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In looking for quaternionic violations of quantum mechanics, we discuss the delay
time for pure quaternionic potentials. Our study shows the energy region which
amplifies the difference between quaternionic and complex quantum mechanics.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3684747]

I. INTRODUCTION

Many papers have introduced the general framework of quaternionic quantum mechanics.1–10

The book published in 1995 under the title Quaternionic quantum mechanics and quantum fields
by Adler11 is, today, recognized to be indispensable to a deeper understanding of the subject.
It seems, however, that a more practical side has been somewhat neglected. In other words, the
investigation of quantitative and qualitative differences between complex and quaternionic quantum
mechanics and the consequent experimental proposals seem to be in the early stage. It was in the
hope of filling this gap that the authors have recently reviewed scattering problems in quaternionic
quantum mechanics.12–14 The more elementary problems, such as square-well potentials, have been
carefully re-considered with the new tendency to arrive at more practical results. The main purpose
was to emphasize quaternionic violations of complex quantum mechanics which could be tested
in laboratory experiments. This should make the subject more useful to and accessible over the
worldwide community of scientists interested in looking for the existence of quaternionic potentials.

Contrary to what is predicted by classical mechanics, in complex quantum mechanics a particle
with energy E0 is not instantaneously reflected by a potential step of height V0 greater than the
incoming energy E0.15, 16 Let us briefly recall the standard introduction to delay times. The center
of the incident wave packet arrives at the potential discontinuity, x = 0, at time t = 0. During a
certain interval of time around t = 0, the wave packet is localized in the region where the potential
discontinuity is found. For sufficiently large times the incident wave packet disappears and the
reflected wave packet propagates towards the left at a speed

√
2 E0/m. By using the stationary phase

condition [
d

dE

(
2 θc −

√
2 m E

�
xr − E t

�

) ]
0

= 0,

where 2 θ c is the phase of the reflection coefficient,

Rc =
√

E − i
√

V0 − E√
E + i

√
V0 − E

= exp[ 2 i θc], (1)

we can calculate the position of the center of the reflected wave packet,√
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This clearly shows a delay time in reflection given by

2 �

[
dθc

dE

]
0

= �√
E0(V0 − E0)

. (2)

This delay time is due to the fact that, for times close to zero, the probability of presence of the
particle in the classically forbidden region is not zero. The study of the delay time in quaternionic
quantum mechanics will be the subject matter of this paper.

II. ONE-DIMENSIONAL POTENTIALS AND ONE-DIMENSIONAL MOTION

In order to understand the essential features of quaternionic quantum mechanics, we focus our
attention on quaternionic one-dimensional problems. They may be studied deriving the equation of
motion from the three-dimensional quaternionic Schrödinger equation,11

� ∂t�(r, t) =
[

i
�

2

2m
∇2 − i V1(r, t) − j V2(r, t) − k V3(r, t)

]
�(r, t). (3)

If the potential only depends on one of the three spatial coordinates, say x, and the motion is
one-dimensional, py = pz = 0, the previous equation becomes

i
�

2

2m
ϕ′′(x) = [

i V1(x) + j Vq (x) e− i ρ(x)
]

ϕ(x) − E ϕ(x) i, (4)

where

Vq (x) =
√

V
2

2 (x) + V
2

3 (x) and tan ρ(x) = V3(x) / V2(x).

Let us now analyze the stationary states for the case of a quaternionic step potential defined by

h · V (x) := { 0 for x < 0 and h · V for x > 0 } , (5)

where h = (i, j, k). To shorten notation, it is convenient to introduce the following adimensional
quantities

√
2m V0

�
x = ξ,

Vq

V0
= νq , and

E

V0
= ε,

where V0 =
√

V
2

1 + V 2

q . In terms of this new adimensional quantities, the differential equation for
the wave function in the free potential region ξ < 0 becomes

i ϕ′′
I (ξ ) = −ε ϕI(ξ ) i. (6)

For the case of incident particles coming from the left, the free potential plane wave solution is the
region ξ < 0 is 4, 13

ϕI(ξ ) = exp[ i
√

ε ξ ] + R exp[ − i
√

ε ξ ] + j R̃ exp[
√

ε ξ ], (7)

where R and R̃ are complex coefficients to be determined by the matching conditions. The wave
function in the potential region, ξ > 0, satisfies the following differential equation

i ϕ′′
II(ξ ) =

(
i
√

1 − ν2
q + j νq e−iρ

)
ϕII(ξ ) − ε ϕII(ξ ) i, (8)

whose solution is4, 13

ϕII(ξ ) = (1 + j γ ) T exp [ i α− ξ ] + (β + j) T̃ exp [ −α+ ξ ] . (9)

where

α± =
√√

ε2 − ν2
q ±

√
1 − ν2

q , β = i
νq eiρ

ε +
√

ε2 − ν
2

q

, γ = − i
νq e−iρ

ε +
√

ε2 − ν2
q

, (10)

and T and T̃ are complex coefficients to be determined by the matching conditions.
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For diffusion, E > V0, we have α± ∈ R+. For the case of total reflection, E < V0, we find

νq < ε < 1 : α− = i

√√
1 − ν2

q −
√

ε2 − ν2
q ∈ i R+ and α+ ∈ R+ ,

0 < ε < νq : α− = i
(
1 − ε2

)1/4

exp

[
− i

2
arctan

√
ν2

q − ε2

1 − ν2
q

]
∈ C+ and α+ = i α∗

− .

