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Higher-order hydrodynamics: Extended Fick’s Law, evolution equation,
and Bobylev’s instability
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A higher-order hydrodynamics for material motion in fluids, under arbitrary nonequilibrium
conditions, is constructed. We obtain what is a generalized—to that conditions—Fick-type Law. It
includes a representation of Burnett-type contributions of all order, in the form of a
continuous-fraction expansion. Also, the equation includes generalized thermodynamic forces,
which are characterized and discussed. All kinetic coefficients are given as correlations of
microscopic mechanical quantities averaged over the nonequilibrium ensemble, and then are time-
and space-dependent as a consequence of accounting for the dissipative processes that are unfolding
in the medium. An extended evolution equation for the density of particles is derived, and the
conditions when it goes over restricted forms of the type of the telegraphist equation and Fick’s
diffusion equation are presented. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1426416#
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I. INTRODUCTION

Microscopic descriptions of hydrodynamics, that is, de
vation of kinetic equations from classical or quantum m
chanics and containing kinetic~or transport! coefficients
written in terms of correlation functions, is a tradition
problem of long standing. An important aspect is the deri
tion of constitutive laws which express thermodynam
fluxes~or currents as those of matter and of energy! in terms
of appropriate thermodynamic forces~typically gradients of
densities as those of matter and energy!. In their most gen-
eral form these laws are nonlocal in space and noninsta
neous in time. The nonlocality is usually dealt with in term
of spatial Fourier transforms, and then the laws—now
pressed in reciprocal space—become dependent on w
vectorQ. The well known expressions of classical~or Onsa-
gerian! thermohydrodynamics is obtained performing t
limit of Q going to zero~long wavelengths!. They are then
valid in such limit, and to go beyond it is necessary to int
duce a proper dependence onQ valid, in principle, for inter-
mediate and short wavelengths~intermediate to large wave
numbers!. In phenomenological theories this corresponds
go from classical~Onsagerian! irreversible thermodynamic
to extended irreversible thermodynamics.1,2 This is what has
been calledgeneralized hydrodynamics, that is, to go beyond
traditional hydrodynamics, the latter restricted to fluctuatio
occurring at long wavelengths and low frequencies. T
question has been extensively debated for decades by
Statistical Mechanics community. Several approaches h

a!Also at Institut d’Éstudis Catalans, Carme 47, E-08001 Barcelona, Cat
nya, Spain.

b!Group Home Page: Unicamp-www.ifi.unicamp.br/;aurea; UAB-http://
blues.uab.es/dep-fisica/recerca/grups/FE–cat.shtml
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been used, and a description can be consulted in Chap.
the classical book on the subject by Boon and Yip.3 We do
present here an approach based on a grand-canonica
semble generalized to cover the case of systems arbitr
away from equilibrium.

Introduction of nonlocality effects for describing mo
tions with influence of ever decreasing wavelengths~going
towards the very short limit!, has been done in terms o
expansions in increasing powers of the wave number wh
consists in what is nowadays sometimes referred to
higher-order hydrodynamics~HOH!. Attempts to perform
such expansions are the so-called Burnett and super-Bu
approaches4 in the case of mass motion, and Guye
Krumhansl approach5 in the case of propagation of energy.
the present paper we concentrate the attention in the first
namely, density motion~in a future paper we shall deal wit
the motion of energy!.

A usual approach has been based on the moment s
tion procedure of the Boltzmann equation, as in the work
Hess,6 using a higher-order Chapman–Enskog solut
method. The Chapman–Enskog method provides a solu
to Boltzmann equation consisting of a series in powers of
Knudsen number, sayK, given by the ratio between th
mean-free path of the particles and the scale of varia
~relevant wavelengths in the motion! of hydrodynamic fields.
Retaining the term linear inK there follows Navier–Stokes
equation, the term containingK2 introduces the so-called
Burnett corrections, and the higher order ones~K3 and up!
the super-Burnett corrections.

A satisfactory development of HOH is highly desirab
for covering a large class of hydrodynamic situations, and
the last instance for obtaining insights into technological a
industrial processes having an associated economic inte

-

1 © 2002 American Institute of Physics
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 This a
Indeed, the nonlocal terms become specially importan
miniaturized devices at submicronic lengths, as for insta
in hydrodynamic description of microelectronic devices7 or
in design of stratosferic planes, which fly in rarefied gase
a density regime intermediate between the independ
particle description and the purely continuous descripti
This is the case when the mean free path of the particles
order of, say, 10% of the characteristic length of the dev
instead of being of the order of, say, 0.1%~continuous ap-
proximation! or of 100% ~independent-particle approxima
tion!. Another particular problem to it related is the one
obtaining the structure of shock waves in fluids for wi
ranges of Mach numbers.8 Moreover, Burnett approximation
of hydrodynamics has been shown to provide substantial
provement on many features of the flow occurring in seve
problems in hydrodynamics, e.g., the case of Poiseu
flow,9 and others.10

The microscopic derivation of a HOH, together with th
analysis of validity of the existing theories, is still a point
question. Recently, it has been shown11 that for the case of
Maxwellian molecules, whereas Navier–Stokes approxim
tion yields equations which are stable against small per
bations, this is not the case when are introduced Bur
corrections to the equations. It follows that small perturb
tions to the solution, which are periodic in the space varia
with a wavelength smaller than a critical length, are exp
nentially unstable. This fact has been calledBobylev’s insta-
bility. More recently, Garcı´a-Colı́n and co-workers12 have
extended Bobylev’s analysis for the case of any interac
potential, and argue that one can interpret the fact as to
a bound for the Knudsen number above which the Burn
equations are not valid. Moreover, Karlin13 reconsidered the
question looking for exact solutions to simplified mode
When the linearized ten-moment Grad method is used,
the Chapman–Enskog method is applied to the model, in
there follow instabilities in the higher-order approximation
On the other hand, resorting to the Chapman–Enskog s
tion for the linearized Grad ten-moment equations resumm
exactly, solutions are obtained for which the stability
higher-order hydrodynamics, in various approximations,
be discussed.

In this paper we reconsider the question going beyo
the earlier approaches in that: First, we use a statisti
mechanical formalism14,15 ~thus containing the quantum—o
classical—microscopic dynamics and a macroscopic n
equilibrium thermodynamics,16 with the equations of hydro
dynamics following from the mechanical equations of m
tion averaged over the nonequilibrium statistical ensemb!.
Second, we obtain HOH-equations including a compact
pression for the Burnett contributions of all order as an
gorithm in the form of a continuous-fraction expansion, lea
ing to a far-reaching generalization of Hess’ results.

The organization of the paper is as follows: In a previo
paper17 was presented a description of a generalized n
equilibrium grand-canonical ensemble, built in the fram
work of a nonequilibrium ensemble formalism of a lar
scope. It is based on the Nonequilibrium Statistical Opera
Method, with its derivation founded in a variation
principle—Jaynes’ Maximization of the Informationa
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Entropy—referred to as Max-Ent-NESOM in wha
follows.14,15 The formalism allows for the derivation o
an associated kinetic theory, which provides for the d
scription of the evolution of dissipative processes in high
excited matter, and can be considered as a far-reac
generalization of Mori–Heisenberg–Langevin equations18

Also an associated Informational Statistical Thermo-Hyd
dynamics follows,16 which is a statistical-mechanicall
founded version of the so-called Mesoscopic Irreversi
Thermodynamics.19 In the present paper we further analy
such kinetic theory. Summarizing the content of this comm
nication, ~i! after some considerations on the character a
properties of the transport coefficients,~ii ! an expression for
the flux of particles in the form of a Mori-type continuou
fraction expansion is derived, which encompasses Burn
type contributions of all orders~in that way it is provided a
higher-order hydrodynamics founded on a nonequilibriu
ensemble formalism of statistical mechanics!, whose summa-
bility is discussed; moreover,~iii ! it is shown how the theory
provides an extension for intermediate to short waveleng
and intermediate to high frequencies, of Fick’s Law for t
flux of particles, and~iv! generalized thermodynamic force
of a nonlocal character and with memory, are introduc
Furthermore, in Sec. V, is derived a generalized equation
motion for the density of particles, which, as nonlocal
becomes less and less relevant, goes over the equatio
evolution of extended~telegraphistlike equation! and classi-
cal ~traditional Fick equation! hydrodynamics.

