
CASTLE CURVES AND CODES

XVIII LATIN-AMERICAN ALGEBRA COLLOQUIUM
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Throughout, by a curve we mean a ‘projective, non-singular geometrically irreducible

algebraic curve ’.

Set up.

• Let Fℓ be the finite field of order ℓ. Let X be a curve of genus g defined over Fℓ;

• Let G be a Fℓ-divisor on X and P1, . . . , Pn be pairwise distints Fℓ-rational points

in X such that Pi 6∈ Supp(G) for all i. Thus

ev(f) := (f(P1), . . . , (fn)) ∈ Fℓ
n

for all f in the Riemann-Roch space of G, namely

L(G) = {Fℓ-rational functions f 6= 0 : G + div(f) � 0} ∪ {0} .

Recall the ‘Riemann-Roch theorem’: let g and K be, respectively, the genus and

a canonical divisor of X ; then

ℓ(G) = deg(G) + 1 − g + ℓ(K − G) ,

where ℓ(·) denotes the Fℓ-dimension of L(·).

Definition 1. The Fℓ-vector space

E = EX ,D,G := {ev(f) : f ∈ L(G)} ⊆ Fℓ
n

is the Algebraic Geometry Goppa code (AGG-code for short) associated to the triple

(X , G, D), where we set D := P1 + . . . + Pn.

A very basic problem in Coding Theory is regarding the parameteres: lenght, dimen-

sion and minimun distance. For AGG-codes, the lenght equals n. Let k and d denote,

respectively, its (Fℓ) dimension and minimum distance d. Here

d := min{w(ev(f)) : ev(f) 6= (0, . . . , 0) where w(e(f)) = #{i : f(Pi) 6= 0} .

By the very definiton of E, it follwos that:

• k = ℓ(G) − a, where a = ℓ(G − D) is the “abundance of the code”;

• d ≥ dGOPPA := n − deg(G).

Computing k and d is often a hard problem. Let us consider the special case:

(1) 2g − 2 < deg(G) < n .

Thus a = 0, ℓ(K − G) = 0 and Riemann-Roch computes k: we have k = deg(G) + 1 − g.

However, the invariant g is often difficult to compute. If deg(G) ≥ n, we can improve the

upper bound on d (Munuera). For r ≥ 1 an integer, set (Kummar, Stichtenoth, Yang)

γr = γr(X , r) := min{deg(A) : A is a Fℓ-divisor with ℓ(A) ≥ r} .

Definition 2. (γr)r≥1 is the Fℓ-gonality sequence of X ; γ2 is the Fℓ-gonality.
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Thus if deg(G) ≥ n, then

d ≥ n − deg(G) + γa+1 .

One again, both the genus and the gonality sequence of curves, are often very hard to

compute.

Other lower bounds concerning the minimum distance have been development by several

authors; it seems that the more interesting is the so called order or Feng-Rao bound; such

a number is associate to any (numerical) semigroup.

In the case of an ‘one-point’ AGG-codes E (i.e., when G is the multiple of a single

Fℓ-rational point), the order bound dORD(E) can be applied only to lower bound the

minimum distance d⊥ of the dual of E (Feng, Rao, Høholdt, van Lint, Pellikaan). We

stress that, in general, d⊥ does not give information on d.

Let Em denotes the AGG-code associated to (X , D, Gm), Gm = mQ, and km its dimension.

Let Cm = E⊥
m. Em. To deal with L(Gi), we are led to consider the Weierstrass semigroup

at Q

(2) S(Q) = {0 = ρ1(Q) < ρ2(Q) < . . .} = {−vQ(f) : f ∈ ∪∞
r L(rQ)} ,

where vQ is the evaluation at Q. As we mention above, under the restriction (1) we only

obtain km = m − g + 1. Hovewer from (2) we compute km (for all m) as follows:

(3) If ρι(Q) ≤ m < ρι+1(Q) , then km = ι .

Now let Cm is associated to (X , D, D + K −Gm) with K an appropiate canonical divisor

on X . We compute dORD(Em) by taking into consideration the Weierstrass semigroup

S(Q). It holds that

(4) d⊥(Em) ≥ dORD(Em) ≥ dGOPPA(Em ⊥) = .

