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a b s t r a c t

We introduce a new index to detect dependence in trivariate distributions. The index is
based on the maximization of the coefficients of directional dependence over the set of
directions. We show how to calculate the index using the three pairwise Spearman’s rho
coefficients and the three common 3-dimensional versions of Spearman’s rho. We obtain
the asymptotic distributions of the empirical processes related to the estimators of the
coefficients of directional dependence and also we derive the asymptotic distribution of
our index. We display examples where the index identifies dependence undetected by the
aforementioned 3-dimensional versions of Spearman’s rho. The value of the new index
and the direction in which the maximal dependence occurs are easily computed and we
illustrate with a simulation study and a real data set.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper we define and study an index to detect positive dependence in trivariate distributions, undetected by the
existing 3-dimensional versions of Spearman’s rho. The 3-dimensional versions of Spearman’s rho are frequently used to
develop independence tests, and to do that it is necessary to investigate the empirical copula process and the survival copula
process, in order to obtain the asymptotic law of continuous functionals of the latter empirical processes, as showed in
Quessy [21].

In several situations as pointed out in Gaißer and Schmid [12] the assumption of equality between the pairwise
correlations allows us to use particular statistical models. In Gaißer and Schmid [12] four nonparametric tests for testing the
hypothesis of equal Spearman’s rho coefficients in a multivariate random vector have been proposed and the asymptotic
distribution of the tests has been established as a consequence of the asymptotic behavior of the empirical copula process.
To test constant correlations, for example, if we want to test if correlations of asset returns change in time, it is necessary
to choose some correlation coefficient and in general the limiting distribution of the test statistic is obtained under the
condition of finite fourth moments. But Wied et al. [29] presents a fluctuation test for constant correlation based on
Spearman’s rho that does not require any moments, where the limit distribution of the test statistic is the supremum of the
absolute value of a Brownian bridge that provides critical values without any bootstrap techniques. The empirical copula
process is important not only for statistics based on Spearman’s rho, but also for others such as a multivariate version
of Hoeffding’s Phi-Square, as illustrated in Gaißer et al. [11], in which is proposed a multivariate version for Hoeffding’s
bivariatemeasure of association, Phi-Square. In addition, a nonparametric estimator is proposed and its asymptotic behavior
established, based on the weak convergence of the empirical copula process.
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Our target is to give the foundation for the construction of a new index of trivariate dependence, which is capable of
detecting dependence undetected by the traditional trivariate extensions of Spearman’s rho. We present the asymptotic
distribution of the empirical process related to the estimator of that index, under relatively weak conditions, as discussed
in Segers [25]. We also obtain the asymptotic distributions of the empirical processes related to the estimators of
the coefficients of directional dependence postulated by Nelsen and Úbeda-Flores [20]. In the sequel, several tests of
independence can be formulated, using the asymptotic laws here developed and following the ideas of Genest et al. [15]
and Quessy [21] or in a more specific context, would be possible to apply the ideas of Rifo and González-López [16]. The
family of Spearman’s rho coefficients is especially appropriate to test constant correlations for example, as was showed in
Wied et al. [29]. In practice, the use of Spearman’s rho correlation in that kind of tests allows us to analyze several types of
data (non-elliptical data for instance) taking advantage of the robustnesswhich is a natural property of rank-basedmeasures.

In Section 2 we review the definitions of three well-known 3-dimensional versions of Spearman’s rho and we discuss
the coefficients of directional dependence introduced by Nelsen and Úbeda-Flores [20], since our index, denoted by ρmax

3 ,
is based on the maximization of those coefficients over all directions. In Section 3 we introduce formally the index ρmax

3 ,
we prove the main result of our paper showing that the new index can be easily written as a function of the pairwise
Spearman correlations and the 3-dimensional versions of Spearman’s rho. We exhibit situations in which the index ρmax

3
detects dependence undetected by the most common 3-dimensional versions of Spearman’s rho. Theoretical properties of
the index are presented in the same section. In Section 4we showhow to estimate our index usingwell-known estimators. In
addition, in Section 5, we establish the asymptotic normality for the estimators of the coefficients of directional dependence,
for the estimator of the 3-dimensional versions of Spearman’s rho and for the estimator of the index ρmax

3 . In Section 6 we
compute ρmax

3 in different situations, a simulation study and an application to real data set. In Section 7 we emphasize
the simplicity of the new index, its good properties and we stress situations in which the new index has an outstanding
performance.

2. Preliminaries

Given a pair (X1, X2) of continuous random variables with associated 2-copula C , the population version of Spearman’s
rho, denoted by ρ12(C) is defined by

ρ12(C) = 12

I2
C(u, v)dudv − 3, (1)

where I = [0, 1].
We omit the argument C to simplify the notation when the underlying copula is understood. In the trivariate case, where

(X1, X2, X3) is a vector of continuous random variables with 3-copula C , there are several generalizations of Spearman’s rho.
They are, (a) the average of the three pairwise measures ρ12, ρ13 and ρ23, where each pairwise measure is given by Eq. (1)

ρ∗

3 (C) =
ρ12 + ρ13 + ρ23

3
, (2)

(b) the trivariate generalizations given by Joe [17] and Nelsen [19]

ρ−

3 (C) = 8

I3
C(u, v, w)dudvdw − 1, (3)

ρ+

3 (C) = 8

I3
C(u, v, w)dudvdw − 1, (4)

where C denotes the survival function associated with C , and
(c) the coefficients of directional dependence ρ

(α1,α2,α3)
3 (C) introduced by Nelsen and Úbeda-Flores [20], where αi ∈

{−1, 1}, given by

ρ
(α1,α2,α3)
3 (C) = 8


I3
Qα1,α2,α3(u, v, w)dudvdw, (5)

where Qα1,α2,α3(u, v, w) is P(α1X1 > α1u, α2X2 > α2v, α3X3 > α3w) − P(α1X1 > α1u)P(α2X2 > α2v)P(α3X3 > α3w).
According to Theorem 1 from Nelsen and Úbeda-Flores [20], ρ(α1,α2,α3)

3 (C) is a linear combination of the pairwise measures
and the measures ρ+

3 and ρ−

3 , given by

ρ
(α1,α2,α3)
3 =

α1α2ρ12 + α1α3ρ13 + α2α3ρ23

3
+ α1α2α3

(ρ+

3 − ρ−

3 )

2
. (6)

Equivalently, ρ
(α1,α2,α3)
3 (C) is equal to ρ+

3 (C ′), where C ′ is the copula associated with the random variables
(α1X1, α2X2, α3X3). The purpose of the directional ρ-coefficients ρ

(α1,α2,α3)
3 is to detect positive dependence among the

random variables X1, X2, X3 undetected by the coefficients ρ∗

3 , ρ
+

3 and ρ−

3 . For example, if (X1, X2, X3) are Unif(0, 1) random
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Table 1
Direction of maximal dependence.

max

ρ12, ρ13, ρ23, 3ρ∗

3


ρ+

3 − ρ−

3 (α1, α2, α3)

3ρ∗

3 ≠ 0 α1 = α2 = α3 = sgn(ρ+

3 − ρ−

3 )

3ρ∗

3 = 0 α1 = α2 = α3 = ±1
ρij ≠ 0 −αi = −αj = αk = sgn(ρ+

3 −ρ−

3 )

ρij = 0 −αi = −αj = αk = ±1

variables whose joint distribution function is the 3-copula C(u, v, w) = C1(min(u, v), w), where C1 is the 2-copula given
by C1(u, v) =

1
2 [uv + max(u + v − 1, 0)], then ρ∗

3 = ρ+

3 = ρ−

3 = 0. However, there is positive dependence undetected
by these coefficients since P(X1 = X2 = 1 − X3) =

1
2 , i.e., half the probability mass is uniformly distributed in the

unit cube [0, 1]3 on the line segment joining the points (0, 0, 1) and (1, 1, 0). This positive dependence is detected by the
directional ρ-coefficients ρ

(−1,−1,1)
3 = ρ

(1,1,−1)
3 =

2
3 . The direction (−1, −1, 1) refers to the direction of the inequalities

X1 ≤ u, X2 ≤ v, X3 > w used in the computation of ρ
(−1,−1,1)
3 . This can be interpreted as ‘‘small values of X1 and X2 tend

to occur with large values of X3’’, or roughly that probability is concentrated in the portion of the unit cube [0, 1]3 near the
vertex (0, 0, 1). The measures ρ+

3 , ρ−

3 , and ρ∗

3 only measure dependence in the directions (1, 1, 1) and (−1, −1, −1). In
the next section we will define an index of positive dependence in trivariate distributions based on the largest of the eight
directional ρ-coefficients given by Eq. (6).

