) and stop;
            else
                Find a \(B_{P}\)-augmenting path \(P^{\prime}\) as in Lemma 3.7;
                Set \(P \leftarrow P^{\prime}\) and start a new iteration;
        if \(|V(P)|=3\) then
            Find a \(B_{P}\)-augmenting path \(P^{\prime}\) as in Lemma 3.8;
            Set \(P \leftarrow P^{\prime}\) and start a new iteration;
        Compute \(\mathcal{H}\);
        Let \(H_{i} \in \mathcal{H}\) be adjacent to \(F\);
        if \(x_{i}=y_{i}\) then
            Find a \(B_{P}\)-augmenting path \(P^{\prime}\) as in Lemma 3.12
            \(P \leftarrow P^{\prime}\) and start a new iteration;
        Let \(H\) be obtained from \(A_{i}\) by adding \(N_{G}\left(A_{i}\right) \cap V(F)\) and all the edges of \(G\)
        from \(V\left(A_{i}\right)\) to \(V(F)\);
        if \(G_{F}-V\left(B_{P}\right)=A_{i}\) and \(H\) is a triangle chain of \(F\) then
            Return \(H\) and stop;
        else
            Find a \(B_{P}\)-augmenting path \(P^{\prime}\) as in Lemmas 3.12, 3.13, 3.14, and 3.15;
            Set \(P \leftarrow P^{\prime}\) and start a new iteration;
```

Now we discuss the running time of the algorithm.
The loop in line 1 is executed at most $|V(G)|$ times since $\left|V\left(B_{P}\right)\right|$ increases at each iteration.

By Lemma 3.4, the step in line 2 can be performed in $O(|V(G)|+|E(G)|)$ time.
The test in line 4 and the steps in line 6 can be executed in $O(|V(G)|+|E(G)|)$ time by standard graph search techniques [6].

The steps in lines $7-9$ can be executed in $O(|V(G)|+|E(G)|)$ time by Lemma 3.6.
The steps in lines 10-17 can be executed in $O(|V(G)|+|E(G)|)$ time by Lemma 3.7.
The steps in lines 18-20 can be executed in $O(|V(G)|+|E(G)|)$ time by Lemma 3.8.
The steps in lines 21-22 can be executed in $O(|V(G)|+|E(G)|)$ time by standard graph search techniques [6].

The steps in lines 23-25 can be executed in $O(|V(G)|+|E(G)|)$ time by Lemma 3.12.
Finally, the steps in lines 26-31 can be executed in $O(|V(G)|+|E(G)|)$ time by Lemmas 3.12, 3.13, 3.14, and 3.15.

Therefore, the running time of the Algorithm 1 is $O(|V(G) \| E(G)|)$.
4. Chain decomposition. In this section, we describe how to construct a nonseparating chain decomposition of a 4 -connected graph G.

The idea is the following. Suppose we have found a partial chain decomposition $H_{1}, H_{2}, \ldots, H_{i-1}$ of G and we want to find the next chain H_{i}. Let $F:=G\left[\bigcup_{j=1}^{i-1} I\left(H_{j}\right)\right]$, and assume that $G_{F}:=G-(V(F)-\{r\})$ is 2-connected. If G_{F} is a planar cyclic chain rooted at r, then we obtain our desired decomposition by taking $H_{i}:=G_{F}$ and $t:=i$. If G_{F} is not a planar cyclic chain, then we want to use Theorem 3.2. In order to apply it, we need to efficiently find vertices $a, a^{\prime} \in V(F)$ and a feasible $a-a^{\prime} F$-path P. This will follow from Lemma 4.2 below.

We need the following result, proved in [7] and [1], which was used in [2].
Theorem 4.1. Let G be a 3 -connected graph, let $e \in E(G)$, and let $u \in V(G)$ be nonincident to e. Then there exists a nonseparating induced cycle in G through e and avoiding u. Moreover, such a cycle can be found in $O(|V(G)|+|E(G)|)$ time.

Lemma 4.2. Let G be a 4-connected graph, let $r \in V(G)$, and let F be a connected subgraph of G such that $r \in V(F),|V(F)| \geq 2$, and $G_{F}:=G-(V(F)-\{r\})$ is 2connected. Then one of the following holds:
(1) G_{F} is a planar cyclic chain in G rooted at r; or
(2) there exists a feasible $a-a^{\prime} F$-path P in G, that is,
(i) $V(P) \cap V(F)=\left\{a, a^{\prime}\right\}$ and P is an induced path in $G-a a^{\prime}$;
(ii) $P\left(a, a^{\prime}\right)$ is nonseparating in G_{F};
(iii) r is contained in a nontrivial block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$; and
(iv) if $r \in\left\{a, a^{\prime}\right\}$, then r is not a cut vertex of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$.

