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A flow system is proposed to produce a concentration perturbation in

liquid samples, aiming at the generation of two-dimensional correlation

near-infrared spectra. The system presents advantages in relation to batch

systems employed for the same purpose: the experiments are accom-

plished in a closed system; application of perturbation is rapid and easy;

and the experiments can be carried out with micro-scale volumes. The

perturbation system has been evaluated in the investigation and selection

of relevant variables for multivariate calibration models for the

determination of quality parameters of gasoline, including ethanol

content, MON (motor octane number), and RON (research octane

number). The main advantage of this variable selection approach is the

direct association between spectral features and chemical composition,

allowing easy interpretation of the regression models.

Index Headings: Flow system perturbation; Two-dimensional correlation

spectra; 2D-COS; Near-infrared spectroscopy; Gasoline; Variable selec-

tion; Multivariate calibration.

INTRODUCTION

In spectroscopic studies, the establishment of relationships
between spectral information and chemical structure or
composition of the analyzed samples is sometimes very
difficult. This difficulty arrives because, in most of the cases,
the spectra are very complex and composed of multiple
overlapping features that are difficult to attribute to the
observed functionalites. To help solve this problem, many
methods have been proposed in the literature, such as Darling–
Dennison resonance, deuteration and polarization methods,1

and derivative pretreatments and partial least squares regres-
sion.2–4

In recent years, two-dimensional (2D) spectroscopy has
gained the attention of the scientific community, aiming at
spectral interpretation. This method employs cross-correlation
analysis that emphasizes information not easily seen in the
original spectrum. Through these 2D spectra it is possible to
simplify the analysis and interpretation of complex spectra
consisting of overlapping bands and investigate the occurrence
of inter- and intra-molecular interactions by correlating
absorption bands from different groups or parts of a
molecule.5–7

The seminal idea of utilizing a second dimension for
enhancement of spectral resolution can be traced back to
nuclear magnetic resonance (NMR) spectroscopy.8 Currently,
this method can be used for almost every spectroscopy
technique. This is possible by using a mathematical formalism
proposed in 1993 by Noda9 that permits two-dimensional
correlation spectra to be obtained from any transient or time-

resolved spectra having an arbitrary waveform. This method is
called generalized 2D correlation spectroscopy (2D-COS).

A 2D experiment can be carried out using a conventional
spectrometer and submitting the sample to an external
perturbation, as shown in Fig. 1. Thus, an external electrical,
thermal, magnetic, chemical, acoustic, or mechanical pertur-
bation is applied to a system and the dynamic fluctuations thus
induced are monitored with spectroscopic probes. These
fluctuations are manipulated mathematically by using a
correlation method and finally a 2D spectrum is obtained.

Among the many types of perturbations utilized, that based
on the change of concentration deserves special attention
because many processes are influenced by this important
chemical variable.10–20 Usually, this type of perturbation is
produced in batch systems for which large amounts of reagent
are necessary in a time-consuming procedure to prepare the
samples. Flow systems appear as a good alternative to those
batch systems. Diewok et al.21 applied a stopped flow cell to
carry out a comparative study between 2D correlation
spectroscopy and multivariate curve resolution in analyzing
pH-dependent evolving systems monitored by mid-infrared
spectroscopy. In 2009, Carmona et al.,22 described a micro-
dialysis flow cell for investigating hydrogen/deuterium (H/D)
exchange kinetics in biomolecules using transmission infrared
and 2D correlation spectroscopies.

In the present work, a simple flow system is proposed,
designed to generate the concentration perturbation necessary
to perform two-dimensional correlation near-infrared (NIR)
spectroscopy. This system has been evaluated in the production
of spectral information (dynamic spectra). The 2D correlation
spectra thus obtained were employed to supply information for
the selection of relevant variables for multivariate calibration
models used for the determination of quality parameters of
gasoline, such as ethanol content, motor octane number
(MON), and research octane number (RON). The proposed
variable selection approach is compared with well-accepted
procedures such as Jack-Knife selection, based on the stability
of the regression coefficients3 and the successive projection
algorithm (SPA).23

EXPERIMENTAL

Reagents and Samples. Analytical grade reagents were
used throughout. Typical samples of alcohol-free gasoline
produced by petroleum refineries in Brazil were supplied by
REPLAN-Petrobras (Campinas, SP). Samples of gasoline with
known ethanol content were prepared from three typical
gasolines originally free of ethanol and analytical grade
absolute alcohol. The sample set was split into calibration
and validation sets containing 21 and 7 samples, respectively.
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Two-hundred and ninety-three (293) synthetic gasoline
samples (made by mixing diverse petrochemical residual
streams from the petrochemical unit of Petrobrás), were
supplied by Braskem S/A (Camaçari, BA), and used for
modeling the MON and RON bulk properties. In both cases,
the sample set was split into calibration and validation sets
containing 196 and 97 samples, respectively.