II. THE EQUATIONS OF EVOLUTION IN HOH

We consider the MaxEnt-NESOM kinetic theory pr
sented in Ref. 18, hereafter referred to as I, and when eq
tions from it will be cited the corresponding number will b
preceded by the label I. However, in order to avoid the qu
cumbersome expressions that will follow when using t
general theory, which would somehow obscure the pictu
we shall simplify the presentation attempting to provide
better clarification of the main physical characteristics. F
that purpose we consider a decoupling of material and th
mal motions, concentrating the analysis on the first one
plying in that we are neglecting cross effects. Moreover,
Markovian limit of the theory is used.

We begin re-emphasizing a quite important point: F
the description of the macroscopic state of the nonequi
rium system, one faces the question of selecting the basic
of macrovariables which describe such dissipative, in gen
nonhomogeneous and time-evolving, state.14,15 This is also
the case in thermodynamic theories, like Extended Irreve
ible Thermodynamics1,2 Rational Thermodynamics,20 etc.,
but the problem is overcome in statistical thermodynam
theories like Informational Statistical Thermodynamics16

Consider an open system of interacting particles under
action of external sources driving it out of a state of equil
rium with a thermal reservoir at temperatureT0 . Further-
more, we admit that the system is describable in terms
individual quasiparticles, for example, the extremely imp
tant cases of radiation and solid state matter. In the latter c
the lattice vibrations are described in terms of a ‘‘gas’’
phonons, and the electrons are described as a ‘‘gas’’ of L
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
dau quasiparticles in a mean-field approximation for
Coulomb interaction~the so-called random-phase appro
mation or time-dependent Hartree–Fock–Bogoliubov
proximation!, which, as well known, constitutes an exce
tionally good description which properly accounts for all t
physical properties of solid state matter.

Therefore each and all the mechanical quantities ass
ated to this kind of systems can be expressed in term
the reduced single-particle dynamical operator, s
r (1)(rs,r 8s8). Use of the second quantization is quite a
propriate when dealing with interacting many-body system
accompanied with an appropriate representation in Hilb
space of single-particle states. Hence the macroscopic
~i.e., nonequilibrium thermodynamic state! of the system is
completely defined by a basic set of macrovariables wh
are the average over the nonequilibrium ensemble of
nonequilibrium dynamical single-particle operators. They
come the components of the nonequilibrium Dirac–Land
Wigner single-particle density matrix, namely,

nks~ t !5Tr$aks
† aksre~ t !%, ~1!

for the diagonal elements, and the nondiagonal onesQ
Þ0) are

nkQss8~ t !5Tr$n̂kQss8re~ t !%, ~2!

where

n̂kQss85a
k1

1
2Qs

†
ak2

1
2Qs8 , ~3!

andre(t) is the MaxEnt-NESOM nonequilibrium statistica
operator,k is the crystalline momentum, ands the spin of
the single-particle, which we take as bosons~e.g., phonons or
photons! to fix a case and, as usual,s(a†) represent annihi-
lation ~creation! operators in stateks. The nonequilibrium
statistical operator is given by14–16

re~ t !5expH 2Ŝ~ t,0!1E
2`

t

dt8ee~ t82t !
d

dt8
Ŝ~ t8,t82t !J ,

~4!

whereŜ is the informational-entropy operator;21 in this case
and after disregading the spin indexŜ(t,0) takes the form

Ŝ~ t,0!5f~ t !1(
k

Fk~ t !ak
†ak1 (

k,QÞ0
FkQ~ t !n̂kQ , ~5!

and

Ŝ~ t8,t82t !5expH 2
1

i\
~ t82t !ĤJ Ŝ~ t8,0!

3expH 1

i\
~ t82t !ĤJ , ~6!

where Ĥ is the system Hamiltonian, andf(t), Fk(t) and
FkQ(t) are the Lagrange multipliers in MaxEnt-NESOM
The functionf(t) ensures the normalization of the statistic
operator, and plays the role of the logarithm of a nonequi
rium partition function. We stress that the Lagrange multip
ers, which are functionals of the basic macrovariables, c
stitute an alternative set of nonequilibrium thermodynami
intensive variables, also completely characterizing the m
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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roscopic nonequilibrium state of the system.15,16 It is also
worth recalling that the statistical operator of Eq.~4! can be
written as the composition of two terms, namely,

re~ t !5 r̄~ t,0!1re8~ t !, ~7!

where

r̄~ t,0!5exp$2Ŝ~ t,0!% ~8!

is an auxiliary statistical operator~of large relevance in the
derivation of the associated nonlinear quantum kine
theory,22 and sometimes dubbed as the ‘‘instantaneously
zen,’’ or quasiequilibrium, statistical operator! which pro-
vides the instantaneous, at timet, nonequilibrium macro-
scopic state of the system, andre8(t) contains the processe
producing the irreversible evolution of the system.

It can be noticed that the quantities of Eq.~1! are the
time-evolving populations in statesuks&, and the quantities
of Eq. ~2! are related to spatial inhomogeneities in the s
tem. Also, alternative descriptions of the macroscopic n
equilibrium state of the system can be introduced. One is
grand-canonical one of Ref. 17, obtained when the elem
of the Dirac–Landau–Wigner single-particle density mat
in Eq. ~5! are replaced by linear combinations of them, co
sisting of the Fourier-amplitudes of the particle and ene
densities and their fluxes of all orders. As we have no
before, we will consider here only mass motion, and then
take as the basic set of macrovariables the energy~its fluxes
and inhomogeneities being disregarded!,

h~ t !5(
k

«knk~ t !, ~9!

where«k is the single-particle energy-dispersion relation; t
single-particle~Fourier-transformed! density

n~Q,t !5(
k

nkQ~ t !, ~10!

and its fluxes

I n
@r #~Q,t !5(

k
u@r #~k,Q!nkQ~ t !. ~11!

The indexr denotes the order~and tensorial rank! of the flux
~r 51 is the usual vectorial one or current! and

u@r #~k,Q!5@u~k,Q!¯~r 2times!¯u~k,Q!#, ~12!

with the square brackets indicating tensorial product of v
tors, and whereu(k,Q) is a generating velocity vector de
fined in Eq.~I.19!, namely,

u~k,Q!5
1

\
¹k«k1(

l 51

`
1

~2l 11!! S 1

2
Q•¹kD 2l 1

\
¹k«k .

~13!

The nonequilibrium grand-canonical statistical opera
associated with this problem follows from a modified expre
sion for the informational-entropy operator of Eq.~5!, ob-
tained by redefining the Lagrange multipliers in the form,

Fk~ t !5b~ t !«k1(
r 50

`

F @r #~ t ! ^ u@r #~k!, ~14!
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
FkQ~ t !5(
r 50

`

F @r #~Q,t ! ^ u@r #~k,Q!, ~15!

with, we recall,QÞ0, and whereb(t) plays the role of a
reciprocal of a kind of nonequilibrium temperature~usually
called quasitemperature!, the Lagrange multipliers withr
50, r 51, andr>2 are those associated with the density,
first ~vectorial! flux, and the higher-order fluxes, respective
and ^ stands for fully contracted tensorial product. Hen
we do have an alternative, and also complete, descriptio
the one provided by the ensemble characterized by the
tistical operator of Eqs.~4!–~6!. Moreover, the resulting aux
iliary statistical operator is rewritten, as done in I, in the fo
given by Eq.~I.28!, i.e.,

r̄~ t,0!5exp$Â~ t !1B̂~ t !%/Tr$Â~ t !1B̂~ t !%, ~16!

namely, composed of a part,Â, corresponding to the contri
bution in the homogeneous variables@i.e., the part containing
the Lagrange multipliersFk(t) of Eq. ~14!#, plus the partB̂
which contains the contribution in the inhomogeneous v
ables @i.e., the part containing the Lagrange multiplie
FkQ(t) with QÞ0 of Eq. ~15!#.

