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Higher-order hydrodynamics: Extended Fick’s Law, evolution equation,
and Bobylev’s instability
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A higher-order hydrodynamics for material motion in fluids, under arbitrary nonequilibrium
conditions, is constructed. We obtain what is a generalized—to that conditions—Fick-type Law. It
includes a representation of Burnett-type contributions of all order, in the form of a
continuous-fraction expansion. Also, the equation includes generalized thermodynamic forces,
which are characterized and discussed. All kinetic coefficients are given as correlations of
microscopic mechanical quantities averaged over the nonequilibrium ensemble, and then are time-
and space-dependent as a consequence of accounting for the dissipative processes that are unfolding
in the medium. An extended evolution equation for the density of particles is derived, and the
conditions when it goes over restricted forms of the type of the telegraphist equation and Fick’s
diffusion equation are presented. ZD02 American Institute of Physics.

[DOI: 10.1063/1.1426416

I. INTRODUCTION been used, and a description can be consulted in Chap. 6 of
the classical book on the subject by Boon and ¥ive do
Microscopic descriptions of hydrodynamics, that is, deri-present here an approach based on a grand-canonical en-
vation of kinetic equations from classical or quantum me-semble generalized to cover the case of systems arbitrarily
chanics and containing kineti¢or transport coefficients away from equilibrium.
written in terms of correlation functions, is a traditional Introduction of nonlocality effects for describing mo-

problem of long standing. An important aspect is the derivations with influence of ever decreasing wavelengising

tion of constitutive laws which express thermodynam|c»[0\,\,am|S the very short limif has been done in terms of
fluxes (or currents as those of matter and of engigyterms  expansions in increasing powers of the wave number which
of appropriate thermodynamic forcéypically gradients of  ¢ongists in what is nowadays sometimes referred to as
densities as those of matter and e_nea.rgg their most gen-  nigher-order hydrodynamic$HOH). Attempts to perform

eral form these laws are nonlocal in space and noninstantay,cpy expansions are the so-called Burnett and super-Burnett
neous in time. The nonlocality is usually dealt with in termsapproaché‘s in the case of mass motion, and Guyer—
of spatial Fourier transforms, and then the laws—now X% rumhansl approadtin the case of propagation of energy. In

preised |_|r_1hre0|p|r|okcal space—bepome fd(laper!derntoon Wavie present paper we concentrate the attention in the first one,
vectorQ. The well known expressions of classicaf Onsa- namely, density motiofiin a future paper we shall deal with

ﬁ]rt;riltar)f therrrilr?mf[dr(;d)r/n(?n:llcswlsv c:b:la|3];asdTEerforrm|?r? r:hethe motion of energy
of Q going to zero(long waveleng ey are the A usual approach has been based on the moment solu-

\éiltl:oel '2 S;J(;:helrlrgg, zzgéﬁc%OQ%gﬁdndi: Isrirrwlsic Tjsgryixe'?_tro'tion procedure of the Boltzmann equation, as in the work of
prop P NP bie, Hess® using a higher-order Chapman—Enskog solution

mediate and short wavelen_gthstermgdlate_ to large wave method. The Chapman—Enskog method provides a solution
numbers$. In phenomenological theories this corresponds to

. e . . to Boltzmann equation consisting of a series in powers of the
go from classicalOnsagerianirreversible thermodynamics Knudsen number. sa ven by the ratio between the
to extended irreversible thermodynamtcsThis is what has , sal, given by -
been calledyeneralized hydrodynamicthat is, to go beyond mean-free path of the particles and the scale of variation

traditional hydrodynamics, the latter restricted to fluctuations(rQIevant wavelengths in the motipaf hydrodynamic fields.

occurring at long wavelengths and low frequencies. Thig?etalnmg the term linear i there follows Navier—Stokes

. . - 2 .
guestion has been extensively debated for decades by ggguation, the term containing” introduces the so-called

Statistical Mechanics community. Several approaches havgurnett corrections, and _the higher order offi$ and up
the super-Burnett corrections.

. A satisfactory development of HOH is highly desirable
dAlso at Institut d’Bstudis Catalans, Carme 47, E-08001 Barcelona, Catalu-fOr Covering a |arge class of hydrodynamic situations. and in
nya, Spain. . L . N
bGroup Home Page: Unicamp-www.ifi.unicamp-batrea; UAB-http:// f[he IasF instance for obta_lnlng |nS|ghts_ into technolo_glc_al and
blues.uab.es/dep-fisica/recerca/grups/€d.shtml industrial processes having an associated economic interest.
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Indeed, the nonlocal terms become specially important irEntropy—referred to as Max-Ent-NESOM in  what
miniaturized devices at submicronic lengths, as for instancéollows.***®> The formalism allows for the derivation of
in hydrodynamic description of microelectronic devices  an associated kinetic theory, which provides for the de-
in design of stratosferic planes, which fly in rarefied gases irscription of the evolution of dissipative processes in highly-
a density regime intermediate between the independenexcited matter, and can be considered as a far-reaching
particle description and the purely continuous descriptiongeneralization of Mori—Heisenberg—Langevin equatiths.
This is the case when the mean free path of the particles is @flso an associated Informational Statistical Thermo-Hydro-
order of, say, 10% of the characteristic length of the devicegynamics follows:® which is a statistical-mechanically
instead of being of the order of, say, 0.1%ontinuous ap- founded version of the so-called Mesoscopic Irreversible
proximation or of 100% (independent-particle approxima- Thermodynamic$® In the present paper we further analyze
tion). Another particular problem to it related is the one of such kinetic theory. Summarizing the content of this commu-
obtaining the structure of shock waves in fluids for wide nication, (i) after some considerations on the character and
ranges of Mach numbefsVloreover, Burnett approximation properties of the transport coefficients) an expression for
of hydrodynamics has been shown to provide substantial imthe flux of particles in the form of a Mori-type continuous-
provement on many features of the flow occurring in severafraction expansion is derived, which encompasses Burnett-
problems in hydrodynamics, e.g., the case of Poiseuilldype contributions of all orderén that way it is provided a
flow,® and otherg?® higher-order hydrodynamics founded on a nonequilibrium
The microscopic derivation of a HOH, together with the énsemble formalism of statistical mechapjeghose summa-
analysis of validity of the existing theories, is still a point in bility is discussed; moreove(iji) it is shown how the theory
question. Recently, it has been shdivthat for the case of provides an extension for intermediate to short wavelengths,
Maxwellian molecules, whereas Navier—Stokes approximaand intermediate to high frequencies, of Fick's Law for the
tion yields equations which are stable against small perturflux of particles, andiv) generalized thermodynamic forces,
bations, this is not the case when are introduced Burne®f @ nonlocal character and with memory, are introduced.
corrections to the equations. It follows that small perturbafurthermore, in Sec. V, is derived a generalized equation of
tions to the solution, which are periodic in the space variablénotion for the density of particles, which, as nonlocality
with a wavelength smaller than a critical length, are expobecomes less and less relevant, goes over the equations of
nentially unstable. This fact has been calBabylevs insta- evolution of extendedtelegraphistlike equatiorand classi-
bility. More recently, Gara-Coln and co-worker€ have  cal (traditional Fick equationhydrodynamics.
extended Bobylev's analysis for the case of any interaction
potential, and argue that one can interpret the fact as to givlé- THE EQUATIONS OF EVOLUTION IN HOH
a bound for the Knudsen number above which the Burnett We consider the MaxEnt-NESOM kinetic theory pre-
equations are not valid. Moreover, Kafffrreconsidered the sented in Ref. 18, hereafter referred to as I, and when equa-
question looking for exact solutions to simplified models.tions from it will be cited the corresponding number will be
When the linearized ten-moment Grad method is used, angreceded by the label I. However, in order to avoid the quite
the Chapman—Enskog method is applied to the model, in fa@dumbersome expressions that will follow when using the
there follow instabilities in the higher-order approximations. general theory, which would somehow obscure the picture,
On the other hand, resorting to the Chapman—Enskog solyve shall simplify the presentation attempting to provide a
tion for the linearized Grad ten-moment equations resummegetter clarification of the main physical characteristics. For
exactly, solutions are obtained for which the stability ofthat purpose we consider a decoupling of material and ther-
higher-order hydrodynamics, in various approximations, cammal motions, concentrating the analysis on the first one im-
be discussed. plying in that we are neglecting cross effects. Moreover, the
In this paper we reconsider the question going beyondvarkovian limit of the theory is used.
the earlier approaches in that: First, we use a statistical- We begin re-emphasizing a quite important point: For
mechanical formalisft° (thus containing the quantum—or the description of the macroscopic state of the nonequilib-
classical—microscopic dynamics and a macroscopic nonkdum system, one faces the question of selecting the basic set
equilibrium thermodynamic¥ with the equations of hydro- of macrovariables which describe such dissipative, in general
dynamics following from the mechanical equations of mo-nonhomogeneous and time-evolving, st4t€ This is also
tion averaged over the nonequilibrium statistical ensejnble the case in thermodynamic theories, like Extended Irrevers-
Second, we obtain HOH-equations including a compact exible Thermodynamics’® Rational Thermodynamicd, etc.,
pression for the Burnett contributions of all order as an al-but the problem is overcome in statistical thermodynamic
gorithm in the form of a continuous-fraction expansion, lead-theories like Informational Statistical Thermodynantics.
ing to a far-reaching generalization of Hess’ results. Consider an open system of interacting particles under the
The organization of the paper is as follows: In a previousaction of external sources driving it out of a state of equilib-
papet’ was presented a description of a generalized nonFium with a thermal reservoir at temperatufg. Further-
equilibrium grand-canonical ensemble, built in the frame-more, we admit that the system is describable in terms of
work of a nonequilibrium ensemble formalism of a large individual quasiparticles, for example, the extremely impor-
scope. It is based on the Nonequilibrium Statistical Operatotant cases of radiation and solid state matter. In the latter case
Method, with its derivation founded in a variational the lattice vibrations are described in terms of a “gas” of
principle—Jaynes’ Maximization of the Informational phonons, and the electrons are described as a “gas” of Lan-
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dau quasiparticles in a mean-field approximation for theroscopic nonequilibrium state of the systéM® It is also
Coulomb interaction(the so-called random-phase approxi- worth recalling that the statistical operator of E4) can be
mation or time-dependent Hartree—Fock—Bogoliubov apwritten as the composition of two terms, namely,