A very interesting fact is that the computation of the order bound does no depend on

the divisor D neither on the selection of the basis of L(Em). Thus we consider this

computation on an arbitrary semigroup H . Let

H = {0 = ρ1 < ρ2 < . . .} .

For ℓ ≥ 1 an integer, consider the sets

A(ℓ) = A(ρℓ) := {(s, t) ∈ N
2 : ρs + ρt = ρℓ}

and their cardinals

νℓ = #A(ℓ) .

Then the order bound for H at m ∈ N is defined by

dORD,H(m) := min{νℓ : ℓ ≥ m} ;

in the case of codes, dORD(Em) is defined throught S(Q). In general it is not easy to com-

pute orders of semigroups. Campillo, Farrán, Munuera, Bras-Amorós, Oneto, Tamone,
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Oliveira, Villanueva, ... worked out several types of semigroups: in fact in many cases

they obtained a closed formula for the order.

However, in my opinion a harder problem arises (which is open in characteristic zero): It

is an arbitrary semigroup realized as a Weierstrass semigroup? Shall we apply the usual

techniques in characteristic zero to positive characteristic?

It is worth to mention that, e.g., Bras-Amorós, Oneto, Tamone, ... compute the order

bound of semigroups generated by less than 5 elements or semigroups ordinaries; Munuera,

Oliveira and Villanueva examples have small weight: thus by reduction module p all of

them are Weiertrass.

Remark 1. Carvalho, Munuera, Silva,... obtained a formula of ‘order type’ (as in the case

of one variable) for codes with #Supp(G) > 1.

We conclude the following:

• If (1) holds, computing the parameters of an AGG-code would be very restricted

by the geometry of the curve;

• If we even consider one-point AGG-codes we have the restiction of computing

Weierstrass semigroups or the combinatorial computation of the orders.

In this talk we consider curves, a particular solution to the main problem

formulated above, that combine the properties of having a reasonable handling

and giving one-point AGG-codes with exellent parameters; some time they are

record in the known tables.

From now we only consider one-point AGG-codes, says E = EX ,D,G with

(5) D = P1 + . . . + Pn, , and G = mQ .

Let n, k, d be the parameters of E. By a pointed curve (X , Q) defined over Fℓ, we mean

a curve X over Fℓ together with a Fℓ-rational point Q ∈ X . We let (X : Y : Z) be the

projectives coordenates of P2 and x = X/Z and y = Y/Z the affine coordentes of A2. We

let N := #X (Fℓ) and thus n + 1 ≤ N .

Example 1. (Hermitian curve over Fq2), ℓ = q2. It is well known that N = q3 + 1. Let

Q the unique point in Z = 0. The usual “Hermitian ” codes are defined on this curve

with n = q3. Let H : yq + y = xq+1 be the affine equation of the curve. We notice the

following properties:

(I) H(Q) = 〈q, q + 1〉 and hence (2g − 2)Q is canonical;

(II) The morphism x : H → P1 is unramified of order q except at Q;

(III) x−1(α) ⊆ X (Fq2) for all ℓ ∈ Fq2 ;

(IV) #x−1(α) = q for all ℓ ∈ Fq2.
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Let x−1(α) = Rα
1 + . . . + Rα

q . Then

D = div(xq − x) ∼ nQ .

with n = N−1 = qs. For the one-point AGG-code Em over H, D as above and Gm = mQ

we obtain:

(1) E⊥
m is isometric to En+2g−2−mQ;

(2) We already noticed that km follows from H(Q); observe that a = ℓ(mQ − D) =

ℓ(m − n)Q.

(3) (the most important matter) The distance dm ≥ n − m + γa+1 and moreover the

gonality sequence equals H(Q).