Moreover, following I, we restrict the analysis introdu
ing a linear approximationin the calculations, namely, w
keep only first-order contributions in the inhomogeneiti
that is, in the terms withQÞ0 which are contained in the
statistical operator via the operatorB̂ of Eq. ~I.29b!. This
implies in taking small amplitude variations of the dens
and its fluxes, that is, considering small inhomogeneities
weak fluxes. Using the Heims–Jaynes expansion23 for aver-
ages in terms of the operator of Eqs.~I.28! and~I.29!, up to
first order inB̂ we find that

I n
@r #~Q,t !5I hs

@r #~Q,t !@12Bhs~ t !#1~Ŝ1~ t !, Î @r #~Q!ut !,
~17!

where

I hs
@r #~Q,t !5Tr$ Î n

@r #~Q!r̄hs~ t,0!%50, ~18!

Bhs~ t !5Tr$B̂~ t !r̄hs~ t,0!%50, ~19!

that is, these averages over the homogeneous state char
ized by

r̄hs~ t,0!5
eÂ~ t !

Tr$eÂ~ t !%
, ~20!

are null, and we have introduced the correlation function

~Ŝ1~ t !, Î n
@r #~Q!ut !5Tr$Ŝ1~ t ! Î n

@r #~Q!r̄hs~ t,0!%, ~21!

where

Ŝ1~ t !5E
0

1

dx~ r̄hs~ t,0!!xB̂~ t !~ r̄hs~ t,0!!2x. ~22!

Therefore, in Eq.~17! the first term on the right-hand side
null and the second, once we use the explicit form ofB̂, is
given by
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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@r #~Q,t !5TrH E

0

1

dx~ r̄hs~ t,0!!x (
k8,Q8Þ0

(
r 850

`

F @r 8#~Q8,t !

^ u@r 8#~k8,Q8!n̂k8Q8~ r̄hs~ t,0!!2x

3(
k

u@r #~k,Q!n̂kQr̄hs~ t,0!J , ~23!

establishing the linear relationship between the densityr
50) and each flux (r 51,2,...) with the Lagrange multipliers
F. The contributions to Eq.~23! with Q8ÞQ are null. Hence,
we can rewrite Eq.~23! in the compact form,

I n
@r #~Q,t !5 (

r 850

`

F @r 8#~Q,t ! ^ U @r 1r 8#~Q,t !, ~24!

with the tensorU obtained by comparison with Eq.~23! @also
cf. Eqs.~I.A15! and~I.A16!#. Equation~24! can in principle
be inverted to have that

F @r #~Q,t !5 (
r 850

`

U
@r 1r 8#

~21!
~Q,t ! ^ I n

@r 8#~Q,t !, ~25!

which give us the Lagrange multipliers in terms of the ba
variables, implying to providenonequilibrium equations o
state~here in this linear approximation!, once we recall that
the Lagrange multipliers are the differential coefficients
the informational-statistical entropy, namely,16

F @r #~Q,t !5
dS̄~ t !

dI @r #~Q,t !
5

d

dI @r #~Q,t !
Tr$Ŝ~ t,0!re~ t !%,

~26!

whered stands for variational derivative.24

Equations~23!–~25! refer to the inhomogeneous contr
butions to the macrostate of the system; let us see th
associated to the homogeneous part. The homogeneous
variables are given by

I n
@r #~ t !5(

k
u@r #~k!nk~ t !, ~27!

wherenk(t) is defined in Eq.~1!, and using again Heims–
Jaynes expansion23 in first ~linear! order in the inhomogene
ities we find that

nk~ t !5Tr$ak
†akr̄hs~ t,0!%5eFk~ t !21, ~28!

with Fk(t) given in Eq. ~14!. The population in Eq.~28!
acquires, in this linear approximation, an expression whic
a kind of generalized Bose–Einstein distribution depend
on time through the Lagrange multiplierFk(t), which carries
the information on the evolution of the nonequilibrium sta
of the system.

Having then dealt with the nonequilibrium equation
state, relating basic variables and Lagrange multipliers
given by Eq.~25!, we now proceed to derive the equations
evolution for the basic variables@cf. Eqs. ~I.11!, ~I.13!,
~I.14!, ~I.24!, and the Markovian form in Eqs.~I.35!–~I.39!#.
We rewrite the equations in the Markovian limit in the alte
native form,25
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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]

]t
I n

@r #~Q,t !5TrH 1

i\
@ Î n

@r #~Q!,Ĥ#rc~ t !J
. iQ^ I n

@r 11#~Q,t !

1S 1

i\ D 2

(
Q8

(
r 850

` E
2`

0

dt8eet8M @r 1r 8#

3~Q,Q8,t82t,t ! ^ F @r 8#~Q8,t !, ~29!

where

M @r 1r 8#~Q,Q8,t82t,t !5Tr$@Ĥ8, Î n
@r #~Q!#

3@Ĥ8~ t82t !0 , Î n
@r 8#~Q8!#r̄hs~ t,0!%.

~30!

Here,Ĥ is the Hamiltonian of the system, which, accordi
to the tenets of the formalism, is written as the additionĤ0

1Ĥ8, where inĤ8 are contained all the interactions respo
sible for the evolution of the dissipative processes that
developing in the system, andĤ0 ~the nondissipative-relate
part or conservative part! is the so-called secula
contribution.14,15 The term after the equal sign in Eq.~29!
indicates that the equations of the kinetic theory are
MaxEnt-NESOM the averages over the nonequilibrium
semble of Heisenberg equations of motion of Quantum M
chanics. The approximate sign indicates that the calcula
has been done in the Markovian approximation.25 Moreover,
M is a kinetic coefficient in the form of a correlation functio
over the homogeneous state involving the change in tim
the fluxes due to the interactions contained inĤ8, and where
the subindex zero means evolution in the interaction rep
sentation, that is, underĤ0 alone; in the average over th
homogeneous state only survive the terms withQ85Q.

We stress that while the left-hand side of this equation
expressed in terms of basic variables, the right-hand
depends on the Lagrange multipliers: The set of equat
can be closed by relating both types of nonequilibrium th
modynamic representations using the nonequilibrium eq
tions of state@cf. Eqs.~24! and ~25!#. The equations for the
basic variables~the density and its fluxes! are obtained after
using Eq.~25! to get, after going back to direct space, tha

]

]t
I n

@ l #~r ,t !1¹•I n
@ l 11#~r ,t !

5 (
l 850

` E d3r 8L @ l 8#

@ l #
~r2r 8ut !JI n

@ l 8#~r ,t !, ~31!

with l 50,1,2,..., and whereL is a kernel~or kinetic coeffi-
cient! which is the Fourier antitransform of the expressi
given in reciprocal space by

L
@ l 8#

@ l #
~Q,t !5(

s50

` E
2`

t

dt8ee~ t82t !M @r 1r 8#~Q,Q,t82t,t !

^ U
@s1 l 8#

~21!
~Q,t !, ~32!

after recalling that inM of Eq. ~30! only survive the terms
with Q85Q.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Equation~31! has been worked out in detail in I to ob
tain the expression given by Eq.~I.39!, which is the counter-
part in the informational mechanical-statistical approach
the one derived in phenomenological mesosco
thermodynamics.19

For the sake of completeness we write down the eq
tions of evolution, the set of them in fact, for the densityl
50, and its fluxes of all orderl 51,2,..., namely@cf. Eq.
~I.39!#,

]

]t
I n

@ l #~Q,t !5 iQ^ I n
@ l 11#~Q,t !1 iQ^ D@ l 11#

@ l 11#~Q,t !

