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Spinning strings and cosmic dislocations
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It is shown that the 1+2 gravity spinning particle metric, when lifted to 1+3 dimensions in a
boost-covariant way, gives rise to a chiral conical space-time which includes as particular cases the
space-time of a spinning string and two space-times that can be associated with the chiral string
with a lightlike phase and the twisted string recently discovered by Bekenstein. Some gravitational
efFects are briefly discussed and a possibility for a new type of anyon is mentioned.
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The spinning point particle solution of 1+2 gravity
[1,2] received much attention recently in connection with
anyons [3—6] and the violation of causality (see, e.g. , [7—
10] and references therein). In the framework of 1+2
gravity this solution is well motivated, being suggested
by the Chem-Simons (CS) Poincare gauge theory of grav-
ity [11—13], where spin arises as one of the charges of the
gauge group. Analogous smooth solutions are likely to be
predicted in the Abelian Higgs model with the CS term
[14] as well as in the framework of topologically massive
gravity [15—17].

It is believed that the four-dimensional counterpart
of this solution represents a spinning (rotating) cosmic
string [18, 10]. To support the conjecture of a spinning
cosmic string, various mechanisms of inducing an angu-
lar momentum on strings were discussed [19,9]. Smooth
rotating models were also considered both in the context
of Einstein gravity [8] and Riemann-Cartan theory [20].

Recently a new class of chirat strings, with the phase
of the complex scalar field possessing a helical structure
both in space and time, were discussed by Bekenstein [21]
in the framework of a global U(l) model in Minkowski
space. They correspond to the extrema of the energy for
fixed angular and linear momenta. In addition to the so-
lutions with a rotating phase of the scalar field, the new
class includes the configurations with the twisted surface
of the constant phase of a scalar field, as well as the so-
lutions for which this surface propagates along the string
with the velocity of light. Although a global model does
not provide a good setting for the coupling to gravity,
the structure of the energy-momentum tensor of a time-
like string is similar to that of the spinning cosmic string,
giving new support to the rotating cosmic string conjec-
ture. The gravitational counterparts of the turisted string
and the string with a lightlike phase apparently were not
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discussed so far. Bekenstein actually found that lightlike
strings, as well as the rotating ones, are stable against
small perturbations, while twisted strings probably are
not. However, they can be stabilized when forming loops.

In this paper we show that the relevant space-time
structure, chirat conical space-time, arises naturally when
starting from the same spinning particle solution of 1+2
gravity. It seems likely that chiral conical space-time pro-
vides the gravitational counterpart for the infinitely thin
straight chiral strings in all the three cases mentioned
above, in the same way that an ordinary conical space-
time is associated with usual cosmic strings.

Recall that in the Einstein formulation the (1+2)-
dimensional metric of a point particle endowed with a
mass p and a spin Jo reads [1]

ds =(dt+ 4GJ dp) —r "(dr +r d&p )

Geometrically, (1) can be obtained by cutting a wedge
of a three-dimensional Minkowski space-time and then
time translating one of the two faces of the wedge before
identifying them. Through the Einstein equations this
metric produces the energy-momentum tensor

gTo = pi(x—) 6'(y),

(2)
gTo = Jo—e "Ob[6(x)b(y)],

where e = —e = 1, and t2, = 1,2. The space-time
(1) can also be obtained as an asymptotic solution in
the framework of some field-theoretical models, e.g. , in
the 1+2 Abelian Higgs model with the CS term coupled
to Einstein gravity [14]. Alternatively, spinning particle
solutions are likely to exist in the parity-violating topo-
logically massive 1+2 gravity (with no matter), as was
shown both in the linearized theory [3] and using the full
nonlinear treatment [15].

The physical significance of the spinning 1+2 parti-
cle solution mostly comes from the hypothesis that these
solutions have (cosmic) string four-dimensional counter-
parts. A lift from 1+2 to 1+3 dimensions usually is sup-
posed to be performed simply by adding dz2 to (1) [18,
10], that gives
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ds = (dt + 4GJodp) —r "(dr + r dp ) —dz

Hence, an observer moving along the spinning string will

see a twisted metric with the lacelike helical structure in
the z direction. Also, geometrically, (4) can be obtained
by cutting a wedge of a four-dimensional Minkowski
space-time and then making a boost in one of the faces
before regluing them.

To describe this situation in a more symmetric way we

pass to Cartesian coordinates x = r cos&p, y = r sing
and introduce a new notation (x, x ) = (t, z, x, y), A =
0, 3, a = 1, 2. Then Eq. (4) will read

$8 = f/~~ (d M —6&b(d2= A B a b

where rl~B = diag(l, —1) and

~(» = dx" + 4GJ"(W, dy —W, dx),
X g

W2 ———,
r2 r2

(g) —4Gp, g a

(7a)

(7b)

The raising (lowering) of the tetrad indices (A)
and (a) is performed with the Minkowski metric
diag(l, —1, —1, —1).