proximation, which, as well known, constitutes an excep-

tionally good description which properly accounts for all the pO)=p(t,0)+ pe(D), 0
physical properties of solid state matter. where

Therefore each and all the mechanical quantities associ- .
ated to this kind of systems can be expressed in terms of p(t,0)=exp{—S(t,0)} ®

the reduced single-particle dynamical operator, sayis an auxiliary statistical operatdof large relevance in the
pu(ro,r'c’). Use of the second quantization is quite ap-gerivation of the associated nonlinear quantum kinetic
propriate when dealing with interacting many-body systemsineory?2 and sometimes dubbed as the “instantaneously fro-
accompanied with an appropriate representation in Hilberyen » or quasiequilibrium, statistical operatowhich pro-
space of single-particle states. Hence the macroscopic staj@jes the instantaneous, at tinte nonequilibrium macro-
(i.e., nonequilibrium thermodynamic statef the system is scopic state of the system, apdi(t) contains the processes
completely defined by a basic set of macrovariables WhiC'broducing the irreversible evolution of the system.
are the average over the nonequilibrium ensemble of the |t can be noticed that the quantities of Ed) are the
nonequilibrium dynamical single-particle operators. They betime-evolving populations in statéks), and the quantities
come the components of the nonequilibrium Dirac—Landaugy Eq. (2) are related to spatial inhomogeneities in the sys-
Wigner single-particle density matrix, namely, tem. Also, alternative descriptions of the macroscopic non-
vkg(t)=Tr{algakUpe(t)}, (1) equilibrium state of the system can b_e introduced. One is the
grand-canonical one of Ref. 17, obtained when the elements
for the diagonal elements, and the nondiagonal or@s ( of the Dirac—Landau—Wigner single-particle density matrix
#0) are in Eq. (5) are replaced by linear combinations of them, con-
Moo’ (1) = TH{Akgeor pe(t)], ) sistin_g_ of the Fou_rier-amplitudes of the particle and energy
densities and their fluxes of all orders. As we have noted

where before, we will consider here only mass motion, and then we
N ot L 3) take as the basic set of macrovariables the enétgyluxes
kQoa’ =&y 1QgPk-2Q0 and inhomogeneities being disregarged
andp(t) is the MaxEnt-NESOM nonequilibrium statistical
operator,k is the crystalline momentum, and the spin of h(t)=; exvi(t), 9

the single-particle, which we take as bos¢esg., phonons or

photons to fix a case and, as usuala') represent annihi- whereg, is the single-particle energy-dispersion relation; the
lation (creation) operators in stat&o. The nonequilibrium  single-particle(Fourier-transformeddensity

statistical operator is given BY°

R t . od. n(Q,H)= 2 Nio(t), (10)
pe(t)zexp<—5(t,0)+J’ dt’ et ’“WS(t’,t’—t) , K
- (g andits fluxes
whereS is the informational-entropy operat®tin this case |I[]r](Q,t):Z u[r](k,Q)nkQ(t). (11
K

and after disregading the spin indé(<t,0) takes the form
. The indexr denotes the orddrand tensorial rankof the flux
S(t,0)=¢()+ > Fhatac+ X Fiolt)hg, (5)  (r=1 is the usual vectorial one or currgmind
K k,Q#0

ul(k,Q)=[u(k,Q)---(r —times---u(k,Q)], (12)

with the square brackets indicating tensorial product of vec-
AS(t’,t’—t):exp[ _ i(t’—t)ﬂ]é(t’,O) tprs, gnd wherai(k,Q) is a generating velocity vector de-
it fined in Eq.(1.19), namely,

and

Xexp(.i(t’—t)ﬂ], (6) u(k Q)=EV e +§ ; EQV 2|EV e

A LN = NPT TR R B
whereH is the system Hamiltonian, and(t), F(t) and (13)
Fro(t) are the Lagrange multipliers in MaxEnt-NESOM. The nonequilibrium grand-canonical statistical operator

The functiong(t) ensures the normalization of the statistical associated with this problem follows from a modified expres-
operator, and plays the role of the logarithm of a nonequilibsion for the informational-entropy operator of E&), ob-
rium partition function. We stress that the Lagrange multipli-tained by redefining the Lagrange multipliers in the form,
ers, which are functionals of the basic macrovariables, con- 0