1A@ l #
@ l #~Q,t ! ^ I n

@ l #~Q,t !1 i @QG@ l 21#
@ l 21#~Q,t !#

^ I h
@ l 21#~Q,t !1B@ l #~Q,t !, ~33!

where on the right-hand side we have put into evidence
dependence on the corresponding variableI n

@ l # , the previous
one in tensorial rank,I n

@ l 21# , and the following one,I n
@ l 11# ,

while the last termB contains all other contributions; th
tensorial kinetic coefficientsD, A, G and the contributionB
have the cumbersome expressions given in Appendix B i
We call the attention to a misleading sentence in I, nam
thatD(Q,t) andG(Q,t) when given in a series expansion
Q, have a first constant term equal to zero~and being com-
posed of even powers ofuQu!. This is because we include
that first constant term inB ~what we failed to indicate!, but
which we now keep inD andG. We recall that̂ stands for
a contracted product of tensors and square brackets for d
product of tensors. In direct space Eq.~33! becomes

]

]t
I n

@ l #~r ,t !1DivE d3r 8@d~r2r 8!1D@ l 11#
@ l 11#~r2r 8,t !#

^ I n
@ l 11#~r 8,t !

5E d3r 8A@ l #
@ l #~r2r 8,t ! ^ I n

@ l #~r 8,t !

2GradE d3r 8G@ l 21#
@ l 21#~r2r 8,t ! ^ I n

@ l 21#~r 8,t !

1B@ l #~r ,t !, ~34!

where, we again recall,l 50 is for the density@cf. Eq.
~I.40a!# when the gradient of the previous tensorial quant
is of course absent,l 51 for the vectorial flux, andl>2 for
the higher-order fluxes. It can be noticed that if the tenso
coefficientsA, G, D are taken as scalars, sayA@ l #

@ l #5Al , etc.,
and it is introduced a local-in-space approximation, that

Al~r2r 8;t !52t l
21d~r2r 8!, ~35!

Dl 11~r2r 8;t !5~b l 11 /a l !d~r2r 8!, ~36!

and is taken into account that inB@ l # is present the thermo
dynamic force—as will be discussed later on as
proceed—and then we take

B@ l #~r ,t !5GradE d3r 8Cl~r2r 8;t !I @ l #~r 8,t !, ~37!

the relation involving the gradient operator reads as
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Cl~r2r 8;t !1Gl 21~r2r 8;t !5~b l 21 /a l !d~r2r 8!, ~38!

where we have introducedt l , a l , and b l , which are the
coefficients of mesoscopic thermodynamics,19 showing that
the results of the latter are fully recovered in such appro
mation, with the understanding that there is a full form
equivalence of the equations for the flux of heat of Ref.
and those for matter that we pursue here.

It should be stressed that even though we are conside
a system of bosons, the form of Eqs.~33! remains formally
unaltered in the case of fermions; evidently only the expl
form of the coefficients would be altered because antico
mutation relations enter in place of the commutation re
tions for bosons we have used. Hence, we have a comp
general description of the thermohydrodynamics, in arbitr
nonequilibrium conditions, of any fluid of particles, let the
be bosons or fermions. We stress once again, that Eqs.~33!
and ~34! are far-reaching generalizations of Mori
Heisenberg–Langevin equations, which, just because of
approximation we have introduced are linear in the ba
macrovariables.

It may be noticed that in Eq.~34!, on the right-hand side
there are several interesting contributions: First, after
pump source is switched off, we have a term withA21

which plays the role of Maxwell’s characteristic time of e
tended thermodynamics,1 second, one term involving th
gradient of the flux one order smaller; and finally, the termB
containing contributions from all the other macrovariab
excluding the one of rankl being considered and the tw
corresponding to tensors of rank (l 21) and of rank (l
11). This is, as noticed, the result of the particular redis
bution of terms we have introduced when writing Eqs.~33!.

We proceed next to perform further analyses of the eq
tions, showing in the process how a higher-order hydro
namics is derived on the basis of the nonequilibrium sta
tical ensemble formalism provided by MaxEnt-NESOM.

III. A CONTINUOUS FRACTION EXPANSION

Consider Eqs.~33!, and for the sake of simplicity, in
order to avoid cumbersome expressions which would
scure the basics of the physics involved, are imposed on
system several restrictions:

~i! First, it is introduced atruncated descriptionin the
second-order flux, that is, we keep as basic variab
the density, its first flux or current, and the secon
order flux ~it can be noticed that this second flu
multiplied by the mass of the particles, is related
the pressure tensor, with the diagonal components
sociated to the hydrodynamic pressure and the no
agonal ones to the shear pressure!.

~ii ! Second, we take aparabolic energy-dispersion rela
tion and then the generating velocityu(k,Q) of Eq.
~13! becomesQ-independent; hence the fluxes cons
of the superposition of the movement of singl
particle wave packets built in terms of the statesuk&,
and moving with group velocityu(k)5\21

“k«k .
~iii ! Third, we take the nonequilibrium homogeneous st

as being in asteady state; this condition can be satis
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fied if the system is kept under the action of an ext
nal source providing a continuous excitation~i.e.,
pumping energy at a constant rate!. Hence, all the
kinetic coefficients~A, D, G! become constant in
time.

~iv! Fourth,coefficientsB@0#, B@1# are neglected, but it is
kept the one associated to the second flux, nam
B@2#, because it contains the most relevant contrib
tion to the thermodynamic forces~in the long-
wavelength limit provides the traditional term propo
tional to the gradient of the density—th
proportionality factor being the diffusion coefficien
given in the form of classical kinetic theory—
recovering the traditional Fick’s Law!.

~v! Fifth, the second-rank tensorial flux is taken asdiag-
onal and isotropic~meaning that we are neglectin
shear effects in the pressure tensor!, and in all the
equations the kinetic coefficients are taken as scal

~vi! Sixth, the coefficientsA are of the formAl(Q,t)
5U l

21(Q,t)1 iDAl(Q,t), whereDA becomesa for-
tiori associated to renormalization of the kinetic coe
ficients and it is neglected, for the sake of simplici
retaining onlyU which is the relevant contribution
playing the role ofMaxwell’s characteristic timeof
extended irreversible thermodynamics.1,2

Hence, after transforming Fourier in the time coordina
we do have that

ivn~Q,v!.2 iQ•In~Q,v!, ~39!

ivIn~Q,v!.2 iQI n2~Q,v!2U1
21~Q!In~Q,v!

2G0~Q!iQn~Q,v!2D2~Q!iQI n2~Q,v!,

~40!

ivI n2~Q,v!.2 iQ•In3~Q,v!2U2
21~Q!I n2~Q,v!

2G1~Q!iQ•In~Q,v!1B2~Q,v!, ~41!

where, because of item~v! above,I n2 is a scalar~the diago-
nal term inI n

@2# , and In3 is a vector, the diagonal part of a
odd-rank tensor!; moreover the coefficientsU, G, andD are
scalars and time-independent as noticed in item~iii ! above.

We now look for an expression for the first flu
In(Q,v), thus looking for a generalized Fick’s Law; usin
Eqs.~40! and ~41!, after some algebra we obtain that

In5
U1G0

11 ivU1
iQn1

U1@11D2#

11 ivU1

U2

11 ivU2
iQ@ iQ•In3#

1
U1@11D2#U2

~11 ivU2!~11 ivU1!
iQB2

1 iQH U1@11D2#

11 ivU1

U2G1

11 ivU2
iQ•InJ

[
N~Q,v!

11 ivU1
2

U1@11D2#U2G1

~11 ivU1!~11 ivU2!
Q2In , ~42!

and then
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In5
N~Q,v!

11 ivU11
j1Q2

11 ivU2

, ~43!

where

j15U1@11D1#U2G1 , ~44!

N~Q,v!5U1@11D2#
U2

11 ivU2
iQ@ iQ•In3#

1U1G0iQn1 11 ivU2

3U1@11D2#U2iQB2 , ~45!

and we recall that we have disregarded the termB@1# @item
~iv! above#.

Let us now consider the quantityN, working out its first
and third term. On the one hand, according to Appendix

iQ@ iQ•In3~Q,v!#5K~Q!iQ~ iQ•In~Q,v!!

