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Si-TCP Synthesized from “Mg-free” Reagents Employed as Calcium Phosphate Cement
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The influence of silicon doping on calcium phosphate cement were explored in this work. 
α-TCP and Si-α-TCP were prepared by solid state reaction employing “Mg-free” CaHPO

4
, 

CaCO
3
 and CaSiO

3
 as precursors. It was possible to obtain TCP powders with low contents of β phase 

as contaminant. Cement liquid phase was an aqueous solution containing 2.5 wt. (%) of Na
2
HPO

4
 and 

1.5 wt. (%) of citric acid. The liquid-to-powder ratio was 0.6 mL.g–1. Chemical, physical and mechanical 
properties of the cement samples were determined by means of XRD, FTIR, XRF, compressive 
strength and SEM. The calcium phosphate cements obtained achieved satisfactory properties; however, 
Si-α-TCP presented a decrease on the rate of setting reaction.
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1. Introduction
The need for new biomaterials which could improve 

life quality of people who suffer from oldness diseases 
or who have any bone tissue injury due to accidents and 
diseases like obesity and cancer are resulting in a growing 
number of researches. In this context, the development of 
new orthopedics biomaterials based on calcium phosphate 
compounds is relevant once they present excellent bioactivity 
and biocompatibility due to its chemical composition similar 
to the mineral part of bone and teeth1-3.

Silicon substitution into some phosphorous sites of 
calcium phosphate bioceramics is a promising approach to 
develop new biomaterials for orthopedics applications due 
to the increased bioactivity and cell differentiation on the 
material’s surface which could be promoted by the presence 
of this element4-11. Therefore, silicon doped α-tricalcium 
phosphate (Si-α-TCP), is attracting the attention of 
researchers since its employment as bone cement could be 
of great interest. Nevertheless, it is still not well stabilished 
if the enhanced biological properties of the silicon doped 
calcium phosphates compounds is due to the presence of 
silicon itself or it is because of its influence on the chemical 
properties of the material12-14.

Moreover, silicon is known to stabilize the α-tricalcium 
phosphate, α-TCP, structure and to promote its formation 
at lower temperatures15,5,16,17 leading to a cost reduction of 
its processing. It is well known that the synthesis of a pure 
α-TCP is not an easy task since all process conditions can 
change its final properties, or even inhibit its formation. The 
most limiting factor is the quality of the starting reagents 
which may preclude the formation of α-TCP at temperatures 

as high as 1600 °C10,13. Therefore, the reproducibility of 
α-TCP synthesis becomes very difficult and, in some 
cases, impossible. In a previous work, our group has 
developed simple synthetic methods to synthesize high 
purity reagents to eliminate the most important impurity: 
magnesium, which is an established stabilizer element of 
β-tricalcium phosphate, β-TCP16. It has been discovered that 
the standardization of the reagents properties guaranteed the 
reproducibility of α-TCP manufacturing process and the 
formation of a high purity α-TCP and Si-α-TCP. Thus, the 
major objective of this study is to investigate the influence 
of Si on the chemical, physical and mechanical properties 
of the calcium phosphate cement.

2. Material and Methods

2.1. TCP precursors and TCP powders synthesis

“Mg-free” CaHPO
4
 and CaCO

3
 were synthesized 

by aqueous solution precipitation in the presence of 
ethylenediamine tetraacetic acid (EDTA). CaSiO

3
 were 

synthesized by solid state reaction of “Mg-free” CaCO
3
 

and electronic grade SiO
2
, which was kindly provided by 

the Photonic Materials Laboratory-UNICAMP, Brazil16.
Afterwards, two tricalcium phosphate powders, α-TCP 

and Si-α-TCP, were synthesized by solid state reaction. The 
syntheses parameters are displayed in Table 1. For α-TCP, 
a stoichiometric mixture of CaCO

3
 (<0.02 wt. (%) of Mg) 

and CaHPO
4
 (<0.0001 wt. (%) of Mg) was fired at 1300 °C. 