Moreover, one can in $O(|V(G)|+|E(G)|)$ time certify that (1) holds or find a path as in (2).

Proof. First, suppose that G_{F} is 3 -connected. Let G^{\prime} be obtained from G by contracting $F-r$ to a single vertex, say v^{\prime}. Then G^{\prime} is 4 -connected; otherwise, there exists a 3 -cut T in G^{\prime}. Since G is 4 -connected, $v^{\prime} \in T$. But then $T-\left\{v^{\prime}\right\}$ is a 2 -cut in G_{F}, which is a contradiction. By Theorem 4.1, we can find a nonseparating induced cycle C in G^{\prime} through $r v^{\prime}$ in $O(|V(G)|+|E(G)|)$ time. The path $C-r v^{\prime}$ in G^{\prime} corresponds to an induced path P in G from r to some vertex $a^{\prime} \in V(F-r)$. Since G is 4-connected, r has at least two neighbors in $G_{F}-V\left(P\left(r, a^{\prime}\right)\right)$. Moreover, since C is nonseparating in G^{\prime}, r is not a cut vertex of $G_{F}-V\left(P\left(r, a^{\prime}\right)\right)$, and r is contained in a nontrivial block of $G_{F}-V\left(P\left(r, a^{\prime}\right)\right)$. Thus, $P, a:=r$, and a^{\prime} satisfy (2).

So we may assume that G_{F} is 2 -connected but not 3 -connected. Let $\left\{b, b^{\prime}\right\}$ be a 2-cut of G_{F}. Let H_{1}, H_{2} be edge-disjoint subgraphs of G_{F} such that $r \in V\left(H_{1}\right)$, $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\left\{b, b^{\prime}\right\}, H_{1} \cup H_{2}=G_{F},\left|V\left(H_{1}\right)\right| \geq 3$, and $\left|V\left(H_{2}\right)\right| \geq 3$. Choose H_{1}, H_{2} such that H_{2} is minimal. Note that $b, b^{\prime}, H_{1}, H_{2}$ can be found in $O(|V(G)|+$ $|E(G)|)$ time using the algorithm in [3] for finding the 3-connected components of G_{F}. Let $S:=N_{G}\left(H_{2}-\left\{b, b^{\prime}\right\}\right)-\left\{b, b^{\prime}\right\}$, and let G^{\prime} be obtained from H_{2} by adding S and the edges of G from S to $V\left(H_{2}\right)-\left\{b, b^{\prime}\right\}$. Note that $S \subseteq V(F),|S| \geq 2$, and $r \notin S$ because $\left\{b, b^{\prime}\right\}$ is a 2-cut of G_{F} and $r \notin V\left(H_{2}\right)-\left\{b, b^{\prime}\right\}$. Moreover, G^{\prime} is ($4, S \cup\left\{b, b^{\prime}\right\}$)-connected.

Suppose that $\left|V\left(H_{2}\right)\right| \geq 4$. Then by minimality of H_{2}, H_{2} is 2 -connected and $G^{\prime}, b, b^{\prime}, S$ satisfy (i)-(v) of Lemma 2.3 (with G^{\prime} as G). Therefore, we can in $O\left(\left|V\left(G^{\prime}\right)\right|+\right.$ $\left.\left|E\left(G^{\prime}\right)\right|\right)$ time either
(I) find $a, a^{\prime} \in S$ and an induced $a-a^{\prime}$ path P^{\prime} in G^{\prime} such that $V\left(P^{\prime}\right) \cap\left\{b, b^{\prime}\right\}=\emptyset$, $V\left(P^{\prime}\right) \cap S=\left\{a, a^{\prime}\right\}$, and $G-\left(V\left(P^{\prime}\right) \cup S\right)$ is connected, or
(II) certify that $|S|=2$, and the vertices in S can be labeled as a, a^{\prime} such that ($\left.G^{\prime}, a, b, a^{\prime}, b^{\prime}\right)$ is planar.
If (I) occurs, then r is contained in a nontrivial block of $G-V\left(P^{\prime}\right)$ since there exists a $b-b^{\prime}$ path in $H_{2}-V\left(P\left(a, a^{\prime}\right)\right)$. Since $r \notin S$, we have $r \notin\left\{a, a^{\prime}\right\}$. Hence, $P:=P^{\prime}$ is a path that satisfies (2).