52K~Q!iQivn~Q,v!, ~46!

after using the equation of conservation for the density,
Eq. ~39!. On the other hand, of the contributions present
B2 , as given by Eq.~I.B4! in Appendix B of I, we single out
the leading one consisting in the contribution which in t
limit of classical hydrodynamics leads to the tradition
Fick’s Law. Using a simplified form of the theory, name
neglecting the terms withD andG, and in terms of a particu
lar model, we derive in Appendix B a Fick’s Law in such
conditions, showing how the expression for the diffusion c
efficient is retrieved in the limit of classical~very long wave-
lengths and very low frequency! hydrodynamics. Hence th
last term on the right-hand side of Eq.~45! is expressed in
the form,

11 ivU2 U1@11D2#U2iQB252D0~Q,v!iQn~Q,v!,
~47!

with D0 to be evaluated in each particular case~cf. Appendix
B!.

From Eqs.~43! to ~47! there follows what can be con
sidered as ageneralized Fick’s Law, or, better to say, an
extended Fick’s Law, namely,

In~Q,v!5Dn~Q,v!iQn~Q,v!, ~48!

where the wave-vector- and frequency-dependent diffus
coefficient is given by

Dn~Q,v!5
L~Q,v!

11
j1~Q!Q2

V1~v!V2~v!

, ~49!

with

L~Q,v!52D0~Q,v!

2
U1~Q!~11D2~Q!!U2~Q!K~Q!

V1~v!V2~v!

1
U1~Q!

V1~v!
G0~Q!, ~50!

V1~2!~Q,v!511 ivU1~2!~Q!, ~51!
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j1~Q!5U1~Q!~11D1~Q!!U2~Q!G1~Q!. ~52!

Equation~48! tells us that the response to the perturb
tion, that has driven the system out of homogeneity in spa
is nonlocal in space and not instantaneous in time. In fact
do have in direct space that

In~r ,t !5E d3r 8E
0

t

dt8Dn~r2r 8,t2t8!¹8n~r 8,t8!, ~53!

where we have introduced the Fourier antitransforms of
quantities involved, with the double convolution product b
ing a result that in Eq.~48! we have an algebric product o
Fourier transforms in reciprocal (Q,v)-space.

The nonlocality in space mirrors the dependence
wave vectorQ in the different quantities that have appear
in the theory, and has, in the general case, a triple ori
namely,

~1! The dependence onQ of the kinetic coefficients
U j (Q) ~Maxwell’s characteristic times! and a part inGj (Q)
andDj (Q);

~2! Parts inGj (Q) andDj (Q) associated with the pres
ence of the generating velocity vectoru(k,Q) of Eq. ~13!,
which, as already noticed, is a kind of group velocity of t
particle in statek depending on position as the partic
moves;

~3! The explicit presence of the square modulus ofQ in
Eq. ~43!, which, we recall, is associated with the fact
having introduced a higher-order flux~in this caseI n2! as a
basic variable~and since the coefficientj1 is proportional to
G1 , it arises from the coupling with the gradient ofIn in the
equation of motion forI n2!.

We recall that we have used for simplicity a parabo
energy-dispersion law, and then item 2 above does not c
tribute in the present case.

It can be noticed that we can write Eq.~43! as

In~Q,v!5
N~Q,v!

V1~Q,v!

1

11
j1~Q!Q2

V1~Q,v!V2~Q,v!

5
N~Q,v!

11a1~Q,v!Q2 , ~54!

where

N~Q,v!5N~Q,v!/V1~Q,v!, ~55!

a1~Q,v!5j1~Q!/V1~Q,v!V2~Q,v!. ~56!

We can see that Eq.~43! is a truncatedcontinuous frac-
tion expansioncontaining only a first term, as a result of th
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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truncation we have introduced in the set of basic variab
where we have kept the fluxes only up to the second or
As very briefly described in Appendix C a complete continu-
ous fraction follows when introducing the complete set
fluxes; we can see that retaining the fluxes only up to orden,
the continuous fraction is truncated in ordern21 with the
last contribution beingj (n21)Q

2/VnVn21 .
For further simplifying matters we neglect nonlocal e

fects arising out of the contributions of the kinetic coef
cients @item ~1! above#, i.e., we disregard their dependen
on Q. Hence, the nonlocality is associated only with t
presence of the termQ2 in, now, a1(v)Q25j1Q2/
V1(v)V2(v), which corresponds to item~3! above, namely,
to have included the second order flux for the character
tion of the nonequilibrium macroscopic state of the syste

The continuous fraction expansion of Appendix
derived in MaxEnt-NESOM can be put in corresponden
with the one of phenomenological mesoscopic therm
dynamics,19,25,26with the coefficients in the former given i
the present formulation as correlation functions determi
by the microscopic dynamics of the system. We can see
the equivalence of these coefficients corresponds to the
tionship,

2b lt lt l 11~a la l 11!21↔@1

1Dl 11#Gl 21U lU l 11~V lV l 11!21, ~57!

where on the left are those given in Ref. 19 and on the ri
are those of Appendix C.

IV. BURNETT EQUATIONS AND BOBYLEV’S
INSTABILITY

Now, whereas it is verified that

ua1~v!uQ25U j1Q2

V1~v!V2~v!
U,1, ~58!

we can write Eq.~54! in the form of the series expansion,

In~Q,v!52N~Q,v!@12a1~v!Q21a1
2~v!Q42¯#.

~59!

It can be noticed that Eq.~58! above introduces a cutof
in the value of the wave number, that is, the series expan
is valid for not too largeQ@Q2,ua1(v)u21#, i.e., for not too
short wavelengths. On the other hand, we must recall
using a less truncated description~see Appendix C!, for ex-
ample, to fix ideas, introducing the third-order fluxI @3#

would provide contributions quartic inQ. Then, to be con-
sistent we must keep terms that are only quadratic inQ,
implying that in Eq. ~59! the series is truncated retainin
only a1(v)Q2. On the basis of the results in Appendix C
can be noticed that, in the imposed condition of neglect
the contributions of items~1! above, an important conse
quence is that truncating the description in a given, say, o
n of the fluxes~corresponding to a truncation in ordern21
of the continuous fraction!, and whereas it is verified tha
ual(v)uQ2,1 @with al of Eq. ~C5! and disregarding its
Q-dependence#, leads to a finite series, which can be cons
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ered to be correct up to a power 2(n21) of the wave num-
ber Q ~or inverse of wavelengthl!. Hence, we do have an
expression of the type;

In~Q,v!5N~Q,v!F11 (
l 51

n21

bl~v!Q2l G , ~60!

or in direct space

In~r ,v!5F11 (
l 51

n21

bl~v!¹2l GN~r ,v!, ~61!

with the bl ’s being complicated coefficients resulting in th
process of transforming the truncated continuous fraction
the series expansion.

Equation~61! resembles a Burnett~super-Burnett in fact!
equation,4,11–13 however valid, as noticed, for the range
values of Q for which ual(v)uQ2,1 for any l 51,2,...,n
21. Such limitation has been noticed by Garcia-Colin a
co-workers,12 and ascribed equivalently in terms of the e
pansion in powers of the Knudsen number. To give an
ample, and without going into details, the condition of E
~59! can be shown to be verified in the case of a continu
fluid in Debye model, wherev(Q)5suQu, when the thermal
velocity of the particles is smaller than the sound velocits
in the medium. It is worth noticing that the resulting inst
bility of the solution, may be related to the possible occ
rence of a normal emission of phonons in a kind of acous
phonons-Cherenkov-type effect.27 Summarizing, we can say
that in writing Burnett-type equations one faces restrictio
for their correctness, that is, it is restricted the range of v
ues of wave number~or wavelength! for which can be con-
sidered to be valid. This result, together with Bobylev
analysis,11 suggest conjecturing that the instability may po
to the emergence of complex behavior, a question worth c
sidering.

Evidently, such conditions depend on the quantitiesGj

andU j which appear in the expression foraj (v), besides, of
course, on the range of frequencies being considered. S
quantities, as given in I, have quite general cumbersome
pressions which have to be evaluated in each particular
under consideration. We discuss this point in Appendix
where a calculus for a particular model system, consisting
two ideal classical gases in mutual interaction, is given.