Example 2. (ℓ = q2) Let X be the curve over Fq2 defined by yq + y = x(q+1)/2. Let Q

be the unique commom pole of x and y (Notice that the curve is Fq2-maximal of genus

(q − 1)2/2.) Then:

(1) Property (I) above is true as H(Q) = 〈(q + 1)/2, q, q + 1〉 is symmetric since x is

unramified over any α ∈ P1(Fℓ), α 6= ∞;

(2) Property (II) reads: the morphism y : X → P1, of order (q + 1)/2, is unramified

except at the points over the roots of Y q + Y = 0;

(3) Property (III) becomes: y−1(α) ⊆ X (Fq2) for all α ∈ Fq2 such that αq + α = 0;

(4) Property (IV) also holds for α ∈ Fq2 such that αq + α = 0.

Here we take D as follows. For each αi ∈ Fq2 with αq
i + αi 6= 0, write

div(y − αi) =

(q+1)/2
∑

j=1

P i
j −

q + 1

2
Q

so that

D :=

N−q
∑

i=1

(q+1)/2
∑

j=1

P i
j ∼ (

q + 1

2
(N − q)Q ,

where N − q = (q2 + q2g)− q = (q3 − q)(q + 1)/4. Thus we obtain a code on X satisfying

properties of type (I)-(IV), (1)-(3) in the previous example.

Remark 2. One also can consider less points than n in the above examples.

Definition 3. A pointed curve (X , Q) over Fℓ is called weak Castle if

(1) the Weierstrass semigroup H(Q) at Q is symmetric;

(2) there exists a morphism φ : X → P1 := F̄ℓ ∪ {∞} with div∞(φ) = hQ, and

elements α1, . . . , αa ∈ Fℓ such that for all i = 1, . . . , a, we have φ−1(αi) ⊆ X (Fℓ)

and #φ−1(αi) = h.
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In the above situation note that h ∈ H(Q). Furthermore, since φ is unramified over

each αi, if we write φ−1(αi) = {P i
1, . . . , P

i
h}, then div(φ − αi) =

∑h
j=1 P i

j − hQ. We set

z :=
∏a

i=1(φ − αi) and

D = DX ,φ :=

a
∑

i=1

h
∑

j=1

P i
j .

Hence D is an effective rational divisor of degree ah with D ∼ ahQ since div(z) = D−ahQ.

Now let us show an interesting family of weak Castle curves that can be defined in simple

terms. This family is closely related to a bound on the number of rational points of X .

Theorem 1. (Lewittes, Geil, Matsumoto) Let X be a curve over Fℓ and let Q be a rational

point on X . Let H = H(Q) be the Weierstrass semigroup at Q and ρ2 = ρ2(Q) the first

positive element of H. Then

#X (Fℓ) − 1 ≤ #(H \ (ℓH∗ + H)) ≤ ℓρ2(Q) .

The inequality #X (Fℓ) − 1 ≤ ℓρ2 above was already known by Lewittes. Having bounds

on X (Fℓ) - which in ganeral is a challenging matter - it is related to the relative parameters

R and δ of an AGG-code, CX ,D,G, with deg(G) < 2g − 2: Riemann-Roch gives

R + δ ≥ 1 − (g − 1)/n ;

thus would of interest that #X (Fℓ) >> g.

The family of weak Castle curves we refer is the following.

Definition 4. A pointed curve (X , Q) over Fℓ is called Castle if H(Q) is symmetric and

equality holds in the Lewittes-Geil-Matsumoto bound; i.e, #X (Fℓ) = ℓρ2(Q) + 1, where

ρ2(Q) is the first positive element of H(Q).

They are indeed weak Castle as the following Proposition shows.

Proposition 1. Every Castle curve (X , Q) is weak Castle.

Proof. Takes φ such that div∞(φ) = ρ2Q. �

Examples of Castle and weak Castle curves.

Example 3. Rational curves are clearly Castle. Then Reed-Solomon codes are Castle

codes.