So we may assume that one of the following holds: $\left|V\left(H_{2}\right)\right| \geq 4$ and (II) occurs, or $\left|V\left(H_{2}\right)\right|=3$.

We claim that one can find in $O\left(\left|V\left(G^{\prime}\right)\right|+\left|E\left(G^{\prime}\right)\right|\right)$ time a path P in G^{\prime} with ends a, a^{\prime} in S such that $G^{\prime}-(V(P) \cup S)$ has exactly two components K, K^{\prime} with $b \in V(K)$ and $b^{\prime} \in V\left(K^{\prime}\right)$. If $\left|V\left(H_{2}\right)\right| \geq 4$ and (II) occurs, then this follows from Lemma 2.6. If $\left|V\left(H_{2}\right)\right|=3$, then let v be the only vertex in $V\left(H_{2}\right)-V\left(H_{1}\right)$. Then v has degree two in G_{F}, and since G is 4 -connected, v has at least two neighbors in $V(F)$, say a, a^{\prime}. Then $P:=\left(a, v, a^{\prime}\right)$ is the required path.

Therefore, $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$ is connected. If r is contained in a nontrivial block of H_{1}, then r is contained in a nontrivial block of $G_{F}-V\left(P\left(a, a^{\prime}\right)\right)$, and since $r \notin S$, $r \notin\left\{a, a^{\prime}\right\}$. In this case, P satisfies (2).

So assume that r is contained only in trivial blocks of H_{1}.
Since G_{F} is 2-connected, H_{1} is a b - b^{\prime} chain. Moreover, either r is a cut vertex of H_{1}, or $r \in\left\{b, b^{\prime}\right\}$. In both cases, G_{F} is a cyclic chain rooted at r. Let $G_{F}:=$ $v_{0} B_{1} v_{1} \cdots v_{k-1} B_{k} v_{k}$ for some integer $k \geq 2$ (where $v_{0}=v_{k}=r$). Note that either $H_{2}=B_{j}$ for some $1 \leq j \leq k$ (when $\left|V\left(H_{2}\right)\right| \geq 4$), or $H_{2}=B_{j} \cup B_{j+1}$ for some $1 \leq j \leq k-1$ where B_{j}, B_{j+1} are trivial (when $\left|V\left(H_{2}\right)\right|=3$).

If all the B_{i} 's are trivial, then G_{F} is a planar cyclic chain and (2) holds. So assume that not all B_{i} 's are trivial. For each 2-connected B_{i}, let $S_{i}:=N_{G}\left(B_{i}-\right.$ $\left.\left\{v_{i-1}, v_{i}\right\}\right)-\left\{v_{i-1}, v_{i}\right\}$, and let G_{i} be obtained from B_{i} by adding S_{i} and the edges of G from S_{i} to $V\left(B_{i}\right)$. Then $S_{i} \subseteq V(F-r)$, because $\left\{v_{i-1}, v_{i}\right\}$ is a 2-cut of G_{F}, and $r \notin V\left(B_{i}\right)-\left\{v_{i-1}, v_{i}\right\}$. Note that $G_{i}, S_{i}, v_{i-1}, v_{i}$ (as G, S, b, b^{\prime}, respectively) satisfy (i)-(v) of Lemma 2.3 because $G_{i}-S_{i}=B_{i}$ is 2-connected and G_{i} is $\left(4, S_{i} \cup\left\{v_{i-1}, v_{i}\right\}\right)$ connected. Thus, one can in $O\left(\left|V\left(G_{i}\right)\right|+\left|E\left(G_{i}\right)\right|\right)$ time either (a) find $a_{i}, a_{i}^{\prime} \in S_{i}$ and an induced $a_{i}-a_{i}^{\prime}$ path P_{i} in G such that $V\left(P_{i}\right) \cap\left\{v_{i-1}, v_{i}\right\}=\emptyset, V\left(P_{i}\right) \cap S_{i}=\left\{a_{i}, a_{i}^{\prime}\right\}$, and $G_{i}-\left(V\left(P_{i}\right) \cup S_{i}\right)=B_{i}-V\left(P_{i}\left(a_{i}, a_{i}^{\prime}\right)\right)$ is connected, or (b) certify that $\left|S_{i}\right|=2$, and the vertices in S_{i} can be labeled as a_{i}, a_{i}^{\prime} such that $\left(G_{i}, v_{i-1}, a_{i}, v_{i}, a_{i}^{\prime}\right)$ is planar. Since G is 4-connected, if (b) occurs, then $B_{i}-\left\{v_{i-1}, v_{i}\right\}=G_{i}-\left(S_{i} \cup\left\{v_{i-1}, v_{i}\right\}\right)$ is connected.