Now, to make the boost-invariance manifest, one
merely has to admit that the parameters J+ = (Jo, J')
form a hao-dimensional vector under the 1+1 I orentz

group acting on the t-z plane:

JO (yO Jsz) Jz (Jlz yO) (8)

This relation can be considered a generalization of Eq.
(5) for the case J' P 0. In accordance with this assump-
tion, the raising and lowering of the index A, from here

on, will be performed with the metric q~@.
Alternatively, one can think of the vector J+ as

a world-sheet quantity which transforms as a two-
dimensional vector under reparametrization. With a
slight abuse of notation we can write the string world
sheet as x" = x"((+) with ( = (r, o.). Now, under the

reparametrization (+ ~ (+ the quantity J+ is demanded
to transform as

X
JA JA JB

ggB

Then Eq. (8) can be seen as representing a particular case
of the subgroup SO(l, l) of the reparametrization group.

In the spinless case an important feature of the metric
of an infinitely thin straight cosmic string is the boost in-
variance along the symmetry axis. However, for Jo p 0,
this property is lost. Indeed, under' the Lorentz transfor-
mation in the z tpla-ne the interval (3) becomes

ds = (dt' + 4GJ' dp) —r "(dr + r d(p )
—(dz' + 4GJ" dy), (4)

where

J' = pJ, J"= pvJ, p = 1/Ql —v2.

ds = du dv + 4GJdu d&p —r sG" (dr2 + rzdp~),

(»)
where u = t —z, v = t + z. This lightlike string met-
ric has helical structure both in space and time in equal
amounts. It can also be considered as a limiting case
of the space-time that represents a usual cosmic string
interacting with a circular polarized plane-fronted gravi-
tational wave [24].

Therefore, a Lorentz invariance in the t-z plane for-
mally predicts a wider class of space-time topological de-
fects that contains the spinning cosmic string as a par-
ticular case. The generalized metric (7) is locally flat
elsewhere except for the symmetry axis. To clarify the
nature of the singularity, by using Cartan formalism, we

compute the connection one-forms du(~) = —~ " h ~( )
(v)

associated with (7):

~ *(
)

——2Gr "(r "iv Jz~( ) + 2p, e ~ ) qlc)rn),
(w)

(12a)

(12b)( ) 2g„P J (b)
(~) QJ Kgb 4J )

where

~=0 B'~ + O„W2.

Substituting here Eq. (7b) we get

ui = (c) + Oy) lnr = 2ir6' (r),

and hence the first term in (12a) is the product of r4G~

with the two-dimensional 6 function. For p, & 0 such a
quantity is zero in the sense of the distributions. How-
ever, one has to keep terms of the same structure in (12b)
since the corresponding factor in front of the 6 function
will be compensated when Einstein tensor is computed.

The generalization (9) opens a way to develop a theory of
infinitely thin chiral cosmic strings of an arbitrary con-
figuration (this work is in preparation).

The vector J+ in the initial formulation was supposed
to be timelike J = J J gA ~ & 0, so there exists a
Lorentz frame in which J' = 0. Now, two more options
arise: J & 0 and J = 0. In the first case, a Lorentz
frame exists in which J = 0 and the corresponding met-
ric is static ds2 = dt —dlz with the three-dimensional
element

dl = (dz + 4GJ' dIp) + r " (dr + r d&pz).

(10)
These three-dimensional spaces are studied in the context
of the geometric theory of continuum media. They rep-
resent screw dislocations, or more precisely (for nonzero
p, ), the superposition of an aligned screw dislocation and
a disclination [22, 23]. This is the reason why we call the
corresponding space-time as generated by a "cosmic dis-
location. " The quantity 2GJ' jar is analogous to Burgers
vector of a dislocation.

The last option is an isotropic J+. In this case in any
Lorentz frame ]J

~

=
~

J'~ = J, and the metric of the
space-time is better represented by
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This treatment of singular structures associated with the
metric (6) and (7) exactly corresponds to the Hamilton-
ian treatment in [1]. We note that an additional analysis
is desirable in order to achieve more rigorous description
of the singularity involved. In fact, for p ( 0 the above
argument fails.

The connection one-forms produce the curvature two-
forms

R~
( )

——2G[4+»i6(r') dx A dy

r "—J B u)~~ ih dx'], (15a)
R'"',

, = 2Gr' &J"B.~dx ~ d~. (15b)

We have omitted ambiguous squares of 6 functions mul-
tiplied by some regular function vanishing on their sup-
port. Finally, taking into account (13), we obtain the
nonzero contravariant components of the Einstein ten-
sor:

The corresponding energy-momentum tensor is

V' g—&" = V" u~(x)~(u)

v' g&"-= J""B~[~(x)~(~)l

(17)

d z+4G) J~ (z —x')d'g —(9 —V')dz

/r —r, /2

(18a)

~r —r,
~

"'dx .