_stltute_an alte_rnatwe set of nonequilibrium ther_njodynammal Fo() =B+ > F[r](t)®u[r](k), (14)
intensive variables, also completely characterizing the mac- r=0
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o 1 o]
Fio(h=2 Fy(Qheul(k,Q), (15 IQu=Tr f dx(pndt,0)* > X Fn(Q'b)

r=0 0 k'.Q'#0r'=0

with, we recall,Q#0, and whereB(t) plays the role of a oulr (k' Q) Ao (prdt,0)) ¥

reciprocal of a kind of nonequilibrium temperatutesually ' Q ’

called quasitemperaturethe Lagrange multipliers wittr [ o

=0,r=1, andr=2 are those associated with the density, the X ; U (k, Q) gpndt,0) (23

first (vectoria) flux, and the higher-order fluxes, respectively,
and ® stands for fully contracted tensorial product. Hence,establishing the linear relationship between the density (
we do have an alternative, and also complete, description te:0) and each fluxi(=1,2,...) with the Lagrange multipliers
the one provided by the ensemble characterized by the st The contributions to E¢23) with Q' # Q are null. Hence,

tistical operator of Eq94)—(6). Moreover, the resulting aux- we can rewrite Eq(23) in the compact form,
iliary statistical operator is rewritten, as done in |, in the form

given by Eq.(1.28), i.e.,

Q= > Frq(QbeulrlQ,, (24)
r'=0

p(t,0)=exp{A(t) +B(t)}/ TrH{A(t) + B(1)}, (16)
with the tensolJ obtained by comparison with E(R3) [also

namely, composed of a pai, corresponding to the contri- ¢ gqs (1.A15) and (1.A16)]. Equation(24) can in principle
bution in the homogeneous variableég., the part containing e inverted to have that

the Lagrange multiplier&,(t) of Eq. (14)], plus the parB
which contains the contribution in the inhomogeneous vari-
ables [i.e., the part containing the Lagrange multipliers
Fro(t) with Q0 of Eq. (15)].

Moreover, following I, we restrict the analysis introduc- Which give us the Lagrange multipliers in terms of the basic
ing alinear approximationin the calculations, namely, we variables, implying to provideonequilibrium equations of
keep only first-order contributions in the inhomogeneities state(here in this linear approximatignonce we recall that
that is, in the terms witlQ+ 0 which are contained in the the Lagrange multipliers are the differential coefficients of
statistical operator via the operatBr of Eq. (1.29b). This the informational-statistical entropy, namefy,
implies in taking small amplitude variations of the density
and its fluxes, that is, considering small inhomogeneities and
weak fluxes. Using the Heims—Jaynes exparfsitor aver-
ages in terms of the operator of E¢s28) and(1.29), up to
first order inB we find that

Q.0 =11(Q,0[1- B )1+ (5,(1),I1T(Q) 1),

o

Fi(Qo= 2 U, QeI Qpu), (25
r’'=0

Ol
oIttt sittlQ,t)

Tr{S(t,0)p(1)},
(26)

Frr(Qt)

where § stands for variational derivativé.
Equations(23)—(25) refer to the inhomogeneous contri-
butions to the macrostate of the system; let us see those

an associated to the homogeneous part. The homogeneous basic
where variables are given by
Ih(Q,1) =Tr{IL(Q)prd 1,0} =0, (18) =2 u T w), 27)
Bndt)=Tr{B()pndt,0} =0, (19

where v (t) is defined in Eq(1), and using again Heims—
that is, these averages over the homogeneous state characttaynes expansiéhin first (linean order in the inhomogene-

ized by ities we find that
At n(t)=Tr{a}agpndt,0} =e V-1, (28)
prdt,0)= ———, (20) . . . .
Tr{eA with F,(t) given in Eq.(14). The population in Eq(28)

acquires, in this linear approximation, an expression which is
a kind of generalized Bose—Einstein distribution depending
on time through the Lagrange multiplieg(t), which carries

are null, and we have introduced the correlation function

S (1) ] =TS (1 (0)a:
(SO I[N =THS(OTT(Q)pnd .0}, @D the information on the evolution of the nonequilibrium state
where of the system.
Having then dealt with the nonequilibrium equation of
- T N _ state, relating basic variables and Lagrange multipliers, as
— X X 1 ’
Si(t)= fo dx(pndt,0)"B(t) (pnd(t,0)) ™. (22) given by Eq.(25), we now proceed to derive the equations of

evolution for the basic variablegcf. Egs. (1.11), (1.13),
(1.14), (1.24), and the Markovian form in Eqsl.35)—(1.39)].
We rewrite the equations in the Markovian limit in the alter-
native form?®

Therefore, in Eq(17) the first term on the right-hand side is

null and the second, once we use the explicit fornBofis
given by
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1 . . Equation(31) has been worked out in detail in | to ob-
=1 H](Q),H]Pc(t)] tain the expression given by E.39), which is the counter-
part in the informational mechanical-statistical approach of
ziQ@IH*”(Q,t) the one derived in phenomenological mesoscopic
, . thermodynamic$?
2 0 dtrest' MIr+r'] For the sake of completeness we write down the equa-
Q =0 J-= tions of evolution, the set of them in fact, for the dendity
=0, and its fluxes of all ordet=1,2,..., namely[cf. Eq.

X(Q,Q",t' —t,t)®F1(Q',1), 29 (1.39),

J
Q=T

+

1
i

where P
M HQ,Q7 7 — ) =TH[ A" TI(Q)] E|LIJ(Q,t)=iQ@|L'+1](Q,t)+iQ@DHiH(Q,t)
X[A" (' =1)0.15 Q") Jprdt.0)}. A QD@ITQU+I[QG“1(QV]
(30 alh " HQu+8Q.u), (33)

Here,H is the Hamiltonian of the system, which, according where on the right-hand side we have put into evidence the
to the tenets of the formalism, is written as the additity  dependence on the corresponding varidlle the previous

+A’, where infi’ are contained all the interactions respon-One in tensorial rank,,~*!, and the following one{["*,
sible for the evolution of the dissipative processes that aréhile the last term3 contains all other contributions; the
developing in the system, arit, (the nondissipative-related tensorial kinetic coefficient®, A, G and the contributiors
part or conservative partis the so-called secular have the cumbersome expressions given in Appendix B in I.
contribution'*15 The term after the equal sign in E€R9) We call the attention to a misleading sentence in I, namely,

indicates that the equations of the kinetic theory are ithatD(Q’t) andg(Q.t) when given in a series expansion in

MaxEnt-NESOM the averages over the nonequilibrium enQ: have a first constant term equa_l to z¢and bem_g com-
semble of Heisenberg equations of motion of Quantum MePoSed of even powers 9Q|). This is because we included
chanics. The approximate sign indicates that the calculatiowa,t first constant ter_m if$ (what we failed to indicate but

has been done in the Markovian approximafidMoreover, ~Which we now keep irD andg. We recall thatz stands for

M is a kinetic coefficient in the form of a correlation function & contracted product of tensors and square brackets for direct

over the homogeneous state involving the change in time gproduct of tensors. In direct space E§3) becomes

the fluxes due to the interactions containedih and where ¢ 0 ) - ) [+1] )
the subindex zero means evolution in the interaction repreﬁln (r,t)+D|vf d°r'[8(r—r")+Dpyqy(r—r',1)]
sentation, that is, undéf, alone; in the average over the
homogeneous state only survive the terms \@th=Q. @1 H(r

We stress that while the left-hand side of this equation is
expressed in terms of basic variables, the right-hand side :f d3r’,4{H(r—r’,t)®|H](r’,t)
depends on the Lagrange multipliers: The set of equations

can be closed by relating both types of nonequilibrium ther- 31 A1-1] ) -1,
modynamic representations using the nonequilibrium equa- —GradJ d>r'Gyoq(r—r,nely (r',t)

tions of statgcf. Egs.(24) and (25)]. The equations for the

basic variablesthe density and its fluxg¢sre obtained after +B(r,p), (34)

using Eq.(25) to get, after going back to direct space, that where, we again recall,=0 is for the density[cf. Eq.