3. New index of positive dependence

Definition 3.1. Let (X1, X2, X3) be a random vector with associated 3-copula C . Let ρ
(α1,α2,α3)
3 (C) denote the coefficient of

directional dependence given by Eq. (5), with αi ∈ {−1, 1}. Then the index of maximal dependence is given by

ρmax
3 (C) = max

(α1,α2,α3)


ρ

(α1,α2,α3)
3 (C)


.

Theorem 3.1. Let (X1, X2, X3) be a random vector with associated 3-copula C. Then

ρmax
3 =

2
3
max


ρ12, ρ13, ρ23, 3ρ∗

3


− min


ρ+

3 , ρ−

3


, (7)

where ρ∗

3 , ρ
−

3 and ρ+

3 are given by Eqs. (2)–(4) respectively.

Proof. According to the relations among ρ+

3 , ρ−

3 , ρ∗

3 and the pairwise measures ρij, i ≠ j, i, j = 1, 2, 3, explored in Nelsen
and Úbeda-Flores [20], the eight possible cases of Eq. (6) are

ρ
(1,1,1)
3 = 2ρ∗

3 − ρ−

3 , ρ
(−1,−1,−1)
3 = 2ρ∗

3 − ρ+

3 ,

ρ
(−1,−1,1)
3 =

2
3
ρ12 − ρ−

3 , ρ
(1,1,−1)
3 =

2
3
ρ12 − ρ+

3 ,

ρ
(−1,1,−1)
3 =

2
3
ρ13 − ρ−

3 , ρ
(1,−1,1)
3 =

2
3
ρ13 − ρ+

3 ,

ρ
(1,−1,−1)
3 =

2
3
ρ23 − ρ−

3 , ρ
(−1,1,1)
3 =

2
3
ρ23 − ρ+

3 ,

from which equation (7) follows. �

To determine the direction (α1, α2, α3) which produces the maximal value of ρ
(α1,α2,α3)
3 we consider conditions about the

values of max

ρ12, ρ13, ρ23, 3ρ∗

3


and ρ+

3 − ρ−

3 , as given in Table 1, where sgn denotes the signum function.
Table 1 leads to the following observations.

1. We say that there exists positive dependence undetected by ρ+

3 or ρ−

3 whenever ρmax
3 is not equal to either ρ+

3 or ρ−

3 .

2. If ρ12, ρ23 and ρ13 are all positive, then ρmax
3 is equal to either ρ+

3 or ρ−

3 , i.e., there is no undetected positive dependence.
3. If at least two of ρ12, ρ23 and ρ13 are negative, then ρmax

3 is not equal to either ρ+

3 or ρ−

3 , i.e., there is undetected positive
dependence.

4. If exactly one of ρ12, ρ23 and ρ13 is negative, then, there is undetected positive dependence if and only if the sum of the
smaller two of {ρ12, ρ23, ρ13} is negative.
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Example 3.1. Let C be the copula that distributes probability mass uniformly on the three line segments in [0, 1]3 joining
the point ( 1

3 ,
1
3 ,

1
3 ) to the vertices (0, 1, 1), (1, 0, 1), and (1, 1, 0). Here ρ12 = ρ23 = ρ13 = −

1
3 and ρ∗

3 = −
1
3 , ρ

−

3 =

−
1
9 , ρ

+

3 = −
5
9 . As a consequence, ρmax

3 =
1
3 . The directions given by Table 1 are (1, 1, −1) or (1, −1, 1) or (−1, 1, 1) since

max

ρ12, ρ13, ρ23, 3ρ∗

3


= ρ12 = ρ13 = ρ23 and sgn(ρ+

3 −ρ−

3 ) = −1. All the traditionalmeasures ρ12, ρ13, ρ23, ρ
∗

3 , ρ
+

3 , ρ−

3
are negative, but ρmax

3 is positive. This means that the index finds positive dependence undetected by ρ∗

3 , ρ
+

3 and ρ−

3 . Note
that ρ

(1,1,−1)
3 =

1
3 indicates that ‘‘large’’ values of X1 and X2 tend to occur with ‘‘small’’ values of X3, but ρ

(−1,−1,1)
3 = −

1
9

indicates that it is not the case that the complementary case holds, i.e., that ‘‘small’’ values of X1 and X2 tend to occur with
‘‘large’’ values of X3.

3.1. Indexes based on Kendall’s tau and Blomqvist’s beta

There are also directional coefficients based on the three dimensional versions of the population versions of themeasures
of association known as Kendall’s tau and Blomqvist’s beta studied in Nelsen and Úbeda-Flores [20]:

τ
(α1,α2,α3)
3 =

α1α2τ12 + α1α3τ13 + α2α3τ23

3
and

β
(α1,α2,α3)
3 =

α1α2β12 + α1α3β13 + α2α3β23

3
.

These coefficients lead to indexes of maximal dependence similar to ρmax
3 (C):

τmax
3 (C) = max

(α1,α2,α3)


τ

(α1,α2,α3)
3 (C)


and

βmax
3 (C) = max

(α1,α2,α3)


β

(α1,α2,α3)
3 (C)


.

However, since these indexes do not incorporate ameasure of mutual dependence among the three random variables X1, X2
and X3 analogous to ρ−

3 and ρ+

3 , they are not as effective in detecting positive dependence. As an example, for the copula
in Example 3.1 we have τmax

3 =
1
9 occurring in 6 directions (all except (1, 1, 1) and (−1, −1, −1)) and βmax

3 = 0 in all 8
directions. Hence in the sequel we will restrict our study to properties of ρmax

3 .

3.2. Properties of ρmax
3

In this section we present some properties of the index ρmax
3 . For a vector (X1, X2, X3) of continuous random variables

with copula C , we will write both ρmax
3 (C) and ρmax

3 (X1, X2, X3) for the index.

Theorem 3.2. Under the assumptions of Definition 3.1 and the hypotheses of Theorem 3.1, we have the following.
(i) The index ρmax

3 is well-defined.
(ii) 0 ≤ ρmax

3 ≤ 1, and if ρmax
3 = 0, then ρ

(α1,α2,α3)
3 = 0 for every direction (α1, α2, α3) and ρ12 = ρ23 = ρ13 = ρ∗

3 = ρ−

3 =

ρ+

3 = 0. ρmax
3 (C1) = 0 and ρmax

3 (C2) = 1, where C1(u, v, w) = uvw and C2(u, v, w) = min {u, v, w} .
(iii) ρmax

3 is invariant under permutations, that is, if π is a permutation of {1, 2, 3}, then ρmax
3 (X1, X2, X3) = ρmax

3 (Xπ(1),
Xπ(2), Xπ(3)).

(iv) ρmax
3 is invariant under monotone transformations, that is, if T1 is a strictly increasing or strictly decreasing function of X1,

then ρmax
3 (X1, X2, X3) = ρmax

3 (T1(X1), X2, X3) and similarly for T2(X2) and T3(X3).
(v) ρmax

3 is continuous in the following sense: if limk→∞Ck = C (point wise) for all u, v, w ∈ [0, 1], then limk→∞ ρmax
3 (Ck) =

ρmax
3 (C).