Flow System for Concentration Perturbation. The
proposed flow system for concentration perturbation is shown
in Fig. 2. The sample (S) of interest and the species (P) used to
produce the concentration perturbation are impelled by a
peristaltic pump (C). Two solenoid valves (V1 and V2) control
the passage of sample and reagent through the system. For
generation of concentration perturbation, the system is initially
filled with the sample (V1 is turned on and V2 is turned off).
The user requests the start of the perturbation procedure and the
computer controlling the system automatically switches V1 off

and V2 on and begins spectral data acquisition. A concentra-
tion gradient is created inside the magnetically stirred mixing
chamber (C) as the sample is continuously replaced by the
perturbing species. When the process is finished, the perturbing
species occupies the system. The flow rate in this system was
fixed at 1.7 mL min�1 for each stream and the mixing chamber
volume is 1.6 mL.

In the present system, the effect of the concentration
perturbation on the sample is monitored by a near-infrared
(NIR) probe placed on the detector flow cell (D), which
consists of a glass tube with an inner diameter of 5.0 mm and a
length of 3.0 cm.

Acquisition of Near-Infrared Spectra. The NIR absorp-
tion spectra were obtained using a Brimrose model Luminar
2000 spectrometer operating in the range from 850 to 1800 nm.
This instrument is based on an acousto-optic tunable filter
(AOTF) monochromator controlled by a computer through the
manufacturer’s software (Brimrose, Snap 2.03). Each spec-
trum, containing 475 points equally spaced in wavelength (Dk
¼ 2.0 nm), is scanned by this instrument in about 80 ms. A pair
of low-OH-content optical fiber bundles (200 lm diameter, 1.0
m long), were employed to deliver the monochromatic light
selected by the AOTF to the flow cell and to collect the non-
absorbed fraction of the radiation that passed through the cell
tube (perpendicular to the fluid flow) to return it to the
instrument detector. The optical path is roughly determined by
the inner diameter of the glass tube (approximately 5.0 mm).
Absorbance spectra were obtained by employing the transmit-
tance signal of carbon tetrachloride (CCl4) as reference. Each
spectrum was registered as an average of 50 scans and the
spectrometer is programmed to acquire one spectrum every 6 s
along the concentration gradient.

The NIR absorption spectra of the samples of synthetic
gasoline were obtained by using a batch procedure and by
employing a transflectance probe with an effective optical path
of 5 mm and with a circular area of 0.5 cm2 in the range of 850
to 1800 nm.

For measurement of the nine binary mixtures of ethanol and
toluene (from 4.0% to 96.0% for each reagent) used for flow
system calibration, a transflectance probe with a total optical
path of 5 mm and a circular area of 0.5 cm2 was used.

FIG. 1. General scheme of 2D spectroscopy.

FIG. 2. Flow system scheme for concentration perturbation. (C) peristaltic
pump, (S) sample, (P) perturbing substance, (V1) and (V2) solenoid valves for
reagents commutation, (M) stirred mixing chamber, (D) detection cell (optic
path approximately 5.0 mm), (E) magnetic stirrer, (F1) and (F2) optical fiber
bundles, and (W) waste.
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Calibration of the Flow System. The operation of the flow
system generates a nonlinear time-dependent concentration
gradient based on the initially pumped sample. The gradient
initiates immediately after the valves are switched to computer
control.

For simpler calculation of the 2D correlation spectra it is
preferable to have evenly spaced sampling. Therefore, the time
interval for which a linear gradient of concentration is
produced after the valves were switched on was determined.

This operation is called ‘‘calibration of the flow system’’ and
is performed by using nine binary solutions containing ethanol
and toluene in the range from 4.0% to 96.0% (v/v). These
solutions were sequentially pumped through the flow system
and, after a steady-state regimen was obtained for each of them,
their NIR spectra were acquired. A PLS (partial least squares)
regression model was constructed using this spectral data. The
pure ethanol and toluene were then pumped in the separate
lines (S and P) of the flow system with toluene in the sample
line. The system was switched to initiate the concentration
gradient and spectra were successively obtained as previously
described for six seconds each.