Meanwhile, Si-α-TCP was obtained by adding 2 wt. (%) of 
CaSiO

3 
(<0.0001 wt. (%) of Mg) to the mixture of CaHPO

4
 

and CaCO
3
. The firing temperature was 1250 °C. For both 
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materials heating rate was 10 °C/min and after the dwelling 
time (6 hours) the samples were let to cool inside the furnace 
without quenching. Finally, the powders were ball milled for 
48 hours.

2.2. Calcium phosphate cements

Cement samples were prepared using an aqueous solution 
containing 2.5 wt. (%) of Na

2
HPO

4
 and 1.5 wt. (%) of C

6
H

8
O

7
 

(citric acid) with a liquid-to-powder ratio equal to 0.60 mL.g–1. 
After molding in Teflon molds (6 × 12 mm) samples were left 
in a 100% relative moisture environment for 24 hours. Then, 
cement cylinders were polished, demolded and immersed in 
simulated body fluid (SBF) for 24 and 168 hours at 37 °C. 
After each immersion period, samples were gently rinsed 
with distillated water, immersed in acetone to stop the setting 
reaction and dried at 100 °C for 6 hours.

2.3. Characterizations

TCP powders and cement samples crystalline phase 
analyses were carried out by means of qualitative X ray 
diffraction (Rigaku DMAX 2200, 20-40° (2θ), 0.01° (2θ)/s, 
40 mA and 20 kV). JCPDS files used for phase identification 
were 09-0348 for α-TCP, 09-0169 for β-TCP and 46-0905 
for calcium deficient hydroxyapatite, CDHA. Moreover, a 
quantitative XRD analysis was performed to quantify β-TCP on 
the TCP powders. It was employed the internal pattern method 
in which a diffraction line from the phase being quantified is 
compared with a diffraction line from a standard mixed with 

the sample in known proportions18. The standard employed was 
Al

2
O

3
 and β-TCP diffraction line used was (2 1 4).

Chemical composition of the samples were evaluated 
by means of fourier transformed infrared spectroscopy. 
Samples were diluted in KBr and analyzed in a Perkin 
Elmer 1600 FT-IR spectrometer with a scanning range from 
450 to 4000 cm–1 and resolution of 2 cm–1.

Powders stoichiometry was determined by quantitative 
X-ray fluorescence (MagiX Super Q Version 3.0 X-ray 
fluorescence spectrometer, Philips, The Netherlands). 
Samples were weighed at 0.3000 g, mixed with 5.5 g of 
spectral grade Li

2
B

4
O

7
 and melted in a Pt/Au crucible and 

formed into disks in a special controlled furnace Perl’X3 
(Philips, The Netherlands). Calibration curves were prepared 
using certified composition standards of natural and 
synthetic calcium phosphates and calcium silicates. Finally, 
BET specific surface area and particle size distribution 
were determined using a Micromeritics ASAP 2010 and a 
Malvern Mastersizer S, respectively.

Cement setting times were determined using the 
ASTM-C266-04 standard19. Cement samples compressive 
strength after each time of setting were determined 
using a MTS, Test Star II with a 10 kN cell attached 
and a compression velocity of 1 mm/min. The fracture 
surface was gold coated (BAL-TEC, SCD 050) and 
its morphology was analyzed on a scanning electron 
microscope (JEOL, JXA-840A).

3. Results
For both samples it was possible to obtain TCP 

powders in its α-TCP form as can be observed on XRD 
diffractograms of Figure 1. The contents of β-TCP were 
very low: 8 and 4 wt. (%) for α-TCP and Si-α-TCP, 
respectively. Powders stoichiometry is displayed on Table 2, 
Ca/P and Ca/P+Si ratios were 1.50 and 1.46, respectively.

Table 1. TCP powders synthesis parameters.