III. TOTAL REFLECTION: PHASE CALCULATION

To obtain the reflection coefficient, we have to use the matching conditions at x = 0, i.e., ϕI(0)
= ϕII(0) and ϕ′

I(0) = ϕ′
II(0). These conditions lead to the following quaternionic system,

1 + R + j R̃ = (1 + j γ ) T + (β + j) T̃ ,
√

ε
[

i (R − 1) − j R̃
] = − (1 + j γ ) T i α− + (β + j) T̃ α+. (11)

Multiplying the first equation for
√

ε and then summing it with the second equation, we find
√

ε [ 1 + R + i (R − 1) ] = (1 + j γ ) T (
√

ε − i α−) + (β + j) T̃ (
√

ε + α+).

The left-hand side of this equation is complex. Consequently, the pure quaternionic part of the right-
hand side of the equation has to be zero. This immediately implies the following relation between T
and T̃ ,

T̃ = − γ

√
ε − i α−√
ε + α+

T .

By using this relation in Eqs. (11) and taking the ratio of the complex parts, after simple algebraic
manipulations, we find the following reflection coefficient

R = (
√

ε + α+)(
√

ε − α−) − βγ (
√

ε − i α−)(
√

ε − i α+)

(
√

ε + α+)(
√

ε + α−) − βγ (
√

ε − i α−)(
√

ε + i α+)
. (12)

We now explicitly calculate the phase for each of the two cases which characterize total reflection.
Let us begin with νq < ε < 1. In this case, we have (βγ )* = βγ , α∗

− = −α− and α∗
+ = α+. This

implies

R
>
(νq ) := R(νq < ε < 1) = exp

[
2 i θ

>
(νq )

]
,

where

θ
>
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ε (
√
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]
. (13)

The case 0 < ε < νq is a little bit more complicated. Let us first observe that βγ = exp [ − 2 i ω]

with tan ω =
√

ν2
q − ε2/ε and recall that in this case α+ = i α∗

−. We then find

R
<
(νq ) := R(0 < ε < νq ) = − exp

[
2 i θ

<
(νq )

]
,

where

θ
<
(νq ) = arctan

(
ε sin ω + √

ε Im
[

i α∗
− eiω

]
|α−|2 sin ω − √

ε Re
[
α− eiω

] )
. (14)

The phase for a pure complex potential (standard quantum mechanics) is obtained from Eq. (13) by
setting νq = 0,

θc := θ
>
(0) = − arctan

√
1 − ε

ε
(15)

Downloaded 27 Jun 2013 to 143.106.1.143. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions



022102-4 S. De Leo and G. C. Ducati J. Math. Phys. 53, 022102 (2012)

For a pure quaternion potential, by using Eq. (14) for νq = 1, we find

θq := θ
<
(1) = arctan

(
2 α ε + 2 α2√ε + ε

3/2

4 α
3 + 2 α2

√
ε − ε

3/2

)
. (16)

IV. TOTAL REFLECTION: DELAY TIME CALCULATION

The quaternionic wave function which determines the particle dynamics in region I, ξ < 0, is
given by

ϕI(ξ, τ ) =

⎛⎜⎝ exp[ i
√

ε ξ ]︸ ︷︷ ︸
ϕI,inc

+ R exp[ − i
√

ε ξ ] + j R̃ exp[
√

ε ξ ]︸ ︷︷ ︸
ϕI,re f

⎞⎟⎠ exp[ − i ε τ ], (17)

where τ = V0 t/�. As observed in the introduction, for sufficiently large times the incident wave
packet (ϕI, inc) disappears and the reflected wave packet (ϕI, ref) propagates towards the left. Observing
that the pure quaternionic part decreases exponentially, the stationary phase method can be directly
applied to the complex part of the reflected quaternionic wave function,[

d

dε

(
2 θ − √

ε ξr − ε τ
)]

0

= 0.

The delay time is then given by

τ0 = 2

[
dθ

dε

]
0

. (18)

From this equation, by using the phase given in Eq. (15), we obtain the standard delay time for
complex potentials, i.e.