9 (1.409)] when the gradient of the previous tensorial quantity
[1] [1+1] . .
S (R O+ V-1 () is of course absent=1 for the vectorial flux, and=2 for
the higher-order fluxes. It can be noticed that if the tensorial

- 31 1] , 0] coefficientsA4, G, D are taken as scalars, SAEH=A| , etc.,
:I,E_:O d*r'Lyn(r=r'[H®1y (r.1), (8D and itis introduced a local-in-space approximation, that is,
with 1=0,1,2,..., and where is a kernel(or kinetic coeffi- Al(r=r"i)=—rto(r—r"), (35)

ciend which is the Fourier antitransform of the expression

given in reciprocal space by Droa(r=r50=(Bisa /) or=r’), (36
= and is taken into account that ' is present the thermo-
LM o.n=> f dt’e<t’ " OMIT*+r')(Q,Q,t' —t,1) dynamic force—as will be discussed later on as we
(] 0 J-» proceed—and then we take
(=1
®Uu ~(Q,1), 32
s+1(Q:) (32) B['](r,t)=GradJ dir’Cy(r—r";t)1lM(r" 1), (37)

after recalling that inVl of Eq. (30) only survive the terms
with Q'=Q. the relation involving the gradient operator reads as
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Cir=r" )+ G (r—r";t)=(Bi_1/a))d(r—r"), (39

where we have introduced , «;, and g;, which are the
coefficients of mesoscopic thermodynamigshowing that

the results of the latter are fully recovered in such approxi-
mation, with the understanding that there is a full formal(- )
equivalence of the equations for the flux of heat of Ref. 19,
and those for matter that we pursue here.

It should be stressed that even though we are considering
a system of bosons, the form of Eq83) remains formally
unaltered in the case of fermions; evidently only the explicit
form of the coefficients would be altered because anticom-
mutation relations enter in place of the commutation rela-
tions for bosons we have used. Hence, we have a complete
general description of the thermohydrodynamics, in arbitrary(v)
nonequilibrium conditions, of any fluid of particles, let them
be bosons or fermions. We stress once again, that (885.
and (34) are far-reaching generalizations of Mori—
Heisenberg—Langevin equations, which, just because of th&/i)
approximation we have introduced are linear in the basic
macrovariables.

It may be noticed that in Ed34), on the right-hand side
there are several interesting contributions: First, after the
pump source is switched off, we have a term with'*
which plays the role of Maxwell's characteristic time of ex-
tended thermodynamidssecond, one term involving the
gradient of the flux one order smaller; and finally, the té&¥m

Jou et al.

fied if the system is kept under the action of an exter-
nal source providing a continuous excitatigne.,
pumping energy at a constant ratélence, all the
kinetic coefficients(A, D, G) become constant in
time.

Fourth, coefficientsB!%), B! are neglectedbut it is
kept the one associated to the second flux, namely
B2}, because it contains the most relevant contribu-
tion to the thermodynamic forcegin the long-
wavelength limit provides the traditional term propor-
tional to the gradient of the density—the
proportionality factor being the diffusion coefficient
given in the form of classical kinetic theory—
recovering the traditional Fick's Law

Fifth, the second-rank tensorial flux is takendiag-
onal and isotropic(meaning that we are neglecting
shear effects in the pressure tensa@nd in all the
equations the kinetic coefficients are taken as scalars.
Sixth, the coefficients4 are of the form.A4,(Q,t)
=0, 1(Q,t)+iAA(Q,t), whereA A becomesa for-
tiori associated to renormalization of the kinetic coef-
ficients and it is neglected, for the sake of simplicity,
retaining only© which is the relevant contribution
playing the role ofMaxwell's characteristic timeof
extended irreversible thermodynamics.

Hence, after transforming Fourier in the time coordinate,

containing contributions from all the other macrovariablesye o have that

excluding the one of rank being considered and the two
corresponding to tensors of rank—1) and of rank [
+1). This is, as noticed, the result of the particular redistri-
bution of terms we have introduced when writing E(3).

We proceed next to perform further analyses of the equa-
tions, showing in the process how a higher-order hydrody-
namics is derived on the basis of the nonequilibrium statis-
tical ensemble formalism provided by MaxEnt-NESOM.

IIl. A CONTINUOUS FRACTION EXPANSION

ion(Q,w)=—iQ-1,(Q,w), (39

il (Q0)=—iQl,(Qw—0;QI,(Q,0)
—G0(Q)iQn(Q,w) — D1(Q)iQl 12(Q, w),
(40)
ioln(Q,0)=—1Q-1,3(Q,0)— 05 (Q)l12(Q,w)

—G1(Q)IQ-1,(Q,0) +B5(Q,w),  (41)

Consider Eqs(33), and for the sake of simplicity, in where, because of iteftv) above,| ., is a scalarthe diago-
order to avoid cumbersome expressions which would obnga| term in1l?!, andl 5 is a vector, the diagonal part of an

scure the basics of the physics involved, are imposed on thgqd-rank tensor moreover the coefficient®, G, andD are

system several restrictions:

(i)

First, it is introduced aruncated descriptiorin the

scalars and time-independent as noticed in itéim above.
We now look for an expression for the first flux

second-order flux, that is, we keep as basic variablesn(Q. @), thus looking for a generalized Fick's Law; using
the density, its first flux or current, and the second-EdS:(40) and(41), after some algebra we obtain that

order flux (it can be noticed that this second flux,
multiplied by the mass of the particles, is related to
the pressure tensor, with the diagonal components as-
sociated to the hydrodynamic pressure and the nondi-
agonal ones to the shear presgure

Second, we take parabolic energy-dispersion rela-
tion and then the generating velocitfk,Q) of Eq.

(13) becomeg-independent; hence the fluxes consist
of the superposition of the movement of single-
particle wave packets built in terms of the stafies

and moving with group velocity(k) =% "1V &y

Third, we take the nonequilibrium homogeneous state

(i)

(iii)

0,16,

In:l+iw91|
0,1+D,]0, .
(AHT00,)(1+iw0,) P2
. [041+Dy] 0,6, |

14100, 11w, 2
_NQw)  6,1+D,]0,G,
11100, (1+i00)(11i00,)

O0.1+D,] O,
1+iwO; 1l+iw

0, 1QIQ 1]

Q. (42

as being in asteady statethis condition can be satis- and then
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N(Q,w) and
o= 5Q7 “3
1+iwO+ ———
UL 14100, £1(Q)=61(Q)(1+D1(Q))02(Q)G1(Q). (52)
where
_ Equation(48) tells us that the response to the perturba-
€1=04[1+ 111001, (44) tion, that has driven the system out of homogeneity in space,
o, is nonlocal in space and not instantaneous in time. In fact we
N(Q,w)=91[1+Dz]Twele[lQ' In3] do have in direct space that
+60,G,i0Qn+ 1+iwO, .
X 0 4[1+D,]0,iQB,, (45) In(r,t)=J d3r’Jodt’Dn(r—r’,t—t’)V’n(r’,t’), (53)
and we recall that we have disregarded the t&#H [item
(iv) abovd.