As already noticed in the Introduction, the question
stability of Burnett equations has been discussed
Bobylev,11 who showed the existence of instabilities for su
ficiently large Knudsen numbers~very short wavelengths!.
Garcia-Colin and collaborators8 extended such analysis t
more general conditions, and Karlin13 obtained exact solu-
tions to simplified models in terms of which he analyses
stability problem in various approximations. Particular
Karlin conjectures that, for circumventing the noted difficu
ties, the expression for the stress tensor and momen
equations should present a denominator in the form o
monomial in the Laplacian; a form also suggested earlier
Rosenau.28 This is precisely the result that we have for th
first flux ~which multiplied by the mass of particles is th
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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momentum density!. Equation~54! after transformed to di-
rect space@once it is assumed that the condition of Eq.~58!
is satisfied# becomes

In~r ,v!5@12a1~v!¹2#21N~r ,v!, ~62!

after neglecting the dependence on space of coefficienta1 .
However, we recall that this is the result in the trunca

description which contained only the second-order fluxI @2#.
This can be extended by including higher-order fluxes up
say, orderR ~see Appendix C!, provided the relevant wave
lengths satisfy the conditions thatuaj (v)uQ2,1 for j
51,2,...,R21, when we can write in direct space the expre
sion,

In~r ,v!52D~r ,v!¹n~r ,v!, ~63!

with

D~r ,v!5L~r ,v!/D~r ,v!, ~64!

D~r ,v!512
a1~v!¹2

12
a2~v!¹2

12
a3~v!¹2

�

12aR21~v!¹2

, ~65!

andL is the back-transform in space of the one in Eq.~50!.
Equation~63! above has the form of a generalized Fi

equation—in a higher-order hydrodynamics, and withD be-
ing a generalized space- and time-dependent diffus
coefficient—whose general expression is given in the fo
of the double convolution,

In~r ,t !52E d3r 8E
0

t

dt8D~r2r 8;t2t8!¹8n~r 8,t8!,

~66!

with

D~r2r 8;t!5E
2`

`

dve2 ivtd~r2r 8!L̂~r ,v!L~r ,v!,

~67!

andt5t2t8.
We stress at this point that a truncation in the descript

~i.e., keeping a certain restricted number of higher-or
fluxes, what is mirrored in a truncation of the continuo
fraction, as shown!, requires a criterion of validity which
restricts the region in wave number and frequency sp
where can be applied, as discussed in Ref. 28.

V. THE EQUATION OF EVOLUTION FOR THE DENSITY

Using the antitransforms to direct space and time of E
~39!, ~40!, and ~41!, deriving twice in time the equation fo
the density, once the one for the current, and using the e
tion for the second flux, Eq.~46!, after some calculus we find
that

]3

]t3 n~r ,t !2
1

t

]2

]t2 n~r ,t !1a1

]

]t
n~r ,t !2a2¹2n~r ,t !

2a3¹2
]

]t
n~r ,t !50, ~68!
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where

1

t
5

1

t1
1

1

t2
, t i52U i ~69!

a15
1

U1U2
; a25

G0

U2
1@11D2#~v th

2 /3U2!;

~70!
a35G01@11D2#~G11K!,

and use was made of the result of Appendix B, namely, t
iQB2(Q,t)52(v th

2 /3U2)iQn(Q,t).
We can see that when it is verified thatvt!1, the first

term ~the triple derivative in time! can be neglected whe
compared with the next term~the second time derivative in
time!, and the last term~the one associated to the Burne
type contribution! can also be neglected when compar
with the previous one. Then Eq.~68! becomes a telegraphis
tlike ~hyperbolic! equation of the form,

F 1

s2

]2

]t22
1

D

]

]t
2¹2Gn~r ,t !50, ~71!

where

s252a2t; D52
a2

a1
. ~72!

This equation corresponds to propagation of waves of
sound type, with velocitys, which has an associated dispe
sion relation given by

l6~Q!52
g

2
6 iAs2Q22

g2

4
, ~73!

whereg5s2/D is the reciprocal of the lifetime of the wave
It can be noticed that for smallQ, such thatsQ!g/2, the

solutions arel152DQ2 andl252g, corresponding, the
latter to a purely decaying mode, and the former one to
fusive motion, solution of the traditional Fick’s equation.

These considerations show us that with decreasing
ues ofQ andv, i.e., going over the classical hydrodynam
regime, the movement can be well described with an ev
decreasing number of higher-order fluxes. In the pres
case, the presence of the second-order flux leads to a t
degree in time equation, together with nonlocal correctio
when only the first-order flux is a basic variable, it follow
the telegraphistlike equation corresponding to a particu
kind of propagation of sound waves, and finally, the equat
of conservation of the density together with the tradition
Fick’s Law produces diffusive motion.

A corollary is that the inclusion of an ever increasin
number ofr-order fluxes,I @r #, describes more and more com
plicated motions ~increasing number of hydrodynami
modes!, corresponding to steeper and steeper variations
space and time.

VI. CONCLUSIONS

The powerful kinetic theory based on a generalized n
equilibrium grand-canonical ensemble, which provides
foundations for the construction of a nonclassical thermo
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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 This a
drodynamics, has been applied to the study of the motio
a fluid when in the presence of space inhomogeneities.

The generalized Mori–Heisenberg–Langevin equati
that the theory provides have been used to derive a gen
ized Fick’s Law, in which the expression for the flux of pa
ticles contains a denominator in the form of a continuo
fraction, whose sucessive terms involve a coupling with
the higher-order fluxes. But, as shown, when it is perform
a truncation of the set of basic variables, say retaining flu
only up to orderR, the continuous fraction also becom
truncated in the contribution of orderR21.

We have been able to show that the sucessive term
the continuous fraction provide contributions to the expr
sion for the current of particles in the form of a series of ev
powers of the reciprocal of the wavelength. When rewrit
in direct space, these contributions become powers of
Laplacian acting on the thermodynamic force—thus givin
generalized thermodynamic force—producing what can
considered a Burnett-type equation. Thus, the theory h
described allows to go beyond the classical hydrodyna
limit by covering the situations when the motion is not r
stricted to long wavelength and low frequencies. Taking
the general expression we have derived the classical hy
dynamic limit, that is whenl→` andv→0, it is recovered
the traditional Fick’s Law.

It emerges from the study thus presented, that a trun
tion of description implies into obtaining expressions that
correct only up to certain limiting values of wavelength a
frequency~both are related through the dispersion relatio
of the corresponding normal modes of motion!. On the one
hand, this implies that the shorter the wavelengths~with ac-
companying larger frequencies! that have relevant contribu
tions for the motion of the fluid, a proper description requir
to incorporate an ever extended number of fluxes.

Equation~43! is then an extended form of Fick’s Law
going beyond the classical hydrodynamic limit b
incorporating—in the spirit of Extended Irreversible The
modynamics and within this Informational-Statistical The
modynamic approach—the fluxes~the vectorial one or cur-
rent and higher-order ones! as basic variables. An extende
generalization of Fick’s Law, involving any numberR of
fluxes, is presented in Appendix C as Eqs.~C3! et seq.

Such generalized Fick’s Law has a numerator, the v
torial one of Eq.~45!, containing a term which is a multiple
divergence of the tensor of rank next to the last one incor
rated in the basic set@this is In3 in Eq. ~42!, and I n

@R11# in
Appendix C#. Additional contributions are present in E
~45!, with the second one with coefficientG0 ~which is pro-
portional to the square of the interactions responsible for
collisional processes! giving a posterioria perturbative cor-
rection to the diffusion coefficient@cf. Eq. ~72!, with a2

given in Eq.~70!#, while the last one contains the main co
tribution to the thermodynamic force, i.e., the one that in
limit of classical hydrodynamics (Q→0,v→0) recovers the
traditional form for the fluxIn , namely, (v th

2 U1/3)¹n(r ,t).
The denominator acquires the form of a continuous fr

tion expansion@however finite, with a cutoff term of orde
R21 if we have truncated the description in the flux of ord
R in Eq. ~C4!, and 1 in the case of Eq.~49! whenR52#. This
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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denominator takes the value 1 in the classical hydrodyna
limit of very large wavelengths~or Q going to zero! and low
frequencies~v going to zero!, and the usual Fick’s Law is
recovered, as already noticed.