τ0,c[ε0,c] = 2

[
dθc

dε

]
0

= 1√
ε0,c (1 − ε0,c)

, (19)

where ε0, c = E0/V1. The dependence of τ 0, c = V1t0/� upon the ratio between the incoming energy,
E0, and the complex potential, V1, is plotted in Fig. 1 (continuous line). The minimum in the plane
ε0, c-τ 0, c is found at {

Ẽ0,c

V1
,

V1 t̃0,c

�

}
= { 0.5 , 2 } . (20)

Consequently, {
Ẽ0 t̃0

�

}
c

= 1. (21)

For a pure quaternionic potential, we have to use the phase given in Eq. (16). The expression for the
quaternionic delay time is a little bit more complicated,

τ0,q [ε0,q ] = 2

[
dθq

dε

]
0

=

2 + 1√
2 ε0,q

(
1 − ε2

0,q

)3/4 + 2 ε0,q(
1 − ε2

0,q

)1/2 + 2
√

2 ε0,q(
1 − ε2

0,q

)1/4

ε0,q + √
2 ε0,q

(
1 − ε2

0,q

)1/4

+
(

1 − ε2
0,q

)1/2 , (22)

where ε0, q = E0/Vq. The plot of τ 0, q = Vqt0/� as a function of the ratio between the incoming
energy, E0, and the modulus of the pure quaternionic potential, Vq, is shown in Fig. 1 (dotted line).
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FIG. 1. Delay times for complex (τ 0, c) and pure quaternionic (τ 0, q) potentials in terms of the adimensional incoming
energies E0/V1 (ε0, c) and E0/Vq (ε0, q).

Due to the fact that the minimum of the quaternionic delay time,{
Ẽ0,q

Vq
,

Vq t̃0,q

�

}
= { 0.365 , 2.763 } , (23)

is different from the complex case, it seems simple to recognize a pure quaternionic potential by
calculating the quantity Ẽ0 t̃0/�. Surprisingly,{

Ẽ0 t̃0
�

}
q

≈ 1.0085, (24)

which is very close to the result found for the complex case. Thus, an experiment involving this
measurement does not represent the best choice to see quaternionic potentials.
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V. CONCLUSIONS

As observed in Sec. IV, a calculation of Ẽ0 t̃0/� done by two observers which are, respectively,
working with a complex and a pure quaternionic potential step practically gives the same result. In
looking for the energy region which could amplify the difference between complex and quaternionic
quantum mechanics, it is interesting to introduce new energy and time variables defined in terms of
the incoming energy, Ẽ0, for which we have a minimal delay time. In terms of these new variables,

ε̃0 = E0/Ẽ0 and τ̃0 = Ẽ0 t0 / �,
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FIG. 2. Delay times for complex and pure quaternionic potentials in terms of the adimensional incoming energy E0/Ẽ0. The
difference between quaternonic and complex quantum mechanics is amplified for incoming energies closed to 2 Ẽ0.
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TABLE I. Reflection delay times for a pure quaternionic potential of height Vq = 20 kev (second column). The complex
potentials (third, fourth, and fifth columns) only mimic the quaternionic potential for particular incoming energies (starred
entries). Consequently, a complex potential cannot reproduce the quaternionic results.

Vq = 20 keV V1 = 18.5 kev V1 = 16.5 kev V1 = 14.6 kev
E0/keV keV t0/ � keV t0/ � keV t0/ � keV t0/ �

2 0.174 � 0.174 0.186 0.199
4 0.147 0.131 0.141 0.154
6 0.139 0.115 0.126 0.140
8 0.138 0.109 0.121 � 0.138
10 0.142 0.108 0.124 0.147
12 0.152 0.113 0.136 0.179
14 0.169 0.126 � 0.169 0.345

we find

ε0,c = Ẽ0

V1
· E0

Ẽ0
= 0.5 ε̃0,

τ̃0,c = Ẽ0

V1
· τ0,c[0.5 ε̃0] = 0.5 τ0,c[0.5 ε̃0], (25)

and

ε0,q = Ẽ0

Vq
· E0

Ẽ0
= 0.365 ε̃0,

τ̃0,q = Ẽ0

Vq
· τ0,q [0.365 ε̃0] = 0.365 τ0,q [0.365 ε̃0]. (26)

Figure 2 clearly shows that the best choice to amplify the difference between complex and pure
quaternionic potentials is achieved for incoming energies closed to 2 Ẽ0 (this energy value represents
the limit case between tunneling and diffusion for complex potentials). It is also interesting to observe
that a complex potential cannot completely mimic a pure quaternionic potential. Indeed, as shown
in Fig. 2 due to the different shapes of the delay time curves for complex and pure quaternionic
potentials, a complex potential can perfectly mimic a pure quaternionic potential at most in two
cases (see intersections between the two curves shown in Fig. 2). In Table I, we explicitly shown the
delay times for reflection as function of the incoming energy (first column) for a pure quaternionic
potential of height 20 keV (second column). In such a table, we also find the reflection delay times
for complex potentials of height 18.5 keV (third column), 16.5 keV (fourth column) and 14.5 keV
(fifth column). These complex potentials only mimic the quaternionic potential, respectively, for
incoming energy of 2, 14, and 8 keV. This clearly shows that the reflection delay times obtained
in presence of a quaternionic potential step cannot be reproduced by a complex potential step. The
energy dependence of the delay times in reflection by a step potential can be then used to determine
whether the step as a quaternionic nature.

The study presented in this paper represents a preliminary analysis of quaternionic delay times.
Further investigations imply a generalization from plane waves to wave packets and/or from one-
dimensional to three-dimensional problems.
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