Sample CaSiO3 

(wt. (%))
Mg

(wt. (%))
T

(°C)
Heating rate

(°C/min)
Dwell time

(hours)

α-TCP 0 0.0059 1300
10 6

Si-TCP 2 0.0058 1250

Figure 1. XRD patterns of powders and cement samples. Cement samples: after 24 hours at 100% of relative moisture (α-TCP-c0 and 
Si-TCP-c0), 1 day in Ringer (α-TCP-c1 and Si-TCP-c1) and 7 days in Ringer (α-TCP-c7 and Si-TCP-c7). β-TCP weight content are 
4 wt. (%) for Si-TCP and 8 wt. (%) for α-TCP. Legend: α = α-TCP and β = β-TCP and * = apatite.
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The effectiveness of the solid state reaction employed 
was also elucidated by FTIR analysis since the absorption 
bands present on both spectrums (Figure 2) are characteristic 
of α-TCP as displayed on Table 320.

Moreover, both TCP powders have very similar 
BET specific surface area (0.8030 ± 0.0125 and 
0.6930 ± 0.0033 m2/g for α-TCP and for Si-TCP, 
respectively) and particle size distribution after 48 hours of 
ball milling. The mean particle diameter was 9.61 ± 0.14 µm 
for α-TCP and 10.68 ± 0.08 µm for Si-TCP. This results are 
resumed on Table 2.

Cement setting times are displayed on Table 4. For both 
cements the values obtained using the Gilmore Needles19 
were higher when compared to the values reported on the 
literature20,21. Initial setting time was 15 minutes for α-TCP 
and 30 minutes for Si-α-TCP. Moreover, final setting time 
was 43 minutes for α-TCP and 120 minutes for Si-α-TCP.

As can be observed on XRD patterns of Figure 1 α-TCP 
and Si-α-TCP setting reaction occurs by the dissolution of 
TCP phase and the precipitation of apatite crystals once 
these are the only crystalline phases observed during the 
role process. Indeed, as displayed on the FTIR spectrums 
of Figure 3 the apatite phase formed are calcium deficient 
hydroxyapatite (CDHA, Ca

9
(HPO

4
)(PO

4
)

5
OH) since their 

characteristics absorption bands (Table 5) are present in 
both spectrums. Moreover, it is possible to verify that both 
cements lead to an apatite phase which is also carbonated 
due to the CO

3
2– characteristics bands at 850 to 900 and at 

1350 to 1600 cm–1 (highlighted with a “*” on Figure 3).
Cement’s mechanical strength evolution with time of 

SBF immersion can be observed on Figure 4. It is verified 
that Si-α-TCP resulted on lower values of compressive 
strength after 7 days of immersion. Moreover, during the first 
day of immersion, Si-α-TCP did not achieve any mechanical 
resistance while α-TCP achieved values around 5 MPa.

Figure 2. FTIR spectrum of TCP powders.

Figure 3. FTIR spectrum of cement samples after 7 days of setting, 
Si-TCP-c7 and α-TCP-c7. “*” represents CO

3
2– absorbance bands.

Table 3. FTIR absorption bands of α-TCP20.

Absorption Bond Wavenumber [cm–1]

υ
1

P-O 963

υ
2

OPO 462

υ
3

P-O

1120
1100
1084
1025
990

υ
4

OPO

597
583
572
559

Table 4. Setting times of cement samples. T
i
 = initial setting time 

and T
f
 = final setting time.

Sample Ti [min] Tf [min]

Si-TCP 30 120

α-TCP 15 43

Table 2. BET specific surface area, Ca/P or Ca/(P + Si) ratios and particle size distribution.

Sample BET (m2.g–1) Ca/P or Ca/(P + Si) dMean (µm) 10% < d < 90% (µm)

α-TCP 0.8030 ± 0.0125 1.50 9.61 ± 0.14 1.08 ± 0.02-20.42 ± 0.29

Si-TCP 0.6930 ± 0.0033 1.46 10.68 ± 0.08 1.51 ± 0.01-20.33 ± 0.18

Cements fracture surface after 7 days of immersion 
can be observed on Figure 5. Silicon doping has resulted 
on smaller apatite crystals4 with morphology much similar 
to the biological apatite.