Moreover, as we have shown, the presence of
continuous-fraction implies that when it is handled as d
scribed in Eq.~60!, it produces contributions in increasin
powers of the reciprocal of the wavelength. This means t
the inclusion of fluxes as basic variables in the nonequi
rium thermodynamic space removes the restriction to w
in the classical hydrodynamic limit, entering the domain
Extended Irreversible Thermodynamics~here done within
the statistical treatment of Informational-Statistical Therm
dynamics!. Therefore, for the case of fluid motions where t
relevant wavelengths that characterize it includes short o
can be better described by requiring an ever-increasing
mension in the nonequilibrium thermodynamic space~addi-
tional higher order fluxes!.

Once the equations are transformed back to direct sp
@cf. Eqs.~62!#, it can be noticed that it follows an extende
version of the equations of the Burnett-type. The coefficie
are given as correlations, over the nonequilibrium ensem
of mechanical quantities, being then well defined and cal
lable for ulterior comparison with experiment. However, ca
must be exercised once, as shown by Bobylev a
others,11–13 these equations may display instabilities wh
they are applied to the description of motions characteri
by too short wavelengths. As we have shown in this pape
truncation in the description, meaning to keep a redu
number of higher-order fluxes as basic variables, impos
restriction delimiting a range of values of wave numbers~or
wavelengths! for which the equations can be applied; th
requires a case by case analysis~in Ref. 28, a particular
model of two classic ideal gases with mutual interaction, h
been studied!. Apparently an exact expansion of all Burne
contributions free of instabilities would be given by a co
tinuous fraction expansion including all fluxes. This is then
contribution to the debated question concerning the valid
of Burnett and super-Burnett expansions. Certain analysi
kinetic theory pointed to the fact that the coefficients in t
expansion could be nonanalytic functions of the wave nu
ber, as lnQ or Q1/2. But the present expansion in fluxes of a
orders, in the spirit of mesoscopic thermohydrodynamics,
pears as quite appropriate, with the coefficients being a
lytic and providing a rapid convergence. However, it must
kept in mind that, according to our results, it appears to b
general property of the expansion the existence of a cu
wave number, determined by the characteristics of the s
tem and its nonequilibrium macroscopic state, see for
ample, Eq.~58!. When this property is not verified the con
vergence of the continuous fraction fails.
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APPENDIX A: DOUBLE DIVERGENCE OF THE THIRD-
ORDER FLUX

Using Eq.~9b! we have that

iQ^ iQ^ I n
@3#~Q,t !52(

k
~Q•u~k,Q!!2u~k,Q!nkQ~ t !.

~A1!

Using the Heimes–Jaynes expansion23 in the homogeneities
@cf. Eqs.~16! and ~17!#, in linear approximation we can ex
press the quantitynkQ(t) in terms of the basic macrovar
ables, and substitute it in Eq.~A1! to obtain

iQ^ iQ^ I n
@3#~Q,t !52g1~Q!(

k
C~k,Q,t !

3~Q•u~k,Q!!2u@2#~k,Q!•In~Q,t !,

~A2!

where the factorg1(Q) is the proportionality coefficient be
tween the currentIn(Q,t) and its associate Lagrange mul
plier, as obtained from a proper calculation of Eq.~24!—In

does not depend on the other Lagrange multipliers beca
the correlation is null for symmetry—and we recall that E
~24! is a linearized expansion. Moreover, we used that we
considering a purely longitudinal regime, i.e., the macro
riable In(Q,t) is parallel to the vector wave numberQ, and
quantity C(k,Q,t) is defined in Appendix A of article I, by
Eq. ~I.A13!.

Using the definition of u(k,Q) and the parity of
C(k,Q,t) it follows that the sum ink in Eq. ~A2! takes the
form,

(
k

C~k,Q,t !~Q•u~k,Q!!2u@2#~k,Q!

5g2~Q!uQu211g3~Q!@QQ#, ~A3!

whereg2 andg3 are coefficients resulting from the summ
tion, whose details we omit. Using Eq.~A4! in Eq. ~A2! and
the fact thatIn(Q,t) is parallel to the vector wave numberQ
we obtain that

iQ^ iQ^ I n
@3#~Q,t !5K~Q!~ iQ•In~Q,t !!iQ, ~A4!

where

K~Q!5g1~Q!~g2~Q!1g3~Q!!. ~A5!

APPENDIX B: A SIMPLIFIED MODEL AND THE
CLASSICAL FICK’S LAW

We here briefly describe the case of a fluid of fermio
in interaction with a bath of bosons, specifically the mod
used in Ref. 29. In this simplified description, i.e., not i
volving the HOH extension of the main text, the equations
evolution take the form,
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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]

]t
n~Q,t !5 iQ•In~Q,t !, ~B1!

]

]t
In~Q,t !5 iQI n2~Q,t !2U1

21In~Q,t !, ~B2!

]

]t
In2~Q,t !5 iQ•In3~Q,t !1 1

3v th
2 U2

21n~Q,t !

2U2
21I n2~Q,t !, ~B3!

where it has been kept only the diagonal and isotropic par
the second and third order fluxes,b is the reciprocal of the
quasitemperature,U1 and U2 are minus the characteristi
Maxwell’s times, andv th is the thermal velocity, given by
mv th

2 /25(3/2)b21; and we recall that we have introduce
t i52U i .

We can see in the right-hand side of these equation
first contribution associated with the conserved part~diver-
gence of the fluxes in the direct space!, followed in Eqs.~B2!
and ~B3! by the contributions associated to the collision
events governed by the fermion–boson interaction in
model. Transforming Fourier in time we obtain

ivn~Q,v!5 iQ•In~Q,v!, ~B4!

~11 ivu1!In~Q,v!5U1iQI n2~Q,v!, ~B5!

~11 ivu2!I n2~Q,v!5U2iQ•In3~Q,v!1 1
3v th

2 n~Q,v!.
~B6!

The third-order flux is not a basic variable and needs
expressed in terms of them; using the linearized form
Heims–Jaynes expansion for averages, it follows thatQ
•In3(Q,v)5(10/3b)iQ•In(Q,v). Finally, rearranging these
equations we arrive to the relation

In~Q,v!5D~Q,v!iQI n2~Q,v!, ~B7!

where

D~Q,v!5~11 ivu1!21~11 ivu2!21 1
3v th

2 U1

1~10/3b!U1U2~11 ivu1!21

3~11 ivu2!21iv. ~B8!

In the limit of classical hydrodynamics (Q→0,v→0) and in
direct space, one recovers the usual Fick’s Law,

In~r ,t !52 1
3v th

2 t1,n~r ,t !. ~B9!

APPENDIX C: THE CONTINUOUS FRACTION
EXPANSION

Let us recall that from equations of evolution, it follow
that

I @ l #~Q,v!52
U l~Q!

V l~Q,v!
$~11Dl 11~Q!!iQ

^ I @ l 11#~Q,v!1Gl 21~Q!@ iQI @ l 21#~Q,v!#

1B@ l #~Q,v!%, ~C1!

where

V l~Q,v!511 ivU l~Q!. ~C2!
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 This a
Introducing a truncation retaining the higher-order flux
up to an order, sayR, after some calculation it follows the
general expression for the current (l 51) or generalized
Fick’s Law, in the form,

I ~Q,vuR!52
N~Q,vuR!

D~Q,vuR!
, ~C3!

with R indicating the order of the truncation introduced, a
where the denominator is the continuous fraction,

D~Q,vuR!511
a1~Q,v!Q2

11
a2~Q,v!Q2

�

11
aR22~Q,v!Q2

11aR21~Q,v!Q2

, ~C4!
th

ra

it
ra
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swhere@cf. Eqs.~56! and ~44!#

ar~Q,v!5
j r~Q!