Using the regression model constructed from the set of nine
standards, the spectral set registered as a function of time was
converted to concentrations of ethanol in toluene. A curve
showing the time dependence of the relative concentrations
between sample and perturbing stream was obtained. This
curve is assumed to be the same for any pair of sample-
perturbing stream composition employed in the proposed flow
system. This is ensured by the mechanically stirred chamber,
which produces a gradient relatively independent of the
physico-chemical characteristics of the substances.

A linear range, in which the change in concentration with
elapsed time since the valves were switched on is constant, was
found between 36 and 72 s (6.7–42.2%, v/v). Therefore, seven
sampling spectra, obtained in this time interval, can be
employed by the software to generate the 2D spectra.

Data Treatment. All the dynamic spectra obtained using the
proposed flow system were preprocessed by offset baseline
correction. 2D correlation spectra, from samples submitted to
concentration perturbation, were calculated utilizing the
software 2D Pocha.24

Chemometric treatment of the spectral data was performed
using the Unscrambler 9.2 software (CAMO, Norway). This
package provides the PLS algorithm used to produce regression
models from spectral data.

All regression models were built using first-derivative
spectra. These spectra were calculated with a Savitzky–Golay
(SG) filter using a second-order polynomial and a five-point
window.

The successive projection algorithm (SPA) was employed
for variable selection used in the multiple linear regression
(MLR) models. The program was written using Matlab 6.1
software.23

The statistical significance of differences between the root
mean square error of prediction (RMSEP) values was assessed
by using F-tests at a confidence level of 95%.

RESULTS AND DISCUSSION

Calibration of the Flow System. Figure 3 shows the
spectra set obtained for the nine mixtures of ethanol and
toluene from 4.0% to 96.0% for each reagent, pumped under
steady-state conditions through the flow system. These spectra

show spectral variations in the first and second overtones of C–
H bonding, which occur between 1600–1900 nm and 1100–
1300 nm, respectively. Also, a large variation in the range
1350–1600 nm can be seen and is attributed to the first
overtone of combination bands of C–H bonding and to the first
overtone of O–H bonding.25 This set of spectra was utilized to
construct a PLS model to estimate the linear range of the
concentration gradient obtained with the flow system pertur-
bation. A good correlation coefficient (0.998) and root mean
square error of prediction (RMSEP, 1.4 % v/v) were obtained
over the full ethanol concentration range (4.0% to 96.0% v/v).
These results show the good capability of prediction of the
model and it was used to estimate the linear range of the
concentration gradient obtained with the flow system. Further-
more, the results for the gradient calibration can be utilized for
any pair of sample/perturbing agent as the change of the
perturbing species over the sample remains constant and is
determined by parameters such as the relative flow ratio and the
mixing chamber volume, which are kept constant.

Concentration Perturbation and Two-Dimensional Spec-
troscopy for Variable Selection Aiming at the Determina-
tion of Ethanol in Gasoline. To illustrate the applicability of
the flow system for generation of concentration perturbation, it
was initially employed to produce 2D correlation spectra for
gasoline samples perturbed by ethanol. The aim of this study is
the selection of variables to be employed in multivariate
regression models for prediction of ethanol content in this type
of fuel. The criterion for variable selection is based on the
effect of the ethanol on the absorption spectra as determined by
synchronous 2D correlation spectra obtained after perturbation
of the system (gasoline).

This strategy of using only synchronous 2D correlation
spectra was adopted because these spectra show correlations
between spectral bands that change in phase with the
perturbation applied to the system. On the other hand, the
asynchronous 2D correlation spectra give information on bands
that change out of phase and whether these changes happen
before or after each other. Despite the fact that asynchronous
maps can improve the knowledge on a given system, the
information can not be useful to variable selection because the
multivariate models are constructed (after variable selection)
employing spectra of the calibration samples measured in a

FIG. 3. NIR spectral set obtained for mixtures of ethanol and toluene (4% to
96% v/v).
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static way. These measurements will reflect the effect of the
analyte as found by using the synchronous 2D correlation
spectra.

Gasoline is a complex mixture of many hundreds of different
hydrocarbons and their derivatives, most of them found as
saturated compounds with four to twelve carbon atoms in the
molecule. This composition gives origin to NIR spectra with
many bands due to the vibrational modes of the C–H bonds of
hydrocarbon molecules. Commercial gasoline in Brazil con-
tains approximately 25% (v/v) anhydrous ethanol. This
compound improves the motor octane number (MON) and
introduces a partially renewable bio-characteristic to the fuel.
The content of ethanol in gasoline is controlled by the Brazilian
national fuel authority (Agência Nacional do Petróleo, Gás
Natural e Biocombustı́veis, ANP).