where we have introduced the Fourier antitransforms of the
quantities involved, with the double convolution product be-
'ing a result that in Eq(48) we have an algebric product of

Let us now consider the quantity, working out its first
and third term. On the one hand, according to Appendix A

iQLIQ-113(Q,w)]=K(Q)iQ(iQ-1,(Q,w)) Fourier transforms in reciprocal), w)-space.
e The nonlocality in space mirrors the dependence on
=~ K(QiQiwn(Q,w), (46 \ave vectorQ in the different quantities that have appeared

after using the equation of conservation for the density, i.e.in the theory, and has, in the general case, a triple origin,
Eq. (39). On the other hand, of the contributions present innamely,

B,, as given by Eq(l.B4) in Appendix B of |, we single out (1) The dependence o of the kinetic coefficients
the leading one consisting in the contribution which in the©;(Q) (Maxwell's characteristic timgsand a part inG;(Q)

limit of classical hydrodynamics leads to the traditional andD;(Q);

Fick’s Law. Using a simplified form of the theory, namely  (2) Parts inG;(Q) andD;(Q) associated with the pres-
neglecting the terms wit andg, and in terms of a particu- €nce of the generating velocity vecto(k,Q) of Eq. (13),

lar model, we derive in AppendiB a Fick’s Law in such which, as already noticed, is a kind of group velocity of the
conditions, showing how the expression for the diffusion co-particle in statek depending on position as the particle
efficient is retrieved in the limit of classic@lery long wave- MOVeS;

lengths and very low frequengyydrodynamics. Hence the (3) The explicit presence of the square modulugah
last term on the right-hand side of E@5) is expressed in  Ed. (43), which, we recall, is associated with the fact of
the form, having introduced a higher-order fliin this casd ,) as a

basic variablgand since the coefficier, is proportional to
G,, it arises from the coupling with the gradientlgfin the

1+i00,04[1+D,]0,iQB,=—Do(Q,w)iQn(Q,w),
(47 equation of motion fot ,,).

with Dy to be evaluated in each particular caste Appendix We recall that we have used for simplicity a parabolic
B). energy-dispersion law, and then item 2 above does not con-
From Egs.(43) to (47) there follows what can be con- tribute in the present case.
sidered as aeneralized Fick’s Lawor, better to say, an It can be noticed that we can write E@3) as
extended Fick’s Laywnamely,
[h(Q,0)=Dy(Q,w)iQN(Q,w), (48) | (O.w)= N(Q,w) 1
where the wave-vector- and frequency-dependent diffusion " 7 04(Qw) £(Q)Q?
coefficient is given by 041(Q,0)Q,(Q,w)
D y = y 49 = ’
n(Q,w) N §1(Q)Q2 (49 W, (54)
01(0)Qs(w)
with where
A(Q,0)=—Dy(Qw)
MQ,0)=N(Q,w)/Q(Q,w), 55
| 0,(Q(L+D,(Q)0,(QK(Q) (Qe)=NQ)01(Qe) 59
01(0)Qs(w)
a1(Q, )= §1(Q)/Q1(Q,w)122(Q, w). (56)
26 ) (50
0y(w) 0 ’

We can see that E¢43) is a truncatedtontinuous frac-
Q12(Qw)=1+1060,(Q), (52 tion expansiorcontaining only a first term, as a result of the
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truncation we have introduced in the set of basic variablesgred to be correct up to a powerr2{ 1) of the wave num-
where we have kept the fluxes only up to the second ordeber Q (or inverse of wavelength). Hence, we do have an
As very briefly described in ApperdiC a complete continu- expression of the type;
ous fraction follows when introducing the complete set of
fluxes; we can see that retaining the fluxes only up to onder
the continuous fraction is truncated in order 1 with the 1,(Q,w)=MQ,w)
last contribution being,—1)Q% Q.

For further simplifying matters we neglect nonlocal ef-
fects arising out of the contributions of the kinetic coeffi- O in direct space
cients[item (1) abovd, i.e., we disregard their dependence
on Q. Hence, the nonlocality is associated only with the
presence of the termQ? in, now, a;(w)Q?=¢,Q% In(r, )=
01(w)Q,(w), which corresponds to iteii8) above, namely,

to have included the second order flux for the characterlza‘;vith the by’s being complicated coefficients resulting in the

tlon_ﬁf] the notpeqwhbr:cum fmacroscopu; statef o;the Sg.Sterg'process of transforming the truncated continuous fraction in
e continuous fraction expansion of Appendix C . o ies expansion.

derived in MaxEnt-NESOM can be put in correspondence Equation(61) resembles a Burnetsuper-Burnett in fagt
with the one of phenomenological mesoscopic thermo'equation4'll‘l3 however valid, as noticed, for the range of
dynamicst®2>26with the coefficients in the former given in alues o,fQ for which |a (w5|Q2<1 for anv =12 0

the present formulation as correlation functions determine(¥_1 Such limitation has Ibeen noticed by Gyarcia:CL).I.i.n and
by the microscopic dynamics of the system. We can see th%to-\./vorkerslz and ascribed equivalently in terms of the ex-
the equivalence of these coefficients corresponds to the rel%’amsion in ,powers of the Knudsen number. To give an ex-

n—-1
1+|§‘,l b|(w)Q2'}, (60)

n-1

1+ IZl b|(w)V2'}N(r,w), (62)

tionship, ample, and without going into details, the condition of Eq.

—Bimm(@a ) e[l (59) can be shown to be verified in the case of a continuum
» fluid in Debye model, where(Q) =s|Q|, when the thermal

+D1+11G1-1010111(Q1Q41) 7, (57)  velocity of the particles is smaller than the sound velosity

where on the left are those given in Ref. 19 and on the righ

E the medium. It is worth noticing that the resulting insta-
are those of Appendix C. l

ty of the solution, may be related to the possible occur-
rence of a normal emission of phonons in a kind of acoustic-
phonons-Cherenkov-type effé¢tSummarizing, we can say
that in writing Burnett-type equations one faces restrictions
IV. BURNETT EQUATIONS AND BOBYLEV'S for their correctness, that is, it is restricted the range of val-
INSTABILITY ues of wave numbeor wavelength for which can be con-
sidered to be valid. This result, together with Bobylev’'s
analysist! suggest conjecturing that the instability may point
to the emergence of complex behavior, a question worth con-
<1, (58 sidering.
Evidently, such conditions depend on the quantities
we can write Eq(54) in the form of the series expansion, and©; which appear in the expression @y ), besides, of
2 course, on the range of frequencies being considered. Such
1n(Qu@) =~ MQ@)[1~a1(@)Q*+aj(w)Q*~-]. quantities, as givengin 1, ha\?e quite genergl cumbersome ex-
(59 . . . )
pressions which have to be evaluated in each particular case
It can be noticed that E¢58) above introduces a cutoff under consideration. We discuss this point in Appendix D
in the value of the wave number, that is, the series expansiowhere a calculus for a particular model system, consisting of
is valid for not too largeQ[ Q%< |a;(w)| 1], i.e., for not too  two ideal classical gases in mutual interaction, is given.
short wavelengths. On the other hand, we must recall that As already noticed in the Introduction, the question of
using a less truncated descriptitsee Appendix ¢ for ex-  stability of Burnett equations has been discussed by
ample, to fix ideas, introducing the third-order flux® Bobylev!! who showed the existence of instabilities for suf-
would provide contributions quartic iQ. Then, to be con- ficiently large Knudsen numbeiwery short wavelengths
sistent we must keep terms that are only quadratiQjn Garcia-Colin and collaboratdtextended such analysis to
implying that in Eq.(59) the series is truncated retaining more general conditions, and Karlihobtained exact solu-
only a;(»)Q?. On the basis of the results in Appendix C it tions to simplified models in terms of which he analyses the
can be noticed that, in the imposed condition of neglectingstability problem in various approximations. Particularly,
the contributions of itemg1) above, an important conse- Karlin conjectures that, for circumventing the noted difficul-
guence is that truncating the description in a given, say, orddies, the expression for the stress tensor and momentum
n of the fluxes(corresponding to a truncation in order 1 equations should present a denominator in the form of a
of the continuous fraction and whereas it is verified that monomial in the Laplacian; a form also suggested earlier by
la(w)|Q?<1 [with & of Eq. (C5) and disregarding its Rosenad® This is precisely the result that we have for the
Q-dependenckleads to a finite series, which can be consid-first flux (which multiplied by the mass of particles is the