If G_{F} is not a planar cyclic chain rooted at r, then (a) must hold for some 2connected B_{i}, and hence, $P:=P_{i}$ satisfies (2) (because $r \notin S_{i}$). Otherwise, (1) holds.

It is not hard to see that all the steps described above can be executed in $O(|V(G)|+|E(G)|)$ time.

Thus, combining Lemma 4.2 and Theorem 3.2 we obtain the following.
Theorem 4.3. Let G be a 4-connected graph, let F be a subgraph of G, and let $r \in V(F)$ such that $G_{F}:=G-(V(F)-\{r\})$ is 2-connected. Then one of the following holds:
(1) there exists a good F-chain H in G such that $G_{F}-I(H)$ and $G[V(F) \cup I(H)]$ are 2-connected; or
(2) G_{F} is a planar cyclic chain rooted at r.

Moreover, one can in $O(|V(G)|+|E(G)|)$ time find a good F-chain as in (1) or certify that (2) holds.

We are now ready to prove the main result in this paper.
Proof of Theorem 1.5. A nonseparating chain decomposition of G starting at $r a$ can be found as follows. The first chain H_{1} can be found in $O(|V(G) \| E(G)|)$ time by Theorem 1.6. The internal chains can be found iteratively as follows. Suppose we have found a partial chain decomposition $H_{1}, \ldots, H_{i-1}(i \geq 2)$ of G and we want to find H_{i}. Let $F:=G\left[\bigcup_{j=1}^{i-1} I\left(H_{j}\right)\right]$. Apply Theorem 4.3 to G, F, and r. Then one of the following holds:
(1) there exists a good F-chain H in G such that $G_{F}-I(H)$ and $G[V(F) \cup I(H)]$ are 2-connected; or
(2) G_{F} is a planar cyclic chain rooted at r.

Moreover, one can in $O(|V(G)|+|E(G)|)$ time find a planar chain as in (1) or certify that (2) holds. If (1) holds, then let $H_{i}:=H$ and set $i \leftarrow i+1$. If (2) holds, then $H_{1}, \ldots, H_{i}:=G_{F}$ is the desired chain decomposition.

Since the number of chains is at most $|V(G)|$, the above algorithm has time complexity $O\left(|V(G)|^{2}|E(G)|\right)$.

Acknowledgment. The authors thank the referees for carefully reading the manuscript and for their helpful suggestions.

REFERENCES

[1] J. Cheriyan and S. N. Maheshwari, Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs, J. Algorithms, 9 (1988), pp. 507-537.
[2] S. Curran, O. Lee, and X. Yu, Nonseparating planar chains in 4-connected graphs, SIAM J. Discrete Math., 19 (2005), pp. 399-419.
[3] J. E. Hopcroft and R. E. TarJan, Dividing a graph into triconnected components, SIAM J. Comput., 2 (1973), pp. 135-158.
[4] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. Assoc. Comput. Mach., 21 (1974), pp. 549-568.
[5] W. L. Hsu and W. K. Shih, A new planarity test, Theoret. Comput. Sci., 223 (1999), pp. 179191.
[6] R. E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf. Ser. in Appl. Math. 44, SIAM, Philadelphia, PA, 1983.
[7] W. T. Tutte, How to draw a graph, Proc. London Math Soc. (3), 13 (1963), pp. 743-767.

[^0]: *Received by the editors September 17, 2003; accepted for publication (in revised form) June 3, 2005; published electronically December 30, 2005.
 http://www.siam.org/journals/sidma/19-4/43459.html
 †School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 (curran@ math.gatech.edu). The work of this author was partially supported by an NSF VIGRE grant.
 ${ }^{\ddagger}$ Instituto de Computação, Universidade Estadual de Campinas, Avenida Albert Einstein, 1251, Caixa Postal 6176, 13083-970 Campinas, SP, Brazil (lee@ic.unicamp.br). The work of this author was supported by CNPq (Proc: 200611/00-3), Brazil.
 ${ }^{\S}$ School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332 and Center for Combinatorics, LPMC, Nankai University, Tianjin, China 300071 (yu@math.gatech.edu). The work of this author was partially supported by NSF grants DMS9970527 and DMS0245530 and by NSA grant MDA904-03-1-0052.