The spectra set obtained in the linear range of the gradient
for ethanol concentration perturbation of a gasoline sample is
shown in Fig. 4. An intensification of the band between 1450
and 1650 nm attributed to the first overtone of the O–H bond of
ethanol can be seen. On the other hand, the spectral variations
influenced by the ethanol concentration in the second overtones
of C–H bonding, which occur between 1100 and 1300 nm, are
not quite apparent in the original raw data. This fact
demonstrates the advantage of using 2D maps for variable
selection in multivariate calibration.

Figure 5 depicts the 2D synchronous spectra of ethanol-
concentration-dependent spectral variations of gasoline ob-
tained from the data in Fig. 4. The synchronous maps show a
number of auto peaks. In the first region (Fig. 5a), there are
four auto-peaks that are influenced by the ethanol concentra-
tion. These spectral variations are subtle in the original spectra
but clear in the 2D correlation spectrum. In the second range
(Fig. 5b), a strong auto-peak is observed due to the ethanol O–
H bond. The wavelengths associated with these auto-peaks,
which are related to ethanol concentration, were used to model
the ethanol concentration in gasolines.

The results obtained using the PLS model constructed with
the variables selected by the 2D spectrum were compared to
PLS models constructed using all spectral variables. Models
based on Jack-Knife selection were constructed. Furthermore,
an MLR model employing the variables selected by SPA was
also constructed. The performances of the resulting models

were compared in terms of RMSEP, calculated using external
prediction sets that were not included in the modeling stage.

Up to this point it is possible to conclude that the variable
selection made with the help of the 2D correlation spectrum
obtained after ethanol concentration perturbation can produce a
PLS regression model whose performance is statistically
undistinguishable from that of the models obtained using other

FIG. 4. NIR spectral set obtained for gasoline under ethanol concentration
perturbation and used to construct the 2D correlation spectrum.

FIG. 5. 2D correlation spectrum (split into two spectral regions) obtained after
ethanol concentration perturbation in gasoline. (a) Spectral range: 1100–1300
nm, (b) spectral range: 1300–1800 nm. Black and gray lines are positive and
negative peaks, respectively.
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common variable selection schemes. The advantage of the
variable selection method based on 2D spectroscopy is the
direct interpretation of the relevance of the variables selected
because, in this case, the selection procedure is guided by the
influence of the spectral features of the analyte on the final
matrix of the sample. The variables selected by other
algorithms, based on purely statistical criteria, can also be
spectrally interpreted. However, none of them is based directly
on the spectral features of the analyte and their effect on the
sample matrix as is the 2D approach proposed herein.
Therefore, the risk of selecting variables based in some fragile
internal correlation is always present when these other methods
are employed.

The robustness of the constructed models in relation to
severe changes in the gasoline matrix has been evaluated by
adding known amounts of toluene, isooctane, and hexane to
simulate gasoline adulteration. The objective was to verify
which of the proposed calibration schemes (and models
produced) are less prone to induce deterioration in the
analytical results (ethanol content determinations) when the
matrix is changed in relation to the original composition
employed in the calibration stage.

Table I shows the RMSEP obtained by the models. The
values obtained for samples of non-contaminated gasoline
using the different models are very similar and the statistical
test can not detect any significant difference at the 95%
confidence level.

However, when the toluene content of the gasoline is
changed, all models lost their predictive capabilities. This
means that the models are influenced more or less at the same
level by the matrix effect and that, independent of the variable
selection scheme, these models are not robust in relation to
matrix composition change.

One way to minimize this type of drawback is to include the
variability of the matrix in the data employed for calibration.
When this procedure is adopted, the constructed models are
more robust. To demonstrate this, PLS and MLR models were
constructed employing a calibration set that includes samples
with and without toluene in the calibration stage. The
validation results of these models, obtained with external sets
of samples with and without toluene, are shown in Table II.
The models show better prediction ability for the samples
whose toluene content was modified. On the other hand, it was
verified that the RMSEP are worse than those obtained for
models constructed only with gasoline having the original
composition. In a general way, PLS–t and PLS–JK are
statistically similar and PLS–2D and MLR/SPA models are

different from other models. These models show more
susceptibility to the matrix effect (Table II).