Proof. (i) When the random variables are continuous, the copula of (X1, X2, X3) is unique.
(ii) Since


(α1,α2,α3)

ρ
(α1,α2,α3)
3 = 0 (see Nelsen and Úbeda-Flores [20] for a proof), the assumption that ρmax

3 < 0 leads

to a contradiction, hence ρmax
3 ≥ 0. Since ρ

(α1,α2,α3)
3 ≤ 1 for every direction (α1, α2, α3), it follows that ρmax

3 ≤ 1. The
consequences of ρmax

3 = 0 derive from the 8 equations in the proof of Theorem 3.1. But ρmax
3 = 0 does not imply that

X1, X2, X3 are pairwise or mutually independent.

(iii) When π is a permutation of {1, 2, 3}, we have ρ
(α1,α2,α3)
3 (X1, X2, X3) = ρ

(απ(1),απ(2),απ(3))

3 (Xπ(1), Xπ(2), Xπ(3)), fromwhich
the result follows.
(iv) If T1 is a strictly increasing transformation, then ρ

(α1,α2,α3)
3 (X1, X2, X3) = ρ

(α1,α2,α3)
3 (T1(X1), X2, X3), and if T1 is a strictly

decreasing transformation, then ρ
(α1,α2,α3)
3 (X1, X2, X3) = ρ

(−α1,α2,α3)
3 (T1(X1), X2, X3), from which the result follows.

(v) The integrand Q(α1,α2,α3) in Eq. (5) is a difference of two copulas, and copulas are uniformly continuous on their domain,
which is sufficient to establish the result. �
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However, the index ρmax
3 is not a measure of multivariate concordance as defined by Taylor [26,27] and Dolati and Úbeda-

Flores [5], as it does not satisfy the property of monotonicity. A copula-based measure µ is monotone if C1 ≺ C2 implies
µ(C1) ≤ µ(C2), and that is not the case for ρmax

3 . For a counterexample, let C1(u, v, w) = max(min(u, v) + w − 1, 0) and
C2(u, v, w) = w min(u, v). Then C1 ≺ C2, however ρmax

3 (C1) = 1 > 1
3 = ρmax

3 (C2).

3.3. Extensions of the index ρmax
3 for dimension ≥ 4

In theory our work can be extended to d-dimensional vectors of continuous random variables. If Cd denotes the
d-dimensional copula associated with such a vector, then the d-dimensional versions of (3) and (4) are given by (Joe [17],
Nelsen [19])

ρ−

d (Cd) =
d + 1

2d − (d + 1)


2d


Id
Cd(u)du − 1


, (8)

ρ+

d (Cd) =
d + 1

2d − (d + 1)


2d


Id
Cd(u)du − 1


, (9)

where u = (u1, . . . , ud) is a d-dimensional vector and Cd is the survival function associated with Cd. It is natural to extend
the definitions of ρα

3 and ρmax
3 as follows:

ρ
(α1,...,αd)
d (Cd) =

d + 1
2d − (d + 1)


Id
Qα1,...,αd(u)du, (10)

where Qα1,...,αd(u) is P(αiXi > αiui; αi, i = 1, . . . , d) −
d

i=1 P(αiXi > αiui) and

ρmax
d (Cd) = max

(α1,...,αd)


ρ

(α1,...,αd)
d (Cd)


.

For d ≥ 4 the 2d directional coefficients ρ
(α1,...,αd)
d (Cd) and ρmax

d (Cd) are then functions of


d
2


pairwise Spearman’s rho

coefficients and the k-wise coefficients ρ+

k (Ck) and ρ−

k (Ck) for 3 ≤ k ≤ d, where Ck (for 3 ≤ k ≤ d) denotes a k-dimensional
margin of Cd.

The complexity in evaluating ρmax
d (Cd) from d-dimensional versions of Theorem 3.1 grows exponentially in d. For

example, when d = 4 the 16 directional coefficients are functions of 16 pairwise and k-wise versions of Spearman’s rho;
when d = 5 the 32 directional coefficients are functions of 42 pairwise and k-wise versions of Spearman’s rho; and when
d = 6 the 64 directional coefficients are functions of 99 pairwise and k-wise versions of Spearman’s rho. The index ρmax

d for
d ≥ 4 awaits further study.

4. Estimators

Consider a trivariate random sample

(X1j, X2j, X3j)

n
j=1 of the vector (X1, X2, X3) with associated unknown copula C . Let

be Rij = rank of Xij in {Xi1, . . . , Xin} and define Rij = n + 1 − Rij, for i = 1, 2, 3. The nonparametric estimators of each
coefficient (given by equations (1) and (3)) are well-known (see Joe [17]) and they are respectively given by

ρ̂ik =
12

n(n2 − 1)

n
j=1

RijRkj − 3
(n + 1)
(n − 1)

, ik ∈ {12, 23, 13} (11)

ρ̂−

3 =
8

n(n − 1)(n + 1)2

n
j=1

R1jR2jR3j −
(n + 1)
(n − 1)

. (12)

It is easy to derive the estimator of ρ+

3 from Eq. (12)

ρ̂+

3 =
8

n(n − 1)(n + 1)2

n
j=1

R1jR2jR3j −
(n + 1)
(n − 1)

. (13)

In the next definition we introduce estimators of each ρ
(α1,α2,α3)
3 .

Definition 4.1. Define Rαi
ij to be Rij if αi = −1 and Rij if αi = 1, and set

ρ̂
(α1,α2,α3)
3 =

8
n(n − 1)(n + 1)2

n
j=1

Rα1
1j R

α2
2j R

α3
3j −

(n + 1)
(n − 1)

.
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Remark 4.1. ρ̂
(α1,α2,α3)
3 estimates ρ

(α1,α2,α3)
3 . For example, when (α1, α2, α3) = (−1, −1, 1) we have

ρ̂
(−1,−1,1)
3 =

8
n(n − 1)(n + 1)2

n
j=1

R1jR2j(n + 1 − R3j) −
(n + 1)
(n − 1)

=
8

n(n2 − 1)

n
j=1

R1jR2j − 2
(n + 1)
(n − 1)

−
8

n(n − 1)(n + 1)2

n
j=1

R1jR2jR3j +
(n + 1)
(n − 1)

=
2
3
ρ̂12 − ρ̂−

3

which estimates ρ
(−1,−1,1)
3 since ρ

(−1,−1,1)
3 =

2
3ρ12 − ρ−

3 (see the relations used in the proof of Theorem 3.1), and the other
seven cases are similar.

As a consequence of Theorem 3.1, Definition 4.1 and Remark 4.1 we introduce the next estimator.

Definition 4.2. The plug-in estimator of ρmax
3 is

ρ̂max
3 =

2
3
max


ρ̂12, ρ̂13, ρ̂23, 3ρ̂∗

3


− min


ρ̂+

3 , ρ̂−

3


,

where 3ρ̂∗

3 = ρ̂12 + ρ̂13 + ρ̂23.

Remark 4.2. ρ̂max
3 = maxα


ρ̂α
3


. Given each direction α, we can show using Remark 4.1 that the estimator ρ̂α

3 of ρα
3

follows one of the 8 equations exhibited in the proof of Theorem 3.1, replacing ρik, ik ∈ {12, 13, 23} ρ+

3 , ρ−

3 and ρ∗

3 by
ρ̂ik, ik ∈ {12, 13, 23} , ρ̂+

3 , ρ̂−

3 and ρ̂∗

3 respectively, then by the same arguments used to prove Theorem 3.1 maxα


ρ̂α
3


is

given by Definition 4.2.