Example 4. Let X be a hyperelliptic curve of genus g over Fq having a hyperelliptic

rational point Q. A plane model of X is given by the equation y2 + r(x)y = p(x), where

p(x) and r(x) are polynomials of degrees deg p(x) = 2g + 1 and deg r(x) ≤ g. Then

the morphism φ = x : X → P1 makes (X , Q) a weak Castle curve. DX ,φ is the sum of

all non-hyperelliptic rational points on X . Thus, it is a Castle curve iff Q is the only

hyperelliptic rational point on X and a = q.
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Example 5. (Norm-Trace curves)It is defined over Fq = Fℓr by the affine equation

y(ℓr−1)/(ℓ−1) = xℓr−1

+ xℓr−2

+ . . . + x

or N(y) = T (x), where N and T are respectively the norm and trace from Fq to Fℓ. This

curve has ℓ2r−1 +1 rational points and the Weierstrass semigroup at the unique pole Q of

y is H(Q) = 〈ℓr−1, (ℓr − 1)/(ℓ − 1)〉. Then it is Castle. Codes from this curve have been

studied by Geil.

In subsequent examples we shall introduce new types of norm-trace curves.

Example 6. (Hermitian and Generalized Hermitian curves) Let q = ℓr with r ≥ 2 and

consider the curve X over Fq defined by the affine equation

yℓr−1

+ . . . + yℓ + y = x1+ℓ + xℓ+ℓ2 + . . . + xℓr−2+ℓr−1

or equivalently, by sr,1(y, yℓ, . . . , yℓr−1

) = sr,2(x, xℓ, . . . , xℓr−1

), where sr,1 and sr,2 are re-

spectively the first and second symmetric polynomials in r variables. This curve was

introduced by Garcia and Stichtenoth. It has genus g = (ℓr−1(ℓr−1 − 1)/2 and ℓ2r−1 + 1

rational points. Let Q be the only pole of x. Then H(Q) = 〈ℓr−1, ℓr−1 +ℓr−2, ℓr +1〉. This

semigroup is telescopic (loc. cit.) and hence symmetric (Kirfel, Pellikaan). Therefore X

is a Castle curve. Codes arising from these curves have been studied by Bulygin in the

binary case and by Munuera, Sepúlveda, ... in the general case. Note that when r = 2,

then X is the Hermitian curve.

Example 7. (Another generalization of Hermitian curves) Let q be a square, q = ℓ2r,

and m ≥ 2 be an integer such that m|(ℓr + 1). Let X be the non-singular model over Fq

of the plane curve given by the equation

ym = p(x) := x + xℓ + . . . + xℓ2r−1

.

Since gcd(m, ℓ) = 1, there is just one point Q over x = ∞. For r = 1 and m = ℓ + 1 we

obtain again the Hermitian curve. (The case r = 1 and other values of m were treated by

Yang, Kummar and Stichtenoth) . Let us show some properties of X :

(1) The genus of X is g = (m − 1)(ℓ2r−1 − 1)/2. This follows directly from the

Riemann-Hurwitz genus formula.

(2) The functions x and y have order m and ℓ2r−1, respectively, at Q. Then H(Q) ⊇

〈m, ℓ2r−1〉. Taking into account the genus of X we conclude the equality. Thus

H(Q) is generated by two elements and hence it is symmetric.

(3) The pointed curve (X , Q) is weak Castle. Furthermore deg(DX ,φ) = m(ℓ−1)ℓ2r−1.

To see this, let φ = x, h = m and a = ℓ2r − ℓ2r−1. For α ∈ Fq with p(α) 6= 0,

we shall show that φ is unramified over α and that φ−1(α) ⊆ X (Fq). The first

condition is clear as gcd(m, ℓ) = 1. For the later we have to prove that ym = p(α)

has m solutions in Fq. Since p(α) is the trace of α from Fq to Fℓ, we conclude that

ym = p(α) = p(α)ℓm .
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From the hypothesis m|(ℓr + 1) we have yℓr+1 = yℓ(ℓr+1). Then by induction

yℓr+1 = yℓr(ℓr+1) and the result follows.

(4) Note that we can also prove the above result by considering φ = y and h = ℓ2r−1.

The weak Castle property is equivalent to study Fq-rational roots of βm = p(x) for

a fixed β ∈ F∗
q . We have that x ∈ Fq iff p(x) = p(xℓ) iff β(ℓ−1)m = 1. A subgroup of

F∗
q order (ℓ− 1)m exists as m | (ℓr +1). Thus by taking a = (ℓ− 1)m, the pointed

curve is weak Castle. Notice that the degrees of the corresponding divisors D in

the definition, associated to the morphisms x and y, are the same.