One can easily generalize the above to the case of multiple
parallel chiral strings with the parameters p, , J+, i
1, . .. , N located at the points r, (for pure spinning strings
see [2, 16]). The metric has the form (6) with

v' —g G = 8vrG»iq b (r),

Q—g G = 8+GJ e Byh' (r).
(16)

Let us now discuss the geodesic structure of the chiral
conical space-time. The Hamilton-Jacoby equation for
the metric (6) and (7) reads

BS BS s~~ f BSi 1 /BS ~ BS i+- —4GJBx~ Bz~ q Br p r2 qBp Bx") = M 2

The solution has the form

S = —P~x + Lp+ (p& —L,&/R )&dR (20)

where P~ = (Po, P, ) and L are arbitrary constants, R =
r&' 4~» and-

pi = (PAP —M )/(1 —4Gp)
L,g = (L+4GP~ J )/(1 —4Gp) .

(21a)
(21b)

(1 —4G»)(V —so) = +

(1 —4Gp)(z~ —zo ) = +

L R2
, dR, (22a)

(» i —L,'p/R')
P —4GJ L,s/R

(pz~ —I~„/R2) &

(22b)

Equation (22a) describes the deflection of the geodesic
in the chiral conical space-time. Note that the canonical

]

The corresponding solution of the equations of motion is
obtained by a differentiation with respect to PA and L:

I

angular momentum L is shifted by the amount 4t P~J
and enlarged by a conical factor. Equation (22b) gives
a time shift and also a z shift. The first is due to the
momentum P~ (the first term in the integrand) and the
second to the helical structure of the metric (the second
term in the integrand). When P = 0 we have Ax+ =
4GJ+L&p. The motion is restricted to the plane z =const
only for the pure radial case L,ff ——0. For the timelike
J+ (spinning string), the second term in the integrand in
(22b) produces a time delay associated with two images
of a radiating object split by the string. In the case of
cosmic dislocation, it gives the z splitting of two images,
Az = 8~GJ'. Hence, a cosmic dislocation produces not
only a transversal, but also a longitudinal shift of the
images. If the direction of the string is unknown, two
objects behind the string allow us to distinguish between
the usual cosmic string and the cosmic dislocation, in
the latter case, the typical picture of the images being a
parallelogram instead of a rectangle.

Let us discuss briefly the eKect of quantization. The
Klein-Gordon equation in the metric (6) and (7) is equiv-
alent to

(rl —16G R J J )B4Ba4+8GR J B~B~C —R (1 4G»i) B~(RBzC)—(1—4G»i) —R (B~) C+M C = 0,

(23)

and has the regular solution at the origin

) ~(P„P„m)J .„(kR)

xe '~+A~ +~&&dP~dP

I

where

A = p~/(1 —4G»)

m, ir = (m + 4GP~ J )/(1 —4Gp, ),
(25)
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and m = 0, +I, +2, ... (the p variable takes values be-
tween 0 and 2z); J is the Bessel function and K an ar-
bitrary function in the indicated arguments. Thus the
shift of the angular momentum due to Burgers vectors J+
translates into the shift of the magnetic quantum number
m after a quantization (h = 1),

m —+ (rn+ 4GPA J )/(I —4ap), (26)

enlarged by the factor (t —4Op) . This shift is anal-
ogous to the shift m ~ m —

2 for the charge in the
Aharonov-Bohm effect, where O is the magnetic fiux.
In fact, as was argued in [5], in the case of a spinning
string this shift is responsible for producing gravitational
anyons [3,4, 6]. The role of the charge is played by the en-
ergy constant Po, while the magnetic flux corresponds to
the rotation parameter 8' GJ . Here we see that a similar
phenomenon exists in the (essentially four-dimensional)
case of a cosmic dislocation, with the role of a charge
being played by the longitudinal component of the lin-
ear momentum P, . Another interesting case is that of

the lightlike string, this time the effective charge being
Po —P, . For the massless particle moving along the string
the angular momentum shift vanishes.

Higher spin fields can be treated along the lines of [25].
A new feature is the nontrivial self-adjoint extension of
the operators involved, similar to the case of a spinning
string [26].

To summarize, we have found that a boost-invariance
can be preserved for the spinning string by introducing a
two-dimensional Burgers parameter on the world sheet.
This suggests in a natural way a spacelike and a light-
like helical structure for the strings in addition to the
usual timelike one. The corresponding metric is likely to
be interpreted as describing the gravitational field of in-
finitely thin chiral strings. The spacelike helical structure
suggests the possibility of anyonic string-particle compos-
ites with the longitudinal linear momentum acting as a
charge.
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