5. Empirical processes related to ρij, ρα
3 and ρmax

3

Let ß be an index set, such that ß ⊆ {1, 2, 3}. We define, for ß = {1, 2, 3} , xß = (x1, x2, x3) an arbitrary value of
(X1, X2, X3); for ß = {i, k} , xß = (xi, xk) an arbitrary value of (Xi, Xk). Let |ß| denote the cardinal of ß and α = (α1, α2, α3).
Consider the function,

Hß,α(xß) = P(αiXi ≤ αixi, i ∈ ß) (14)

called here simply the |ß|-dimensional distribution function. Let uß = (u1, u2, u3) for ß = {1, 2, 3} , uß = (ui, uk) for
ß = {i, k} and Fi the marginal cumulative distribution function of Xi. Let F−1

i denote the inverse of Fi, i = 1, 2, 3

Cß,α(uß) = Hß,α(F−1
i (ui), i ∈ ß) (15)

which is a generalization of a 3-copula when αi = 1, i ∈ ß = {1, 2, 3} .
We introduce the empirical process to estimate the previous function

Cß,α,n(uß) =
1

n + 1

n
j=1


i∈ß

1
αi

Rij
n+1 ≤αiui

, (16)

where (16) gives the empirical estimator of the copula, when ß = {1, 2, 3} and α = (1, 1, 1).

Remark 5.1. If we define the estimators

Hß,α,n(xß) =
1

n + 1

n
j=1


i∈ß

1{αiXij≤αixi} (17)

Fi,n(x) =
1

n + 1

n
j=1

1{Xij≤x} (18)

where Fi,n(xij) =
Rij
n+1 and xij is the observed value of Xij, j = 1, . . . , n, i ∈ ß, and let

F−1
i,n (u) = inf


x ∈ R : Fi,n(x) ≥ u


, u ∈ [0, 1], (19)

then, we obtain Cß,α,n(uß) = Hß,α,n(F−1
i,n (ui), i ∈ ß).
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In order to derive the weak convergence of the empirical processes
√
n


Cß,α,n(uß) − Cß,α(uß)


, uß ∈ [0, 1]|ß| (20)

we introduce a condition on Cß,α inspired by Segers [25].
For i ∈ ß if ei is a vector such that (ei)j = 0, j ≠ i, (ei)j = 1, j = i, j ∈ ß, define the i-th first-order partial derivative of

Cß,α , as

Ċi,ß,α(uß) = lim
h→0

Cß,α(uß + hei) − Cß,α(uß)

h
for uß ∈ [0, 1]|ß|.

Condition 5.1. For each i ∈ ß, the i-th first-order partial derivative Ċi,ß,α exists and is continuous on the set {uß ∈ [0, 1]|ß|
:

0 < ui < 1}.

We also extend the function Ċi,ß,α to the boundary as follows. If uß ∈ [0, 1]|ß| and ui = 0, Ċi,ß,α(uß) = lim suph↓0
Cß,α(uß+hei)−Cß,α(uß)

h . If uß ∈ [0, 1]|ß| and ui = 1, Ċi,ß,α(uß) = lim suph↓0
Cß,α(uß)−Cß,α(uß−hei)

h .

The next theorem is valid for dimensions d > 3. Nevertheless for our purpose d ≤ 3 suffices. In this theorem we will
show that the empirical process, given by (20) goes weakly to

GCß,α
(uß) = BCß,α

(uß) −


i∈ß

Ċi,ß,α(uß)BCß,α
(u(i)

ß ), (21)

where GCß,α
(uß) follows the next condition.

Condition 5.2. BCß,α
(uß) is a Cß,α-tight centered Gaussian process on [0, 1]|ß|, u(i)

ß is a vector such that the j-th component,
j ∈ ß, (u(i)

ß )j = 1 if j ≠ i when αj = 1, (u(i)
ß )j = 0 if j ≠ i when αj = −1, and for j = i, (u(i)

ß )i = ui, i ∈ ß. The covariance
function is E(BCß,α

(uß)BCß,α
(vß)) = Cß,α(wß) − Cß,α(uß)Cß,α(vß), where the j-th component (wß)j = uj ∧ vj if αj = 1 and

(wß)j = uj ∨ vj if αj = −1, j ∈ ß.

Theorem 5.1. Let Hß,α be a |ß|-dimensional distribution function, given by Eq. (14) with continuous marginal distributions
Fi, i ∈ ß and with Cß,α given by Eq. (15), where ß ⊆ {1, 2, 3} and α = (α1, α2, α3), αi ∈ {−1, 1}. Under the additional Con-
dition 5.1 on the function Cß,α , when n → ∞

√
n


Cß,α,n(uß) − Cß,α(uß)


→

w GCß,α
(uß). (22)

Weak convergence takes place in ℓ∞([0, 1]|ß|) and GCß,α
(uß) = BCß,α

(uß) −


i∈ß Ċi,ß,α(uß)BCß,α
(u(i)

ß ), where BCß,α
(uß) is a

Cß,α-tight centered Gaussian process on [0, 1]|ß| and GCß,α
(uß) follows Condition 5.2.

Proof. Consider the empirical process Bn,Cß,α
(uß) =

√
n(Gß,α,n(uß) − Cß,α(uß)) where for Uij = Fi(Xij), i ∈ ß, j = 1, . . . , n

and uß ∈ [0, 1]|ß|,

Gß,α,n(uß) =
1

n + 1

n
j=1


i∈ß

1{αiUij≤αiui}. (23)

Note that if ß = {1, 2, 3} , α = (1, −1, 1), i = 3 by hypothesis u(i)
ß = (1, 0, u3) Bn,Cß,α

(u(i)
ß ) =

√
n


1
n+1

n
j=1 1{U3j≤u3} −

P(U3 ≤ u3)


→n→∞ 0, for u3 = 0 and u3 = 1. Using the same arguments, for arbitrary i, Bn,Cß,α
(u(i)

ß ) →n→∞ 0 on the
boundary ui = 0 and ui = 1.

Define the process

G̃Cß,α
(uß) = Bn,Cß,α

(uß) −


i∈ß

Ċi,ß,α(uß)Bn,Cß,α
(u(i)

ß ). (24)

The process BCß,α
is the weak limit in ℓ∞([0, 1]|ß|) of the sequence


Bn,Cß,α


n≥1, where BCß,α

is a Cß,α-Brownian bridge and it
can be assumed to have continuous trajectories (by the Empirical Central Limit Theorem, seeVander Vaart andWellner [28]).

FromCondition 5.1 and assuming the extension of the partial derivatives to thewhole of [0, 1]|ß|, and that the trajectories
ofBCß,α

are continuous, the trajectories ofGCß,α
are also continuous. In fact, when Ċi,ß,α fail to be continuous for uß ∈ [0, 1]|ß|

such that ui = 0 or ui = 1 we have BCß,α
(u(i)

ß ) = 0 also. The process GCß,α
is the weak limit in ℓ∞([0, 1]|ß|) of the sequence

G̃n,Cß,α


n≥1 .
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If Condition 5.1 holds, following the same arguments in the proof of Proposition 3.1 in Segers [25], where Condition 5.1
is used to apply the mean value theorem over Cß,α , convergence (in probability) follows

sup
uß∈[0,1]|ß|

|
√
n


Cß,α,n − Cß,α


− G̃n,Cß,α

| →
P 0, when n → ∞.

Then, the weak convergence stated by Eq. (22) also follows.
The covariance function is derived applying the multidimensional Central Limit Theorem; see for example

Gänßler [9]. �

A special case of the previous theorem is proved in Schmid and Schmidt [24] (Theorem 2, page 411), assuming an arbitrary
dimension and some additional conditions for the joint cumulative distribution.