(5) A simple computation shows that the number of rational points of X is #X (Fq) =

1 + ℓ2r−1 + m(ℓ − 1)ℓ2r−1. In particular, X is maximal iff r = 1.

(6) The curve (X , Q) is Castle when r = 1 and m = ℓ + 1 (the Hermitian case).

Example 8. (Plane non-Frobenius classical curves) Now we consider certain plane curves

arising in the context of curves with infinitely many non-singular points whose Frobenius

image lies on the respective tangent lines. Let p(X) ∈ Fq[X] and let X be the curve

defined by

ym = p(x) such that yq − y =
dy

dx
(xq − x) (∗) .

Furthermore we shall assume that the polynomial Y m −p(X) is absolute irreducible (this

is true for example if p(x) has at least a root whose multiplicity is coprime with m), where

ℓ is the characteristic of q. This curve was studied by Garcia when ℓ > 2. The following

properties below can be proved as in such a paper.

(1) deg p(X) = m.

(2) There are exactly m Fq-rational points over x = α for all α ∈ Fq with p(α) 6= 0.

In addition, there are exactly m Fq-rational points over x = ∞. Thus #X (Fq) ≥

m + m(q − #{α ∈ Fq : p(α) = 0}).

(3) If p(X) is a separable polynomial (i.e.,the plane curve of equation ym = p(x) is

non-singular), then it has all its roots in Fq and hence #X (Fq) = (q − m + 2)m.

(4) Assume that p(X) is separable and let α be a root. Let Q ∈ X be the unique

point over x = α and v the valuation at Q. Then H(Q) = 〈m − 1, m〉. In fact,

div(1/(x−α)) = div∞(x)−mQ. Since v(y) = 1 we have div(y) = Q+E−div∞(x)

for some E ≥ 0 with Q 6∈ Supp(E), and hence m− 1 ∈ H(Q) by using y/(x− α).

Since X is non-singular, its genus is (m − 1)(m − 2)/2 and the assertion follows.

(5) If p(X) is separable and α, Q, are as in the previous item, then (X , Q) is weak

Castle with deg(DX ,φ) = (q + 1 − m)m. In order to see this, take φ = 1/(x − α),

h = m and a = q + 1 − m. The proof follows directly from the above properties.

We can give concrete examples of these curves.

(a) The Fermat curve ym = axm + b over Fq with q = ℓr, satisfies the property (∗) iff

m = (ℓr − 1)/(ℓi − 1) with i | r (Garcia-Voloch).
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(b) (A new Norm-Trace curve). Let X be the plane curve

yℓ2+ℓ+1 = p(x) = (xℓ+1 + 1)ℓx + (xℓ + x)ℓ = xℓ2+ℓ+1 + xℓ2 + xℓ + x

over Fℓ3 . This curve is non-singular and a direct computation shows that property

(∗) holds true (Garcia). In particular, (X , Q) is weak Castle, where Q = (0 : 0 : 1)

and φ = 1/x. It has #X (Fq) = (ℓ2 + ℓ + 1)(ℓ + 1)(ℓ − 1)2 = ℓ5 + 1 − ℓ2(ℓ + 1)

rational points.

More generally, let q = ℓr (r ≥ 2) and let NFq|Fℓ
and TFq|Fℓ

be, respectively, the norm and

trace maps from Fq to Fℓ. We can consider the plane curve X given by

NFq|Fℓ
(y) = NFq|Fℓ

(x) + TFq|Fℓ
(x)

= (NF
ℓr−1 |Fℓ

(x) + 1)ℓx + (TF
ℓr−1 |Fℓ

(x))ℓ .

In the same way X satisfies property (∗) above and it is a weak Castle curve with

#X (Fq) = ℓ2r−1 + 1 −
ℓ2(ℓr−2 − 1)(ℓr−1 − 1)

(ℓ − 1)2
.