Now, whereas it is verified that

£Q?
Q1(0)Qy(w)

lai(w)|Q*=
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momentum densily Equation(54) after transformed to di- where
rect spacgonce it is assumed that the condition of EG8) 1 1 1
is satisfied becomes =4+, 5=-6, (69)
T T
|(F, @) =[1—a,(©) V2] M, o), (62) v
1

after neglecting the dependence on space of coeffieignt alzﬁ; a2=%+[1+DZ](vt2h/362);

However, we recall that this is the result in the truncated 12 2 70

description which contained only the second-order fif
This can be extended by including higher-order fluxes up to
say, orderR (see Appendix ¢ provided the relevant wave-
lengths satisfy the conditions thdf;(w)|Q?<1 for |
=1,2,...R—1, when we can write in direct space the expres-
sion,

az=Got[1+D,](G1+K),

and use was made of the result of Appendix B, namely, that

iQB,(Q.1)=—(v#/30,)iQn(Q.1).

We can see that when it is verified that<<1, the first

term (the triple derivative in timgcan be neglected when

compared with the next terifihe second time derivative in

In(r,w)==D(r,w)Vn(r,w), (63)  time), and the last ternfthe one associated to the Burnett-
with type contribution can also be neglected when compared
with the previous one. Then E(68) becomes a telegraphis-

D(r,0)=A(r,0)/A(r,w), (64 tlike (hyperbolio equation of the form,

ay(w)V? 12 14
A(r,w)=1~- ag(@)V2 : (65) ?W_Bﬁ_vz n(r,t)=0, (71

1_ Vz
1— a3(f") where
1-ag_1(w)V? = —a,r, D=— % (72)
1

and A is the back-transform in space of the one in Exf).
Equation(63) above has the form of a generalized Fick
equation—in a higher-order hydrodynamics, and vibthbe-

This equation corresponds to propagation of waves of the
sound type, with velocity, which has an associated disper-

ing a generalized space- and time-dependent diffusio§ion relation given by

coefficient—whose general expression is given in the form

of the double convolution,

t
In(r,t)=—fd3r’f dt’'D(r—r’;t—t")V'n(r’,t"),
0
(66)
with

D(r—r’;r)=fw doe 78(r—r")L(r,w)A(r, ),
(67)

andr=t—t’.

Yo Y
Na(Q)=— 5 *i\s?Q%~ 7, (73
wherey=s?/D is the reciprocal of the lifetime of the wave.

It can be noticed that for smal, such thas Q< y/2, the
solutions arex . = —DQ? and\ _= — v, corresponding, the
latter to a purely decaying mode, and the former one to dif-
fusive motion, solution of the traditional Fick's equation.

These considerations show us that with decreasing val-
ues ofQ and w, i.e., going over the classical hydrodynamic
regime, the movement can be well described with an ever-
decreasing number of higher-order fluxes. In the present

We stress at this point that a truncation in the descriptiorcase, the presence of the second-order flux leads to a third-

(i.e., keeping a certain restricted number of higher-orde
fluxes, what is mirrored in a truncation of the continuous
fraction, as shown requires a criterion of validity which
restricts the region in wave number and frequency spac
where can be applied, as discussed in Ref. 28.

V. THE EQUATION OF EVOLUTION FOR THE DENSITY

Using the antitransforms to direct space and time of Eqs

(39), (40), and(41), deriving twice in time the equation for
the density, once the one for the current, and using the equ
tion for the second flux, Eq46), after some calculus we find
that

& 1 92 d v2

Wn(r,t) ;Wn(r,t)Jralﬁn(r,t) a,Ven(r,t)

J
—agV2n(r,1)=0, (68)

degree in time equation, together with nonlocal corrections;
when only the first-order flux is a basic variable, it follows
the telegraphistlike equation corresponding to a particular
kind of propagation of sound waves, and finally, the equation
of conservation of the density together with the traditional
Fick’s Law produces diffusive motion.

A corollary is that the inclusion of an ever increasing
number ofr-order fluxes)!"!, describes more and more com-
plicated motions (increasing number of hydrodynamic
modes, corresponding to steeper and steeper variations in
2pace and time.