We observe, for each i and j,
I
1

αi
Rij
n+1 ≤αiui

dui =
Rαi
ij

n + 1
, (25)

and as a consequence, according to Eq. (16),
I|ß|

Cß,α,n(uß)duß =
1

(n + 1)|ß|+1

n
j=1


i∈ß

Rαi
ij . (26)

5.1. Properties of estimators

This subsection explores the relationships between empirical processes and the pairwise Spearman’s rho coefficients and
coefficients of directional dependence.

Remark 5.2. Using Eqs. (11)–(13) and Definition 4.1 we obtain,

(i) ρ̂ik = 12 (n+1)2

n(n−1)


I2 Cß,α,n(uß)duß − 3 (n+1)

(n−1) , with ß = {i, k} , αi = αk = 1, and ik ∈ {12, 23, 13} ;

(ii) ρ̂α
3 = 8 (n+1)2

n(n−1)


I3 Cß,α,n(uß)duß −

(n+1)
(n−1) , with ß = {1, 2, 3} , and an arbitrary vector α,

(ii1) If αi = 1∀i ∈ ß, ρ̂α
3 = ρ̂+

3 ;

(ii2) If αi = −1∀i ∈ ß, ρ̂α
3 = ρ̂−

3 .

In (16) and (17) we constructed empirical processes rescaled by (n + 1), by convenience in order to express the estimators
in terms of the empirical processes (see Remark 5.2), since we define Rij = n + 1 − Rij.

The proof of the next result is an adaptation of Fermanian et al. [7] (Theorem 6, page 854) and Gänßler and Stute [10],
page 55.

Theorem 5.2. Under the assumptions of Theorem 5.1, suppose that the real number sequences {an}n≥1 and {bn}n≥1 satisfy
√
n(an − a0) = O(n−1/2) and

√
n(bn − b0) = O(n−1/2), respectively, where a0 and b0 are constant values. Let Tn(f ) =

an

I|ß| f (uß)duß + bn, for n ≥ 0, where f is a |ß|-integrable function. Then, when n → ∞,

√
n


Tn(Cß,α,n) − T0(Cß,α)


→

w ZCß,α
∼ N(0, σ 2

Cß,α
)

with σ 2
Cß,α

= a20

I|ß|


I|ß| E[GCß,α

(uß)GCß,α
(vß)]dußdvß.

Proof.
√
n


Tn(Cß,α,n) − T0(Cß,α)


=

√
n


Tn(Cß,α,n) − T0(Cß,α,n)


+

√
n


T0(Cß,α,n) − T0(Cß,α)


=

√
n(an − a0)


I|ß|

Cß,α,n(uß)duß +
√
n(bn − b0)

+ a0


I|ß|

√
n


Cß,α,n(uß) − Cß,α(uß)


duß

= a0


I|ß|

√
n


Cß,α,n(uß) − Cß,α(uß)


duß + O(n−1/2)

→
w a0


I|ß|

GCß,α
(uß)duß (27)
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the last equality coming from the assumptions for the sequences {an}n≥1 and {bn}n≥1. The weak convergence follows from
Theorem 5.1, using the weak convergence established in Eq. (22), and from Van der Vaart and Wellner [28] (Theorem 1.3.6,
in page 20) applied to the continuous integral operator.

A continuous and linear transformation of a tight Gaussian process is normally distributed, so that we can define
ZCß,α

:= a0

I|ß| GCß,α

(uß)duß with distribution N(0, σ 2
Cß,α

).

The expression for σ 2
Cß,α

can be obtained by an application of Fubini’s theorem. �

Corollary 5.1. Under the assumptions of Theorem 5.2, we have the following.
1. When n → ∞,

√
n


ρ̂ik − ρik


→

w ZCß,α
∼ N(0, σ 2

Cß,α
), where ß = {i, k}, the vector α = (α1, α2, α3) is such that αi =

αk = 1, and ik ∈ {12, 23, 13} .
2. When n → ∞,

√
n


ρ̂α
3 − ρα

3


→

w ZCß,α
∼ N(0, σ 2

Cß,α
), where ß = {1, 2, 3} and the vector α = (α1, α2, α3) is such that

αi ∈ {−1, 1} .

Proof. Let k0 and k1 be constants. Given an = k0 (n+1)2

n(n−1) , a0 = k0, bn = −k1 (n+1)
(n−1) , b0 = −k1, the conditions

√
n(an − a0) =

O(n−1/2),
√
n(bn − b0) = O(n−1/2) are true.

If k0 = 12 and k1 = 3, then Conclusion 1 follows from Remark 5.2(i). Also if k0 = 8 and k1 = 1, then Conclusion 2 follows
from Remark 5.2(ii). �

Theorem 5.3. Under the assumptions of Theorem 5.1,
√
n


ρ̂max
3 − ρmax

3


→

w ZCß,α∗ ∼ N(0, σ 2
Cß,α∗

),

where ß = {1, 2, 3} and α∗ is such that ρα∗

3 = ρmax
3 .

Proof. Define Aα
n =


w : ρ̂α∗

3 (w) < ρ̂α
3 (w)


, α ∈ A and An =


w : ρ̂α∗

3 (w) < ρ̂α
3 (w), ∀α ∈ A


, whereA = {(α1, α2, α3) :

αi ∈ {−1, 1} , i = 1, 2, 3}.
Because ρ̂α

3 − ρ̂α∗

3 → ρα
3 − ρα∗

3 < 0 almost surely when ρα
3 ≠ ρα∗

3 , then P(Aα
n ) → 0 when n → ∞ also, because

ρ̂α
3 − ρ̂α∗

3 → ρα
3 − ρα∗

3 = 0 almost surely when ρα
3 = ρα∗

3 , then P(Aα
n ) → 0. Hence P(An) → 0 when n → ∞.

To show the convergence ρ̂α
3 − ρ̂α∗

3 → ρα
3 − ρα∗

3 consider the processes

ξα
n =

√
n


ρ̂α
3 − ρα

3


, α ∈ A.

For each direction α ∈ A we can write ρ̂α
3 − ρ̂α∗

3 = ρα
3 −ρα∗

3 +
(ξα

n −ξα∗

n )
√
n . The difference ξα

n −ξα∗

n√
n → 0 almost surely, because

the limit variance of the numerator is finite by item (2) of Corollary 5.1.
Consider now

ξmax
n =

√
n


max

α


ρ̂α
3


− ρα∗

3


we can establish inferior and superior bounds for the cumulative distribution function of ξmax

n , as follows

P(ξα∗

n ≤ x) ≤ P(ξmax
n ≤ x) = P(ξmax

n ≤ x, An) + P(ξmax
n ≤ x, Ac

n)

where the inequality is a consequence of ρ̂α∗

3 ≤ maxα


ρ̂α
3


.

By the definition of An, we have ∀w ∈ Ac
n, ξmax

n (w) = ξα∗

n (w) almost surely, then

P(ξmax
n ≤ x) ≤ P(An) + P(ξα∗

n ≤ x, Ac
n).

As a consequence P(ξmax
n ≤ x) = P(ξα∗

n ≤ x) when n → ∞. By Remark 4.2 and by item (2) of Corollary 5.1 applied over
ρ̂α∗

3 the result follows. �

Remark 5.3. By Theorem 5.3, ρ̂max
3 is an asymptotically unbiased estimator of ρα∗

3 and Var(ρ̂max
3 ) → 0 when n → ∞. As a

consequence, by Chebyshev’s inequality, we guarantee the convergence in probability, ρ̂max
3 →

P ρα∗

3 when n → ∞, i.e. ρ̂max
3

is asymptotically consistent.