V r~Q,v!V r 11~Q,v!
, ~C5!

j r~Q!5U r~Q!~11Dr 11~Q!!U r 11~Q!Gr~Q!. ~C6!

The numeratorN(Q,v) stands for a generalized thermo
dynamic force taking the cumbersome expression,
N~Q,vuR!52S )
j 50

R23

Cj
R21D DR~ iQ!R^ I @R11#~Q,v!1S )

j 50

R23

Cj
R21D (

j 50

1

DR2 j 21

UR2 j

VR2 j
~ iQ!~R2 j 21! ^B@R2 j #~Q!

1 (
k51

R23 S )
j 5k

R23

Cj
R21D DR2k22

UR2k21

VR2k21
~ iQ!~R2k22! ^B@R2k21#~Q!1

U1

V1
B@1#~Q!1

U1G0

V1
@ iQn~Q,v!#, ~C7!
er-

,
se
where

Dr5~21!r)
j 51

r
U j~11Dj 11!

V j
, ~C8!

C0
k5

1

11akQ
2 ; Cj

k5
1

11Cj 21
k ak2 jQ

2 . ~C9!

We should notice thatDR11(Q)50 andD0(Q)50, and that
for R52 the products should be taken equal to one and
third term on the right-hand side of Eq.~C7! is equal to zero.
e

According to the results above, we can write the gen
alized Fick’s Law in the compact form,

I ~Q,vuR!52CR22
R21~Q,v!N~Q,vuR!. ~C10!

Equation ~C7! can be written in an alternative way
which, for better visualization we write down for the ca
R53, namely,
N~Q,vuR!52
1

Z1

U1@11D2#

V1

U2@11D3#

V2

U3

V3
iQ@Q2I 4~Q,v!#2

1

Z1

U1@11D2#

V1

U2@11D3#

V2

U3

V3
G2iQ@Q2I 2~Q,v!#

1
1

Z1

U1@11D2#

V1

U2@11D3#

V2

U3

V3
iQ@ iQ•B3

@1#~Q,v!#2
1

Z1

U1@11D2#

V1

U2

V2
@ iQB2~Q,v!#1

U1

V1
B1

@1#~Q,v!

1
U1

V1
G0iQn~Q,v!, ~C11!
tri-
al
rac-
f
flux
ds
ion
where Z1(Q,v)511a1(Q,v)Q2 and, for simplicity, we
have taken the tensors as diagonal and isotropic~i.e., we
neglect shear contributions and anisotropy!.

We can then see the particular structure for the gene
ized thermodynamic force N. Besides the main
contribution—the one that recovers Fick’s Law in the lim
of classical hydrodynamics—namely, proportional to the g
dient of the concentration@iQn(Q,v) in the reciprocal
l-

-

space# being contained in the term withB2 as shown in Ap-
pendix B, there appear to be a number of additional con
butions which also add nonlocal contributions to the fin
expression, besides those arising out of the continuous f
tion expansion in the denominator. In the shown case oR
53 we can see the presence of a triple divergence of the
of fourth order~which is not a basic variable and then nee
be expressed in terms of the latter to close the express!,
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 This a
which here reduces to the form of the first contribution
the right-hand side of this Eq.~C11!. Besides, we can see th
gradient of the double divergence of the second-order
~i.e., contributions of the fluxes of even order!, which ap-
pears in the second contribution. Moreover, it can be noti
the presence of the terms of typeB(Q,v)—of a very com-
plicated structure—in this case all the possible three of th
involved with the gradient of the divergence of the vec
B3

@1#(Q,v), and the vectorB@1#(Q,v). We shall return to this
question of generalized thermodynamic forces in a fut
paper.

APPENDIX D: ON THE ELEMENTS OF THE
CONTINUOUS-FRACTION EXPANSION

We recall that the convergence of the continuo
fraction expansion is ensured by the condition,

uar~v!uQ25uj r uQ2/uV r~v!V r 11~v!u

5uU rU r 11~11Dr 11!

3Gr uQ2/uV r~v!V r 11~v!u,1, ~D1!

where

uV r~v!V r 11~v!u5u~11v2U r
2!~11v2U r 11

2 !u1/2, ~D2!

andar(v) is given in Eq.~C5!. The limit of convergence is
the case of alluar uQ251, when the continuous-fraction i
equal to the ‘‘golden number’’f51.618... . Let us analyze
the relation in modulus of two successivear(v), i.e.,

Uar 11~v!

ar~v!
U5Uj r 11

j r
UU 11 ivu r

11 ivu r 12
U, ~D3!

and after using Eq.~C6!, where we neglect the contributio
D in comparison with 1, we have that

Uar 11~v!

ar~v!
U5UU r 12

U r

Gr 11

Gr
UF 11v2u r

2

11v2u r 12
2 G1/2

. ~D4!

In the limit of low frequencies (vU!1) Eq. ~D4! becomes

uar 11~v!/ar~v!u.uU r 12Gr 11 /U rGr u, ~D5!

and at high frequencies we do have that

uar 11~v!/ar~v!u.uGr 11 /Gr u; ~D6!

hence the relation of the coefficients along the continuo
fraction is determined by the quantitiesU andG, which de-
pend on each particular system under consideration.

For illustration we take the case of an ideal gas of p
ticles of massm, which is in interaction, via a central forc
potential, with an ideal gas of particles of massM, acting as
a reservoir with temperatureT, and a classical approach
used. We takem@M , and then we are in the presence o
typical Brownian motion problem. It is considered a trunc
tion with R52, i.e., including the density and its first an
second fluxes. It is obtained for Maxwell’s characteris
times associated to the first and second fluxes
expressions,30

U1
215A p

2M

nR

3
Fb3/2

x3/2

~11x!1/2, ~D7!
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

143.106.190.137 On: Mon
x

d

,
r

e

-

s-

r-

-

e

U2
215A p

2M

nR

3
Fb3/2

x3/2

~11x!3/2, ~D8!

wherenR is the density of the particles with massM, b21

5kBT, with T being the common temperature of the syste
and reservoir,x5m/M is the relation of the masses of th
particles in system and reservoir, and

F5
1

V (
q

uquuV~q!u2, ~D9!

with V(q) being the Fourier transform of the interaction p
tential. Hence, using Eqs.~D3! and~D4! we obtain the rela-
tion,

U2

U1
5

1

2
~11x!, ~D10!

and we recall thatx.1 ~Brownian system! and thenU2

.U1 , an inequality that also stands for the case of Ma
wells’ characteristic times for the quantum description of c
riers and polar phonons in the direct-gap polar semicond
tor GaAs.31

On the other hand, coefficientsG are given by30

uG0u5
nR

3
G

b

m

21x

~11x!2 , ~D11!

uG1u5
nR

3
G

b

m

2

x
, ~D12!

where

G5
1

V (
q

1

uqu
uV~q!u2, ~D13!

and then

UG1

G0
U5 2~11x!2

x~21x!
. ~D14!

According to Eq.~D4!, we have now that

FIG. 1. The ratios of Eqs.~D16! and ~D17! as a function ofx5m/M : full
line for r lf and dashed line forr hf .
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Ua2~v!

a1~v!
U5 1

2
~11x!

2~11x!2

x~21x! F11v2U2
2

11v2U1
2G1/2

, ~D15!

where we can notice, on account of Eq.~D10! that the square
root is a number smaller than 1. Let us analyze two limiti
cases, first, the one of low frequencies (vU!1) when

r lf~x![Ua2~v!

a1~v!
U

lf

.
~11x!3

x~21x!
, ~D16!

and the one at high frequencies (vU@1) when

r hf~x![Ua2~v!

a1~v!
U

hf

.
2~11x2!

x~21x!
. ~D17!

These two ratios, depending onx, are shown in Fig. 1 for
a certain range of values ofx. We can notice that for this
particular Brownian-type system it follows thatua2(v)u
.ua1(v)u for any value ofx.
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