Concentration Perturbation and Two-Dimensional Spec-
troscopy for Variable Selection Aiming at the Determina-
tion of Motor Octane Number and Research Octane
Number in Synthetic (Manufactured) Gasoline. Many
analytical applications of NIR spectroscopy aim to determine
properties that are associated not with a single analyte but with
the bulk composition of the sample. Examples of such
applications are those related to the determination of the motor
and research octane number and cetane number of gasoline and
diesel fuel, respectively. However, the relative contribution of
different species to the property is generally known. This prior
information can be employed to select some representative
pure substances that can be used in the concentration
perturbation scheme in order to search for significant spectral
variables to be employed by a multivariate regression model
constructed to predict the bulk quality property. For instance,
the MON and RON are directly proportional to the hydrocar-
bon composition of the gasoline. Molecules with linear chains
contribute to reduce MON and RON, while branched and
aromatic hydrocarbons contribute to increase the values of
these properties.

In order to evaluate the proposed system for variable
selection, aiming at construction of models for determination of
MON and RON in synthetic gasolines, successive perturba-
tions were induced employing pure octane, isooctane, and
toluene as model compounds.

The auto-peaks detected in the 2D correlation spectra
obtained for the three perturbations allow selection of the
spectral regions shown in Table III. Octane concentration
perturbation (which reflects a decreasing effect in MON and
RON) in gasoline shows an auto-peak of relatively high
intensity between 1200 and 1226 nm, which is attributed to
methylene groups. For isooctane (known to enhance MON and

TABLE I. Overall performance of the multivariate regression models
constructed to predict the ethanol content in gasoline.

Model PLS–2Da PLS–tb PLS–JKc MLR–SPAd

RMSEP (% v/v)
for uncontaminated gasoline 0.653 0.73 0.73 0.701

RMSEP (% v/v) with 10%
contamination by toluene 4.53 5.44 5.44 3.61

Number of spectral variables 131 472 447 4
Number of latent variables 1 1 1 ���
a Two-dimensional spectroscopy.
b All spectral variables.
c Jack-Knife selection.
d Successive projection algorithm (SPA).

TABLE II. Overall performance of the multivariate regression models
constructed to predict the ethanol content in gasoline obtained by the
inclusion of contaminated samples in the calibration and prediction sets.

Model PLS–2Dc PLS–ta PLS–JKc MLR–SPAd

RMSEP (10% toluene) 1.61 0.77 0.76 2.97
Number of spectral variables 131 476 433 9
Number of latent variables 2 2 2 ���
a Two-dimensional spectroscopy.
b All spectral variables.
c Jack-Knife selection.
d Successive projection algorithm (SPA).

TABLE III. Spectral ranges selected by means of the auto-peaks found
in two-dimensional correlation spectroscopy for construction of multi-
variate regression models for prediction of MON and RON in gasoline.

Reagent Spectral range (nm)

Octane 1188–1200
1208–1210
1658–1688

Isooctane 1200–1226
1658–1696

Toluene 1130–1152
1172–1234
1658–1688
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RON) concentration perturbation, the 2D spectrum shows an
auto-peak of low intensity, between 1186 and 1200 nm,
attributed to the methyl group. This compound also produces
another auto-peak of low intensity between 1206 and 1212 nm
(methylene group). The spectral variations from C–H aromatic
bonds were observed in the 2D synchronous spectrum of
toluene in gasoline as two auto-peaks with relatively high
intensities. The first one, between 1130 and 1152 nm, is
attributed to C–H aromatic bonds and the second, between
1172 and 1234 nm, contains absorption regions of methyl and
methylene groups.

The spectral region from 1658 to 1688 nm, although it can
be attributed to aromatic C–H bonds, was not employed for the
construction of multivariate models, since this variation was
observed for all three different compounds. Therefore, it was
possible to conclude that this spectral region is affected by
species that cause increases and reductions of the octane
number.

Again, the results obtained by employing 2D spectroscopy
were compared with those found by more common variable
selection algorithms as described before. Table IV presents the
RMSEP results achieved by the four modeling strategies for
determination of MON. As can be seen, all the models show
similar performances, as proven by the F-test at the 95%
confidence level.

Some characteristics of these models must be highlighted.
The model produced by MLR/SPA could be considered the
best for MON prediction because it is the simplest. Further-
more, it uses a smaller number of spectral variables (only 15
variables). However, interpretation of the variables selected is
not easy if not supported by data acquired from 2D
spectroscopy.