For an arbitrary dimension d with each component of the vector α, αi = 1, i = 1, . . . , d, Deheuvels [4] obtains the de-
composition of the process given by Eq. (22) into 2d

− d − 1 asymptotically independent sub-processes (see Dugué [6]), in
order to test for multivariate independence. As summarized in Quessy [21], the same idea holds for an arbitrary dimension
d, αi = −1, i = 1 . . . , d. The large sample representation of those processes, through the Möbius decomposition of the
empirical copula process and of the survival copula process allows us to characterize the asymptotic behavior of five new
test statistics, to test independence; see Quessy [21]. It would be natural to investigate, under the conditions of Theorem 5.1
and for an arbitrary value αi ∈ {−1, 1} how to define a family of statistics to test independence, and obtain its asymptotic
distributions and its asymptotic relative efficiency (see Genest et al. [15] and Quessy [21]), those topics await further study.
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Table 2
Cases simulated. B(a, b, c, d) and G(a, b, c, d) denote the trivariate Beta distribution and the trivariate
Gamma distribution with parameters a, b, c, d respectively. B2(a, b, c, d) denotes the distribution of
(Y1, Y2, Y3) where (Y1, 1 − Y2, Y3) has distribution B(a, b, c, d). D1D2D3(a, b, c) denotes the d-vine copula
model where c12 is the density of a copula D1 with parameter a, c23 is the density of a copula D2 with
parameter b and c13|2 is the density of a copula D3 with parameter c. Di = F denotes the Frank copula
and Di = G denotes the Gumbel copula.

Case Distribution Parameters Observation illustrated

1 G(a, b, c, d) (1, 0.25, 0.25, 4) 2
2 GFG(a, b, c) (5, −7, 2)
3 GGF(a, b, c) (3, 10, −0.5)

4 FFF(a, b, c) (−5, −10, −2) 3
5 B(a, b, c, d) (1, 2, 2, 4)
6 B(a, b, c, d) (1, 0.25, 6, 4)
7 B(a, b, c, d) (1, 4, 0.25, 2)
8 GGF(a, b, c) (10, 10, −10)
9 FFF(a, b, c) (−7, −7, −10)

10 B2(a, b, c, d) (1, 2, 2, 4) 4
11 B2(a, b, c, d) (1, 0.25, 4, 4)
12 B2(a, b, c, d) (1, 4, 0.25, 2)

6. Simulations and applications

6.1. Simulations

We simulated from trivariate Beta and Gamma distributions with diverse parameters. The exact definitions for the mod-
els and the simulation methods can be found in Johnson and Kotz [18] (page 231 for the Beta distribution and page 216 for
the Gamma distribution). We simulated trivariate d-vine copulas, constructed through combinations of Frank and Gumbel
copulas. B(a, b, c, d) denotes the trivariate Beta distribution with parameters a, b, c, d and G(a, b, c, d) denotes the trivari-
ate Gamma distribution with parameters a, b, c, d. We also simulated random vectors (X1, X2, X3) from the trivariate Beta,
B(a, b, c, d) and we define, (Y1, Y2, Y3) = (X1, (1 − X2), X3). Let B2(a, b, c, d) denote the distribution of (Y1, Y2, Y3). In the
cases of the d-vine copulas, we used the R package ‘‘vines’’ (Multivariate Dependence Modeling with Vines) to simulate three
different trivariate models with diverse parameters. Following the notation in Aas et al. [1], D1D2D3(a, b, c) denotes the d-
vine copula model where c12 is the density of a copula D1 with parameter a, c23 is the density of a copula D2 with parameter
b and c13|2 is the density of a copula D3 with parameter c. For i = 1, 2, 3,Di = F denotes the Frank copula and Di = G
denotes the Gumbel copula.

The accuracy of the estimator ρmax
3 can be estimated using a bootstrap approach (see Schmid and Schmidt [23]). In our

simulation study, to evaluate the variance of the ρmax
3 estimator we simulated 1000 samples for each sample size 500, 1000

and 5000.
The choice of Beta and Gamma distributions and the particular structure of the d-vine copulas wasmade to cover a broad

spectrum of the values of the pairwise Spearman’s rho and to cover several relationships among the 3-dimensional versions
of Spearman’s rho. With these we obtain, a variety of directional dependences that show several aspects of the new index.
We emphasize that while the copula is used to derive the index, in practice (simulation and data sets), the underlying copula
is not needed to estimate the index, we only use the ranks of the observations.

6.1.1. Results
We implemented twelve different cases, given by Table 2, that illustrate the observations following Table 1. For each

case and each sample size n = 500, 1000, 5000, we show in Table 3, mean values for 1000 simulated samples of
ρ̂+

3 , ρ̂−

3 , ρ̂∗

3 , ρ̂
max
3 , σ̂ρmax

3
(standard deviation of ρ̂max

3 ), mode of the estimated maximal direction (α̂1, α̂2, α̂3) and proportion
of times in which the estimated direction was the mode (p̂α).

Cases 1, 2 and 3 illustrate observation 2. For cases 1 and 2, ¯̂ρ
max
3 = ¯̂ρ

−

3 while for case 3 ¯̂ρ
max
3 = ¯̂ρ

+

3 . Cases 4, 5, 6 and 7
illustrate observation 3, in each case the pairwise correlations and the 3-dimensional versions of Spearman’s rho, ¯̂ρ

∗

3,
¯̂ρ

+

3 , ¯̂ρ
−

3

are all negative. Those four cases show the maximal (and positive) ¯̂ρ
max
3 can be detected in different directions (α1, α2, α3).

If we focus on case 7 we note that the scatterplot of the simulated observations (Fig. 1 (left)) shows that the Spearman
correlation ρ13 is negative but the maximal dependence is not evident. The direction (−1, 1, 1) of maximal dependence is
clear from the scatterplot of margins transformed to [0, 1] by scaling ranks; see Fig. 1 (right). We emphasize case 4, in which
we illustrate a situation with ¯̂ρ

∗

3 = ¯̂ρ
+

3 = ¯̂ρ
−

3 .
Cases 8 and 9 show situations with exactly two negative pairwise correlations (observation 3). In addition, the

3-dimensional versions of Spearman’s rho, ¯̂ρ
∗

3,
¯̂ρ

+

3 , ¯̂ρ
−

3 are all negative and take the same value.
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Table 3
For each case, the mean values of Spearman correlations, ρ̂+

3 , ρ̂−

3 , ρ̂∗

3 , ρ̂
max
3 , σ̂ρmax

3
(standard deviation of ρ̂max

3 ), mode of the estimated maximal direction
(α̂1, α̂2, α̂3) and p̂α , the proportion of times in which the estimated direction was the mode, for 1000 simulated samples of size n = 500, 1000, 5000.

C n ¯̂ρ12
¯̂ρ13

¯̂ρ23
¯̂ρ

−

3
¯̂ρ

+

3
¯̂ρ

∗

3
¯̂ρ
max
3 σ̂ρmax

3
α̂1 α̂2 α̂3 p̂α

1 500 0.778 0.359 0.358 0.530 0.466 0.498 0.530 0.028 −1 −1 −1 1.00
1000 0.777 0.362 0.361 0.531 0.469 0.500 0.531 0.019 −1 −1 −1 1.00
5000 0.778 0.361 0.361 0.532 0.469 0.500 0.532 0.009 −1 −1 −1 1.00

2 500 0.942 0.483 0.679 0.723 0.680 0.701 0.723 0.023 −1 −1 −1 1.00
1000 0.942 0.481 0.677 0.722 0.679 0.700 0.722 0.016 −1 −1 −1 1.00
5000 0.943 0.483 0.679 0.723 0.680 0.702 0.723 0.007 −1 −1 −1 1.00

3 500 0.848 0.460 −0.010 0.422 0.443 0.433 0.443 0.027 1 1 1 0.93
1000 0.848 0.459 −0.012 0.421 0.442 0.432 0.442 0.019 1 1 1 0.98
5000 0.849 0.460 −0.011 0.422 0.443 0.433 0.443 0.009 1 1 1 1.00