As a matter of fact, the curves above over Fq, q = ℓr are a particular case of curves of type

NFq|Fℓ
(y) = p(x), where p(x) satisfies the property p(a) ∈ Fℓ for any a ∈ Fq. Here it is

not necessary to verify condition (∗) in order to obtain week Castle curves. For example

we may take p(x) = xℓ2+ℓ + xℓ2+1 + xℓ+1 + α with α ∈ Fℓ where q = ℓ3.

Example 9. (Deligne-Lusztig curves) There are three outstanding types of curves of

positive genus over Fq, whose number of rational points attains the maximum number

of rational points that curves of their genus over Fq can have. The case r = 2 gives the

Hermitian curve and in fact this curve attains the Hasse-Weil upper bound. The other

two types are Suzuki and Ree curves. All of them are Castle.

(a) The Suzuki curve S is characterized as being the unique curve over Fq, q = 2q0,

q0 = 2r > 2, of genus g = q0(q − 1) having q2 + 1 Fq-rational points (Furhmann, ...). A

plane model is given by yq − y = xq0(xq − x). Thus, there is just one point Q over x = ∞

which is Fq-rational, and H(Q) = 〈q, q + q0, q + 2q0, q + 2q0 + 1〉 (Hansen, Sticthenoth,

...). This semigroup is telescopic and hence symmetric.

(b) The Ree curve R is defined over Fq with q = 3q0, q0 = 3r > 3. It is birational to the

space curve yq − y = xq0(xq −x), zq − z = x2q0(xq −x). R is characterized by means of its

number of rational points q3 + 1, its genus g = q0(q − 1)(q + q0 + 1)/3, and the fact that

its group of automorphism equals the Ree group (Hansen, Pederson). There is just one

point Q over x = ∞ which is Fq-rational. The multiplicity of the Weierstrass semigroup

at Q is known to be h = q2 (loc. cit.). In order to show that R is Castle we have to

show that H(Q) is symmetric. This fact is already known (Munuera, Sepúlveda, ...). For

the sake of completeness we sketch the proof. We use rudiments of Jacobians (Tate) and

Stöhr-Voloch theory concerning bounds on the number of rational points of curves via the
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Frobenius morphism. The starting point is our knowledge of the enumerator of the Zeta

function of R, namely

p(t) = (1 + qt2)A(1 + 3q0t + qt2)B

whit A = q0(q − 1)(q + 3q0 + 2)/2 and B = q0(q
2 − 1) (Hansen, ...). Since t2gp(t−1) is the

characteristic polynomial of the Frobenius Φ̃ morphism of the Jacobian of X , we obtain

the following linear equivalence on X :

Φ4(P ) + 3q0Φ
3(P ) + 2qΦ2(P ) + 3q0φ(P ) + q2P ∼ mQ ,

where Φ : X → X is the Frobenius morphism on X , m := q2 + 3q0q + 2q + 3q0 + 1, P

an arbitrary point of X and Q an arbitrary Fq-rational point. In particular, m ∈ H(Q).

Let x and y be the rational functions such that div∞(x) = q2Q and div∞(y) = m. We

consider the morphism π = (1 : x : y) : X → P
2(F̄). After some computations via

invariants defined in Stöhr-Voloch theory, we can show that for a generic P ∈ X , Φ(P )

belongs to the osculating line at P . This means that Φ(P ) satisfies a linear equation

yq − y =
dy

dx
(xq − x) .

If v and t are respectively the valuation and a local parameter at Q, it follows that

−qm = v(
dy

dt
) − v(

dx

dt
) − q3 = −m − 1 − v(

dx

dt
) − q3

and hence v(dx
dt

) = 2g − 2. This shows that H(Q) is symmetric.

Examples of AGG-codes arising from weak Castle curves have nice properties concerning

duality and the dimension, one works as in Examples 1, 2. Concerning the minimum

distance we recall that

d ≥ n − deg(G) + γa+1 , being a = ℓ(G − D) the abundance ;

For these curves, we obtain the following properties of the gonality sequence GS(X ) =

(γi)i≥1.