VI. CONCLUSIONS

The powerful kinetic theory based on a generalized non-
equilibrium grand-canonical ensemble, which provides the
foundations for the construction of a nonclassical thermohy-
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drodynamics, has been applied to the study of the motion ofienominator takes the value 1 in the classical hydrodynamic
a fluid when in the presence of space inhomogeneities.  limit of very large wavelengthéor Q going to zerp and low
The generalized Mori—Heisenberg—Langevin equationgrequencieSw going to zerg, and the usual Fick's Law is
that the theory provides have been used to derive a generakcovered, as already noticed.
ized Fick’s Law, in which the expression for the flux of par- Moreover, as we have shown, the presence of the
ticles contains a denominator in the form of a continuouscontinuous-fraction implies that when it is handled as de-
fraction, whose sucessive terms involve a coupling with allscribed in Eq.(60), it produces contributions in increasing
the higher-order fluxes. But, as shown, when it is performegowers of the reciprocal of the wavelength. This means that
a truncation of the set of basic variables, say retaining fluxethe inclusion of fluxes as basic variables in the nonequilib-
only up to orderR, the continuous fraction also becomes rium thermodynamic space removes the restriction to work
truncated in the contribution of ord&— 1. in the classical hydrodynamic limit, entering the domain of
We have been able to show that the sucessive terms ixtended Irreversible Thermodynami¢sere done within
the continuous fraction provide contributions to the expresthe statistical treatment of Informational-Statistical Thermo-
sion for the current of particles in the form of a series of everdynamics. Therefore, for the case of fluid motions where the
powers of the reciprocal of the wavelength. When rewrittenrelevant wavelengths that characterize it includes short ones,
in direct space, these contributions become powers of thean be better described by requiring an ever-increasing di-
Laplacian acting on the thermodynamic force—thus giving anension in the nonequilibrium thermodynamic spéaedi-
generalized thermodynamic force—producing what can béional higher order fluxes
considered a Burnett-type equation. Thus, the theory here Once the equations are transformed back to direct space
described allows to go beyond the classical hydrodynamiécf- Egs.(62)], it can be noticed that it follows an extended
limit by covering the situations when the motion is not re- version of the equations of the Burnett-type. The coefficients
stricted to long wavelength and low frequencies. Taking indre given as correlations, over the nonequilibrium ensemble,
the general expression we have derived the classical hydr@f mechanical quantities, being then well defined and calcu-
dynamic limit, that is whem —% andw—0, it is recovered lable for ulterior comparison with experiment. However, care
the traditional Fick's Law. must be exercised once, as shown by Bobylev and
It emerges from the study thus presented, that a trunce2thers;*~** these equations may display instabilities when
tion of description implies into obtaining expressions that ar¢hey are applied to the description of motions characterized
correct only up to certain limiting values of wavelength andPY too short wavelengths. As we have shown in this paper, a
frequency(both are related through the dispersion relationdruncation in the description, meaning to keep a reduced
of the corresponding normal modes of motio®n the one number of higher-order fluxes as basic variables, impose a
hand, this implies that the shorter the wavelendthish ac- ~ restriction delimiting a range of values of wave numbiens
companying larger frequenciethat have relevant contribu- Wavelengths for which the equations can be applied; this
tions for the motion of the fluid, a proper description requirest@quires a case by case analyéiis Ref. 28, a particular
to incorporate an ever extended number of fluxes. model of two classic ideal gases with mutual interaction, has
Equation(43) is then an extended form of Fick's Law, been_stu_die)i Apparer_wtly an exact expansion of all Burnett
going beyond the classical hydrodynamic limit by qontnbuhon; free of m;tab_llltles _Would be given _by a con-
incorporating—in the spirit of Extended Irreversible Ther- tinUous f_ract|on expansion |nclud|r_19 all quxes._ This is the_n_a
modynamics and within this Informational-Statistical Ther- contribution to the debated question concerning the validity
modynamic approach—the fluxéthe vectorial one or cur- o_f Bu_rnett and sgper—Burnett expansions. Cert§1|r_1 anaI_yS|s in
rent and higher-order ongas basic variables. An extended kinetic Fheory pointed to the fa_lct that _the coefficients in the
generalization of Fick's Law, involving any numb@& of ~ €XxPpansion could be nonanalytic functlons. of Fhe wave num-
fluxes, is presented in Appendix C as E6@3) et seq ber, as IrQ or Q“'Z.. But the present expansion in fluxes of all
Such generalized Fick's Law has a numerator, the Vecprders, in the_: spirit of mesoscopic thermoh)_/d_rodynamlcs, ap-
torial one of Eq.(45), containing a term which is a multiple P&2TS as quite appropriate, with the coefficients being ana-
divergence of the tensor of rank next to the last one incorpolYtic and providing a rapid convergence. However, it must be
rated in the basic sdthis is |5 in Eq. (42), andIER“] in kept in mind that, according to our results,_ it appears to be a
Appendix {. Additional contributions are present in Eq. general property of th? expansion the eX|st.en.ce of a cutoff
(45), with the second one with coefficiegt, (which is pro- wave ““"_‘ber' determln_ed by the chara}ctenstms of the sys-
portional to the square of the interactions responsible for thé€™M and its nonequilibrium macroscopic state, see for ex-
collisional processesgiving a posterioria perturbative cor- 2MPle, Eq(58). When this property is not verified the con-
rection to the diffusion coefficienfcf. Eq. (72), with a,  VET9ENCE Of the continuous fraction fails.
given in Eqg.(70)], while the last one contains the main con-
tribution to the thermodynamic force, i.e., the one that in theACKNOWI‘EDGMENTS
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APPENDIX A: DOUBLE DIVERGENCE OF THE THIRD-
ORDER FLUX

Using Eq.(9b) we have that

iQ@iQ@lEf](Q,t)?; (Q-u(k,Q))?u(k,Q)no(1).
(A1)

Using the Heimes—Jaynes expangian the homogeneities
[cf. Egs.(16) and(17)], in linear approximation we can ex-
press the quantity(t) in terms of the basic macrovari-
ables, and substitute it in E¢AL1) to obtain

iQeiQeIR(Q,t)=— 71(Q)Ek C(k,Q,t)

X (Q-u(k,Q))2ut?(k,Q)-1,(Q,1),
(A2)
where the factory,(Q) is the proportionality coefficient be-

tween the current,(Q,t) and its associate Lagrange multi-

plier, as obtained from a proper calculation of E24)—I,,
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4 .
_n(Q,t):lQ'ln(Q,t), (Bl)
J ; -1
Eln(Qyt)lean(Qyt)_el In(Q!t)! (BZ)
J 2
71 1n2(Q D =1Q-1n3(Q,1) + PEO, Q)

—03 1n2(Q)1), (B3)

where it has been kept only the diagonal and isotropic part of
the second and third order fluxe8,is the reciprocal of the
quasitemperature); and ©, are minus the characteristic
Maxwell’s times, andvy, is the thermal velocity, given by
mvtzh/2=(3/2)ﬁ*1; and we recall that we have introduced
Ti=—— Gi.

We can see in the right-hand side of these equations a
first contribution associated with the conserved pditer-
gence of the fluxes in the direct spadellowed in Eqs.(B2)
and (B3) by the contributions associated to the collisional
events governed by the fermion—boson interaction in the
model. Transforming Fourier in time we obtain

Iwn(in)leln(Q1w)1 (B4)

(1+i06)1(Q,0)=01iQl 2(Q,w), (B5)

(1+i106,)1 n2(Q, ) =0,iQ-1,3(Q,w) + 3ZN(Q, ).
(B6)

does not depend on the other Lagrange multipliers becau . . . .
the correlation is null for symmetry—and we recall that Eq.sﬁ"e thwd-order flux is not a ba§|c varlaple af‘d needs be
pressed in terms of them; using the linearized form of

(24) is a linearized expansion. Moreover, we used that we arﬁx. ] ion f it foll et i
considering a purely longitudinal regime, i.e., the macrova- Ielms— axni%/expansllon or algera}?es, 't Tollows thﬁla :
riable 1,(Q,t) is parallel to the vector wave numb€&;, and n3(Q, )= (10/38)iQ-1n(Q, ). Finally, rearranging these

quantity C(k,Q,t) is defined in Appendix A of article I, by equations we arrive to the relation

Eg. (1.A13). In(Q ) =D(Q,)iQln(Q,w), (B7)
Using the definition ofu(k,Q) and the parity of here

C(k,Q,t) it follows that the sum irk in Eq. (A2) takes the W

form, D(Q,w)=(1+iwf) H1+iwd,) *i0,

E C(k,Q,t)(Q'U(k,Q))ZU[Z](k,Q) +(1OISB)6162(1+iw01)_1

k X(1+iw,) liw (B8)

— 2

= 72(Q)QI*1+ 7:(QILQQ, (A3) In the limit of classical hydrodynamic$)— 0,w0—0) and in
wherey, and y; are coefficients resulting from the summa- direct space, one recovers the usual Fick’s Law,
tion, whose details we omit. Using EGA4) in Eq. (A2) and
the fact that ,(Q,t) is parallel to the vector wave numb@&r In(r, )=~
we obtain that

A Vn(r,t). (B9)

APPENDIX C: THE CONTINUOUS FRACTION

iQeiQeIP(Q,H=K(Q)iQ:1,(Q1)iQ, (A4)  EXPANSION
where Let us recall that from equations of evolution, it follows