4 500 −0.759 −0.242 −0.315 −0.439 −0.438 −0.439 0.288 0.021 1 −1 1 0.83
1000 −0.760 −0.242 −0.316 −0.439 −0.439 −0.439 0.283 0.017 1 −1 1 0.92
5000 −0.761 −0.241 −0.316 −0.439 −0.439 −0.439 0.280 0.008 1 −1 1 1.00

5 500 −0.259 −0.452 −0.452 −0.358 −0.417 −0.387 0.245 0.027 1 1 −1 1.00
1000 −0.258 −0.453 −0.452 −0.358 −0.417 −0.388 0.245 0.019 1 1 −1 1.00
5000 −0.259 −0.453 −0.453 −0.358 −0.418 −0.388 0.245 0.009 1 1 −1 1.00

6 500 −0.109 −0.073 −0.783 −0.311 −0.332 −0.322 0.296 0.022 1 −1 1 0.66
1000 −0.109 −0.074 −0.783 −0.311 −0.333 −0.322 0.290 0.015 1 −1 1 0.73
5000 −0.109 −0.073 −0.784 −0.312 −0.333 −0.322 0.284 0.008 1 −1 1 0.93

7 500 −0.147 −0.668 −0.075 −0.283 −0.310 −0.297 0.265 0.024 −1 1 1 0.84
1000 −0.144 −0.668 −0.077 −0.283 −0.309 −0.296 0.260 0.019 −1 1 1 0.99
5000 −0.146 −0.668 −0.077 −0.284 −0.310 −0.297 0.259 0.009 −1 1 1 1.00

8 500 0.985 −0.746 −0.839 −0.200 −0.200 −0.200 0.861 0.014 −1 −1 1 1.00
1000 0.985 −0.748 −0.840 −0.201 −0.201 −0.201 0.861 0.010 −1 −1 1 1.00
5000 0.985 −0.747 −0.840 −0.201 −0.200 −0.200 0.859 0.004 −1 −1 1 1.00

9 500 −0.760 0.430 −0.854 −0.394 −0.395 −0.395 0.686 0.019 1 −1 1 1.00
1000 −0.760 0.429 −0.854 −0.395 −0.395 −0.395 0.685 0.015 1 −1 1 1.00
5000 −0.761 0.430 −0.854 −0.395 −0.395 −0.395 0.683 0.006 1 −1 1 1.00

10 500 0.261 −0.451 0.451 0.058 0.116 0.087 0.243 0.028 −1 1 1 1.00
1000 0.258 −0.452 0.453 0.057 0.116 0.086 0.245 0.020 −1 1 1 1.00
5000 0.259 −0.452 0.453 0.057 0.116 0.087 0.245 0.009 −1 1 1 1.00

11 500 0.072 −0.110 0.784 0.238 0.259 0.248 0.297 0.020 −1 1 1 0.67
1000 0.074 −0.109 0.783 0.239 0.260 0.249 0.290 0.015 −1 1 1 0.73
5000 0.074 −0.109 0.784 0.239 0.260 0.250 0.284 0.008 −1 1 1 0.91

12 500 0.146 −0.667 0.076 −0.161 −0.135 −0.148 0.265 0.023 1 1 −1 0.82
1000 0.147 −0.667 0.075 −0.162 −0.135 −0.148 0.261 0.018 1 1 −1 0.89
5000 0.146 −0.668 0.077 −0.162 −0.135 −0.148 0.259 0.009 1 1 −1 1.00

Fig. 1. 100 simulated samples for trivariate Beta distribution. Scatterplot for the simulated datawith (left) originalmargins and (right)margins transformed
to [0, 1] by scaling ranks.

Cases 10, 11 and 12 illustrate observation 4, with negative ¯̂ρ13. In the first two cases the 3-dimensional versions of
Spearman’s rho, ¯̂ρ

∗

3,
¯̂ρ

+

3 , ¯̂ρ
−

3 are all positive. In the last, the 3-dimensional versions of Spearman’s rho, ¯̂ρ
∗

3,
¯̂ρ

+

3 , ¯̂ρ
−

3 are
all negative. Fig. 2 (cases 11 and 12) shows that it may be hard to identify the direction of maximal dependence from
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Fig. 2. 100 simulated samples for trivariate B2 distribution. Scatterplot for the simulated data with original margins.

the scatterplot of the simulated observations, when the data shows moderate/strong pairwise correlations, on the left
¯̂ρ23 = 0.784 (n = 5000) and on the right ¯̂ρ13 = −0.668 (n = 5000).

We observe that cases 4 through 9 and 12 illustrate that both ¯̂ρ
+

3 and ¯̂ρ
−

3 can be negative. Cases 10 and 11 illustrate that
even when ¯̂ρ

+

3 and ¯̂ρ
−

3 are both positive ¯̂ρ
max
3 may be larger than either ¯̂ρ

+

3 or ¯̂ρ
−

3 .

From Table 3, we see that the relationship between σ̂ρmax
3

and the sample size n follows the 1
√
n rule as expected from

Theorem 5.3.

6.2. Application to a real data set

Our data consists of trivariate energy measures for 132 recorded sentences in English (EN), 216 sentences in French (FR)
and 216 sentences in Catalan (CA), digitalized at 16.000 samples a second (i.e. sample rate of 16 kHz). This data comes from
a corpus belonging to the Laboratorie de Sciences Cognitives et Psycholinguistique (EHESS/CNRS). For each sentence, the three
energy measurements correspond to the energy between 80 and 800 Hz, 820 and 1480 Hz and between 1500 and 5000 Hz
respectively.

6.2.1. Energy bands
Denote by ϑ l

t(f ) the power spectral density at time t and frequency f , for language l, which is the square of the coefficient
for frequency f of the local Fourier decomposition of the speech signal. The time is discretized in steps of 2 ms and the
frequency is discretized in steps of 20 Hz. The values of the power spectral density are estimated using a 25 ms Gaussian
window.

The sentences j, j = 1, . . . , J l (J l = 132 if l =EN, J l = 216 if l =FR or CA) are isolated phrases (not a running text)
to guarantee the independence between them. For each sentence j of length T l

j , j = 1, . . . , J l, we consider the following
stochastic processes, named energies, t = 1, . . . , T l

j ,

η
j,l
1 (t) =


f=80,100,...,800

ϑ
j,l
t (f ), η

j,l
2 (t) =


f=820,1520,...,1480

ϑ
j,l
t (f ),

η
j,l
3 (t) =


f=1500,1520,...,5000

ϑ
j,l
t (f ).

Our measurements are the mean value energies along the sentence for each sentence j of length T l
j . That is, the random

variables we will analyze are E l
1, E

l
2 and E l

3, where for each sentence j,

E j,l
1 =

1
T l
j


t=1,...,T lj

η
j,l
1 (t), E j,l

2 =
1
T l
j


t=1,...,T lj

η
j,l
2 (t), E j,l

3 =
1
T l
j


t=1,...,T lj

η
j,l
3 (t).

Fixed l, we assume that (E j,l
1 , E j,l

2 , E j,l
3 ) are identically distributed for j = 1, . . . , J l. The frequencies for the bands were chosen

based on previous works about automatic segmentations in vowels and consonants of the speech signal by Garcia et al. [14].
Abercrombie [2] claims that the languages are clustered into rhythmic classes, commanded by different rhythmic units,

(a) syllable-timed class characterized by the syllabic intervals (supposed to be equal); (b) stress-timed class in which the
unit is defined by the stress and (c) mora-timed class where the rhythmic unit is given by the mora, which is a sub-unit of
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Fig. 3. Scatterplot for the trivariate energy data with (left) original margins and (right) margins transformed to [0, 1] by scaling ranks, for English.