Lemma 1. (Munuera, Sepúlveda, ...) Notation as above. Let (X , Q) be a Castle curve

over Fq and H(Q) = {0 = h1, 0 < h2, h3, . . .} be the Weierstrass semigroup at Q. If

h2 ≤ q + 1, then

(1) γ2 = h2;

(2) Let γ = γ2. Then γi = hi for i ≥ g − γ + 2; i,e,

γi = hi =

{

i + g − 2 if g − γ + 2 ≤ i ≤ g,

i + g − 1 if i > g.

Proof. (Hint) Use the simmetry of H(Q) and the symmetry of GS(X ) (Carvalho): t ∈

GS(X ) iff 2g − 1 − t 6∈ GS(X )). �

Proposition 2. Let (X , Q) be a weak Castle curve. Let dm be the minimum distance of

Cm = C(X , D, mQ).
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(1) If m = th, t = 1, . . . , a − 1, then Cm reaches equality in the Goppa bound, i.e.,

dm = n − m.

(2) For m < n, then Cm reaches equality in the Goppa bound if and only if Cn−m does;

(3) If h = h2 then for n−h2 ≤ m ≤ n, we have h2 ≥ dm ≥ γ2. In particular, if (X , Q)

is Castle and h2 ≤ q + 1, then dm = h2.

An extension of the minimum distance is given by the generalized Hamming weights. Let

us remember that, for a code C of dimension k, we define the r-th generalized Hamming

weight as

dr = dr(C) =: min{supp(L) : L is a r-dimensional vector subspace of C}

r = 1, . . . , k, where supp(L) = {i : there is x ∈ L with xi 6= 0}. In the next Proposition,

we calculate bounds of the generalized Hamming weights for weak Castle codes. We

denote the r-th generalized Hamming weight of the Cm = C(X , D, mQ) code by dr
m.

Proposition 3. Let (X , Q) be a weak Castle curve. Let Cm = C(X , D, mQ) be a code of

dimension km and abundance α = αm. Then for every r, 1 ≤ r ≤ km:

(1) n − m + γr+α ≤ dr
m ≤ dm−hr+α

(2) If m−hr+α = th or n−m+hr+α = th, t = 1, . . . , a− 1, then dr
m ≤ n−m+hr+α.

Finally we consider

The order bound. Let (X , Q) be a weak Castle curve and let H(Q) = {0 = h1, h2, . . .}

be the Weierstrass semigroup at Q. For ℓ = 1, 2, . . . , recall the sets

A(ℓ) := {hs ∈ H(Q) : hl+1 − hs ∈ H(Q)} ,

The ℓ-th order bound of H(Q) is defined as

dORD(ℓ) := min{#A(r) : r ≥ ℓ} .

This bound can be extended to all generalized Hamming weights as follows (Heijnen,

Pellikaan, Munuera, Farrán). For ℓ1 < . . . < ℓr, define the set A(ℓ1, . . . , ℓr) = A(ℓ1) ∪

. . .∪A(ℓr) . Let ℓ be a positive integer. The number dr
ORD(ℓ) = min{#A(ℓ1, . . . , ℓr) : ℓ ≤

ℓ1 < . . . < ℓr} is called the ℓ-th order bound on the r-th generalized weight of H(Q).

Proposition 4. d(C(X , D, mQ)) ≥ dORD(ι(n + 2g − 2 − m)). More generally, for all r,

1 ≤ r ≤ km, we have dr
m(C(X , D, mQ)) ≥ dr

ORD(ι(n + 2g − 2 − m)).

Example 10. Let us consider the new Norm-Trace curve introduced above with ℓ = 3

and r = 2; i.e, the curve is given by yℓ+1 = xℓ+1 + xℓ + x. It has 28 F28-rational points

and thus it is the Hermitian. Here with φ = 1/x and taking 6 points in F9 we find a code

of lenght 24. The dimension can be stimated by the Weierstrass semigroup which equals

〈3, 4〉 (thus 24 = ρ22) and hence k = 22. The minimum distances can be estimated via

the order bound. According to the Grassl tables, we obtain [24, k, d] codes with the best

(already) known parameters for all values of k, 1 ≤ k ≤ 24, except k = 4, 18, 19, 20.