K(Q)= y1(Q)(72(Q) + 73(Q)). (A5)  that

0,(Q)
APPENDIX B: A SIMPLIFIED MODEL AND THE I(Q,w)=~ 0,0, ){(1+D|+1(Q))IQ
CLASSICAL FICK'S LAW
[1+1] cA[-1]

We here briefly describe the case of a fluid of fermions @l (Qe)+ 61 (LI (Qw)]
in interaction with a bath of bosons, specifically the model +BM(Q,w)}, (CY)
used in Ref. 29. In this simplified description, i.e., not in- wh
volving the HOH extension of the main text, the equations of VNere
evolution take the form, 0(Q,w)=1+iwO|(Q). (C2
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Introducing a truncation retaining the higher-order fluxeswhere[cf. Egs.(56) and (44)]
up to an order, safR, after some calculation it follows the
general expression for the current=(1) or generalized
Fick’s Law, in the form,

£(Q)
MQ, wlR) %Qe0)=5 Qv 1(Q (©9
1(Q,w|R)=— C3 rr1(Q )’
with R indicating the order of the truncation introduced, and
where the denominator is the continuous fraction, £(Q)=0,(Q)(1+ D, ,1(Q)0,.1(Q)G/(Q). (C6)
a;(Q,0)Q?
A(Q,w|R)=1+ , C4
(Q (l)l ) n a2(Qyw)Q2 ( )
The numeratoNV(Q, ) stands for a generalized thermo-
ar-2(Q,w)Q” dynamic force taking the cumbersome expression,
1+

1+ag-1(Q,w)Q?

R-3

MQ,0|R)= —( HO ch-1> Dr(iQ)RIRT(Q, )+

i=

R-3 1
I cf 1)2 Dg- - 1Q <|Q) (REZDEERTIQ)

R-3 9 e
+2 [T ¢ |pricog —— Q2o Q)+ - (C7)
—k—-1
|
where According to the results above, we can write the gener-
alized Fick’s Law in the compact form,
r j(1+D]+1)
-1 H —Qa (&)
l
1 ) 1 1(Q.wR)=~CR™3(Q0)MQ,0|R). (C10
:—, .:—k—.
Co 1+a,Q? Ci 1+C{ ;a4 ;Q? €9
We should notice thaDg, 1(Q)=0 andDy(Q)=0, and that Equation (C7) can be written in an alternative way,

for R=2 the products should be taken equal to one and thevhich, for better visualization we write down for the case
third term on the right-hand side of E(C7) is equal to zero. R=3, namely,

MQwlR)== - ——¢- 0, 0, AQMQe)] 5 g 0, 0, 001Q%Qe)]
1 O41+D,] O,[1+D3] O 1+ (S}
tZ [Ql 2 [Qz o 0, 19Q B Q.0)]- & 1[9—1] . [IQB:(Q, w)]+—8“](Q ©)
0;
T, HIN(Q.w), (C1D

where 2;(Q,w)=1+a;(Q,®)Q* and, for simplicity, we spacd being contained in the term with, as shown in Ap-
have taken the tensors as diagonal and isotrépéc, we  pendix B, there appear to be a number of additional contri-
neglect shear contributions and anisotrppy butions which also add nonlocal contributions to the final
We can then see the particular structure for the generakxpression, besides those arising out of the continuous frac-
ized thermodynamic force N. Besides the main tion expansion in the denominator. In the shown cas® of
contribution—the one that recovers Fick's Law in the limit =3 we can see the presence of a triple divergence of the flux
of classical hydrodynamics—namely, proportional to the graof fourth order(which is not a basic variable and then needs
dient of the concentratiodiQn(Q,w) in the reciprocal be expressed in terms of the latter to close the expression
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which here reduces to the form of the first contribution on '

the right-hand side of this E4C11). Besides, we can see the 1401 1
gradient of the double divergence of the second-order flux
(i.e., contributions of the fluxes of even orglewhich ap-
pears in the second contribution. Moreover, it can be noticed
the presence of the terms of typ#Q, »)—of a very com- N
plicated structure—in this case all the possible three of them,& 5,
involved with the gradient of the divergence of the vector £
BH(Q,w), and the vectoB'1(Q,w). We shall return to this ~ © 60
guestion of generalized thermodynamic forces in a future
paper. 40

12.0 - B

10.0

2.0

APPENDIX D: ON THE ELEMENTS OF THE
CONTINUOUS-FRACTION EXPANSION 00, - o5 =

We recall that the convergence of the continuous-
fraction expansion is ensured by the Condition' FIG. 1. The ratios of EqgD16) and(D17) as a function ofkx=m/M: full

) ) line for r; and dashed line for.
|ar(w)|Q :|§r|Q /|Qr(w)9r+1(w)|

=10,0,,1(1+ D)

X G| Q¥|Q(0)Q, 1(0)| <1, (D1) TR, X
- e2 - 2M 3 fﬂ (1+X)3/21 (D8)

where
_ 202 2002 |12 whereng, is the density of the particles with mab4 B~ *
[0r(@)Qra(0)| =1+ 00D 1+ 001 )T (B2 =kgT, with T being the common temperature of the system
anda,(w) is given in Eq.(C5). The limit of convergence is and reservoirx=m/M is the relation of the masses of the
the case of alla,|Q?=1, when the continuous-fraction is particles in system and reservoir, and
equal to the “golden numbers=1.618.... Let us analyze

L . . 1
the relation in modulus of two successiag ), i.e., F= VE 9l V(@) ]2, (D9)
ar+1(w)‘_ gr-%—l‘ 1+iw6, ‘ D3 K
a(w) |_ 3 | 1+iw9r+2\’ (D3) with V(q) being the Fourier transform of the interaction po-
. .. tential. Hence, using Eq$D3) and(D4) we obtain the rela-
and after using Eq(C6), where we neglect the contribution tion 9 EqeD3) (b4
D in comparison with 1, we have that '
0, 1
ar+1(w)’:‘er+2 gr+1‘ 1+w26|? vz (D4) e—2=§(1+X), (D10)
a(w) | | 6, G ||1+e?d,, '

and we recall thatk>1 (Brownian systern and then©,

In the limit of low frequencies 6 <1) Eq.(D4) becomes >0, an inequality that also stands for the case of Max-

la; (@) a (0)|=]0,,2G,:1/0,G], (D5)  wells’ characteristic times for the quantum description of car-

and at high frequencies we do have that riers and polar phonons in the direct-gap polar semiconduc-
tor GaAs®!

|lar1()a(0)|=]G 1 /G; (D6) On the other hand, coefficiengsare given by°
hence the relation of the coefficients along the continuous- Nk B 2+xX
fraction is determined by the quantiti€sand g, which de- |Gol = 36 T2 (D11)
pend on each particular system under consideration.

For illustration we take the case of an ideal gas of par- nR_ B2
ticles of massm, which is in interaction, via a central force Ga| = 3%m% (D12

potential, with an ideal gas of particles of madsacting as
a reservoir with temperatur€, and a classical approach is where

used. We taken>M, and then we are in the presence of a 1

typical Brownian motion problem. It is considered a trunca-  Gg=_>' — V)3, (D13

tion with R=2, i.e., including the density and its first and V< lal

second fluxes. It is obtained for Maxwell's characteristicand then

times assogiated to the first and second fluxes the ,

expressions Gif _2(1+x) | (D14
Go| X(2+Xx)

3/2
O11= \/ o FEI (D7) .
1 2M 3 (1+x)¥? According to Eq.(D4), we have now that
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