Table 4
Estimated parameters for the trivariate energy data (E1, E2, E3), for English (EN), French (FR) and Catalan (CA).

l ρ̂12 ρ̂13 ρ̂23 ρ̂−

3 ρ̂+

3 ρ̂∗

3 ρ̂max
3 (α1, α2, α3)

EN −0.924 −0.635 0.434 −0.379 −0.371 −0.375 0.668 (1, −1, −1)
FR −0.881 −0.825 0.684 −0.356 −0.325 −0.341 0.812 (1, −1, −1)
CA −0.514 −0.713 0.036 −0.389 −0.405 −0.397 0.429 (−1, 1, 1)

Table 5
Estimated parameters for the trivariate energy data (−E l

1, E
l
2, E

l
3) and (E l

1, −E l
2, −E l

3), for English.

ρ̂12 ρ̂13 ρ̂23 ρ̂−

3 ρ̂+

3 ρ̂∗

3 ρ̂max
3 (α1, α2, α3)

(−E l
1, E

l
2, E

l
3) 0.924 0.635 0.434 0.668 0.660 0.664 0.668 (−1, −1, −1)

(E l
1, −E l

2, −E l
3) 0.924 0.635 0.434 0.660 0.668 0.664 0.668 (1, 1, 1)

the syllable. For example in Japanese, syllables with short vowels have onemora and syllables with long vowels have two or
more morae. Dauer [3] as well as Ramus et al. [22] extract twomain phonetic/phonologic properties and differences related
to (a) and (b), the characteristics are (i) syllable structure: stress-timed languages have a greater variety of syllable types than
syllable-timed languages and (ii) vowel reduction: in stress-timed languages, unstressed syllables usually have a reduced
vocalic system. According to that, French and English aremembers of different classes, (a) and (b) respectively, while Catalan
has a syllabic system according to a typically syllabic language but it has vowel reduction, i.e. Catalan mixes (i) and (ii) (see
Ramus et al. [22]). Several correlates have been proposed for detecting historical changes in some language for example
in Portuguese, see Frota et al. [8], for detecting differences between branches of Portuguese, see Galves et al. [13] and for
detecting the existence of rhythmic classes, see for example Ramus et al. [22] andGarcia et al. [14]. Herewewant to introduce
a correlate based on the three band of energies (from the spectrogram). In specific, we aim to introduce as a correlate our 3-
dimensional index of dependence which shows a new perspective to measure and understand the differences between the
languages in function of bands of energies.Wenote that by conception (correlations of ranks of the observations) this index is
resistant to natural differences in the quality/conditions of recording of each sentence and for each language.We conjectured
that in general, there exists a compensation between the bands of energies for each language. More specifically, large values
of E l

1, tend to occurwith small values of E l
2 and E l

3, because themajority of the phonemes showhigh values in the inferior band
of energy.

6.2.2. Results
First of all we focus on English, to analyze in detail the results for this language. For English, the maximal directional

coefficient is ρ̂max
3 = 0.668 in direction (1, −1, −1) so that ρ̂−

3 = 0.668 for the random variables (−E l
1, E

l
2, E

l
3) and

ρ̂+

3 = 0.668 for the random variables (E l
1, −E l

2, −E l
3). This dependence is clearly visible in Fig. 3. We see the scatterplot

for the random variables (−E l
1, E

l
2, E

l
3) in Fig. 4 (left) and for the random variables (E l

1, −E l
2, −E l

3) in Fig. 4 (right) and the
estimated parameters in Table 5.

For all the languages the index is given by the equation ρ̂
(1,−1,−1)
3 =

2
3 ρ̂23 − ρ̂−

3 or ρ̂
(−1,1,1)
3 =

2
3 ρ̂23 − ρ̂+

3 ; in either
case, we observe the relevance of the pairwise correlation ρ̂23 (the correlation between energy bands 2 and 3). In this
way the index of maximal dependence is given by a transformation of that pairwise correlation and some contribution
of ρ̂−

3 (ρ̂+

3 ) depending on the language. From Table 4 we can verify that positive dependence is detected by ρmax
3 in the
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Fig. 4. Scatterplot for (−E l
1, E

l
2, E

l
3) on the left and (E l

1, −E l
2, −E l

3) on the right, for English.

direction (1, −1, −1) in the case of English and French. This can be interpreted as ‘‘large’’ values of E l
1 tend to occur with

‘‘small’’ values of E l
2 and E l

3, l = EN, FR. However, the maximal positive dependence in the case of Catalan is verified in
the direction (−1, 1, 1), i.e. ‘‘small’’ values of E l

1 tend to occur with ‘‘large’’ values of E l
2 and E l

3, l = CA. The different ways
that languages distribute the energy into the three bands could be used to improve the study of languages through their
energies (see Garcia et al. [14]). It is advantageous to have a single calculation (ρmax

3 ) with remarkable statistical properties,
rather than an ad-hoc procedure where one must perform 8 calculations to find the maximal correlation and its direction.
In addition the new index identifies the direction of maximal dependence, and through it, we can track the composition of
the index, pointing the contribution (in terms of magnitude of the index) of each one of the three pairwise Spearman’s rho
and 3-dimensional versions of Spearman’s rho.

We use the bootstrap (see Schmid and Schmidt [23]) to estimate the standard deviation of ρ̂max
3 , and using a sample

size equal to 500 was obtained σ̂ρmax
3

= 0.01 for the 3 languages. In addition we computed the success rate of (α1, α2, α3)

(Table 4) that was 0.686, 0.926 and 0.79 for English, French and Catalan respectively. For the magnitude of ρ̂max
3 , we observe

that for French, ρ̂max
3 achieves the largest value followed by English while ρ̂max

3 of Catalan achieves the least value among
the 3 languages. We conjecture that syllable-timed languages can reach the highest values of ρmax

3 , while the stress-timed
languages can reach the lowest values.Mixed languages can achieve lower values, depending on the occurrence of the vowel
reduction.

7. Conclusion

The index ρmax
3 of maximal dependence introduced in this paper to detect dependence in trivariate distributions has a

simple expression as a function of the pairwise Spearman’s rho coefficients and the three common 3-dimensional versions
of Spearman’s rho. The definition of ρmax

3 is based on the coefficients of directional dependence (see Nelsen and Úbeda-
Flores [20]). Although ρmax

3 has nice properties such as normalization, invariance under permutations and monotone
transformations, and continuity, it fails to be ameasure ofmultivariate concordance. The existence ofwell-knownestimators
for the usual pairwise Spearman’s rho coefficients and the three common 3-dimensional versions of Spearman’s rho allows
us to define similar estimators of ρmax

3 and the coefficients of directional dependence.We show in this paper that there exists
an empirical process related to our index (similarly for the coefficients of directional dependence), that allows us to establish
desirable properties for the estimator of the index, that is, it is asymptotically normal distributed, asymptotically unbiased
and asymptotically consistent. Our simulation study exhibits caseswhere the direction ofmaximal dependence can be either
easy or difficult to recognize by examining scatter-plots after replacing the data by ranks. The index ρmax

3 identifies positive
dependence undetected by the existing 3-dimensional versions of Spearman’s rho, for example, in cases where at least two
of the pairwise Spearman’s rho correlations are negative. We exhibit this situation in our simulation study and in a real
data set.

The study ofρmax
3 has revealed somepreliminary results that are beyond the scope of this paper. For example, Theorem5.1

is true for an arbitrary dimension d ≥ 3, as are Theorems 5.2 and 5.3. However, the geometric interpretations of the index
ρmax
d , Theorem 3.1 and Table 1 need to be reformulated in dimensions higher than 3. To analyze ρmax

d for d > 3 it is necessary
to first investigate directional coefficients ρα

d , generalizations of the coefficients ρα
3 introduced in Nelsen and Úbeda-

Flores [20]. Extending the results of this paper to construct indexes in higher dimensions based both on generalizations
of Spearman’s rho and other measures of association is the subject of future work.
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