Among the PLS models, that constructed with variables
selected with the help of 2D spectroscopy showed an
interesting performance. In this case, only 44 spectral variables
were used and the number of latent variables (3) was smaller
than for the other PLS models. These latent variables,
probably, explain the relative spectral contribution of the three
model compounds used for concentration perturbation of
gasoline.

The MON parameter of gasoline can be determined with
high accuracy using any of the four modeling strategies. The
RMSEP values obtained are excellent, indicating that NIR can
predict motor octane number with an error lower than the
reproducibility (2.0) of the standard conventional test (ASTM
2700).26

The results for the prediction of the RON of gasoline are
shown in Table V. It can be seen that the PLS/2D model
yielded the smallest RMSEP for this parameter. However, the
F-test reveals that there is not a significant difference in

comparison to the results obtained for the other strategies of
variable selection. The RMSEP values obtained with the four
modeling strategies are similar to the reproducibility (0.7) of
the standard test (ASTM 2699).27

An important characteristic of PLS/2D models produced for
MON and RON determination must be emphasized. In both
cases, a small number of latent variables was necessary for the
PLS models to predict the MON parameter. Therefore, these
models, according to the parsimony criterion, must be more
robust.

CONCLUSION

A flow system has been proposed and evaluated to automate
the production of perturbation by concentration in two-
dimensional correlation spectroscopy. The system is robust,
operates in a closed environment (avoiding contamination and
exposure of the user to hazardous chemicals), employs small
volumes of solutions, and allows for rapid access (approxi-
mately 1.5 min) to the dynamic spectra necessary to produce
the 2D correlation maps. The change of the concentration
caused by a given analyte over a sample matrix can be used to
extract relevant spectral information directly related to the
perturbing species and/or to its interaction with the sample
matrix. This last type of information is not available from the
simple absorption spectra of a pure substance.

In order to illustrate the usefulness of the proposed system,
the concentration perturbation and the resulting 2D spectra
were employed to guide the selection of relevant variables to be
used in multivariate regression models to predict quality
properties of gasoline. In summary, the wavelengths associated
with the auto-peaks observed in the 2D maps resulting from
concentration perturbations are considered the most relevant
source of spectral information for multivariate regression
models.

Two applications were evaluated. The first demonstrates the
use of the variable selection through 2D spectra for
determination of a concentration-dependent parameter (ethanol
content in gasoline). The second deals with the determination
of bulk quality properties of gasoline (MON and RON).

The results achieved by the model constructed with the
variables selected by 2D spectroscopy in predicting the ethanol
content in gasoline show a performance indistinguishable from
that of other models employing more common algorithms.
However, the approach based on 2D spectroscopy provides a
direct (physical–chemical based) interpretation of the relevance
of the variables employed in the construction of the model.

It was observed that, independent of the variable selection
algorithm employed, the regression models based on NIR
spectroscopy to predict the ethanol content of gasolines are
influenced by alteration of the sample matrix. However, the

TABLE IV. Overall performance of the multivariate regression models
for determination of MON in synthetic gasoline.

Model PLS–2Da PLS–tb PLS–JKc MLR–SPAd

RMSEP 0.53 0.55 0.54 0.52
Number of spectral variables 44 476 99 15
Number of latent variables 3 7 4 ���
a Two-dimensional spectroscopy.
b All spectral variables.
c Jack-Knife selection.
d Successive projection algorithm (SPA).

TABLE V. Overall performance of the multivariate regression models
for determination of RON in synthetic gasoline.

Model PLS–2Da PLS–tb PLS–JNc MLR–SPAd

RMSEP 0.67 0.74 0.72 0.69
Number of spectral variables 44 476 97 14
Number of latent variables 3 4 5 ���
a Two-dimensional spectroscopy.
b All spectral variables.
c Jack-Knife selection.
d Successive projection algorithm (SPA).
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inclusion of spectra of samples with similar composition in the
regression models minimizes this influence.

The application of the perturbation flow system and 2D
correlation spectroscopy to the determination of MON and
RON illustrates the potential of using the proposed system and
variable selection strategy for the determination of bulk
properties of the sample. In this case, the knowledge of the
influence of different types of hydrocarbons on the MON and
RON helps the selection of the variables employed for
multivariate regression models.

The results obtained by the proposed strategy of variable
selection for MON and RON determination were compared
with other strategies of variable selection and no statistical
differences were detected at the 95% confidence level.
However, the proposed strategy presents two significant
advantages. Interpretation of the selected variables is evident
and the regression models could be constructed with a small
number of latent variables, adding robustness to the model.
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