4. Discussion
The lower content of β-TCP on Si-α-TCP confirms 

the efficiency of Silicon in stabilizing the α-TCP phase by 
lowering the β → α phase transformation temperature4,5,22 
once the powder doped with Silicon resulted on purer 
α-TCP (4 wt. (%) of β-TCP) at a lower sintering temperature 
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work were sintered for longer times it would be expected 
a reduction on β-TCP content. Samples purity were also 
confirmed after Ca/P and Ca/P + Si ratios determination 
since their values are very close to the theoretical ones of 
TCP (α and β phases) compounds, 1.50.

During cement preparation, it was determined larger 
values of setting time. In a first moment, this fact can be 
explained by the high liquid-to-powder ratio employed 
0.60 mL.g–1 against 0.32-0.34 mL.g–1 normally used for 
conventional α-TCP cement8,20,21,25; however, this huge amount 
of liquid was necessary to guarantee the cement moldability. 
Moreover, the addition of citric acid to cement’s liquid 
phases has also contributed to the high setting times since 
this compound increases the TCP particles’ wettability and 
cement paste fluidity caused by a deflocculation on the TCP 
powder which also leads to a lower rate of setting reaction26. 
It is important to emphasize that without citric acid addition 
the liquid-to-powder ratio needed was higher than 1.0 mL.g–1.

Furthermore, by comparing XRD patterns of Figure 1 it 
is possible to infer that Silicon induces a reduction on the rate 
of setting reaction. In the first 24 hours, as it was expected, 
α-TCP (α-TCP-c0) started to solubilize together with 
CDHA precipitation. Surprisingly, for Si-TCP the setting 
reaction seems not to occur on the first 48 hours (Si-TCP-c0 
and Si-TCP-c1) since only α-TCP diffraction lines are 
observed on the XRD patterns. Finally, after 168 hours, for 
α-TCP cement the TCP → CDHA conversion has finished 
while Si-TCP cement still have some TCP without reacting.

The difference on TCP reactivity is responsible for the 
lower compressive strength achieved by Si-TCP cement, as 
displayed on the boxplot chart of Figure 4. At initial times 
samples “Si-TCP-c0” and “Si-TCP-c1” did not present any 
mechanical resistance while sample “α-TCP-c0” reached 
5.6 ± 0.9 MPa. As TCP → CDHA conversion evolves 
samples’ compressive strength enhances reaching after 
168 hours 21.5 ± 2.4 and 14.8 ± 2.6 MPa for α-TCP-c7 and 
Si-TCP-c7, respectively.

Nevertheless, it is important to observe that even 
though the mechanical resistance for Si-TCP cement after 
168 hour is lower than for α-TCP cement, this material had 
not reached the 100% TCP → CDHA conversion, thus, it is 
expected that its maximum mechanical resistance became 
higher after all Si-TCP is converted into CDHA.

5. Conclusions

Si-α-TCP was synthesized by a simple solid state 
reaction in which it was employed “Mg-free” reagents 
leading to lower sintering temperatures for both Si doped 
and non-doped α-TCP. Moreover, calcium phosphate 
cements obtained employing these TCP powders achieved 
satisfactory properties; however, Silicon has induced a 
decrease on the setting reaction velocity.
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Table 5. FTIR absorption bands of CDHA20.

Absorption wavenumber [cm–1]

OH extention 3572

υ
3
 (HPO

4
) 1133

δ OH deformation 1210

υ
3
 (PO

4
)

1087
1072
1046
1032

υ
1
 (PO

4
) 962

υ
5
 (HPO

4
) 870

OH oscilation 630

υ
 4
 (PO

4
)

474
462

Figure 5. SEM micrographs of cements fracture surface, Si-TCP-c7 
and α-TCP-c7, after 168 hours of setting. Apatite crystals are 
smaller for Si-TCP-c7 than for α-TCP-c7.

Figure 4. Compressive strength evolution with time. Legend: 
0 = Si-TCP-c0 or α-TCP-c0; 1 = Si-TCP-c1 or α-TCP-c1 and 
7 = Si-TCP-c7 or α-TCP-c7. At initial times Si-TCP did not have 
anymechanical resistance while α-TCP achieved a satisfactory 
value. After 7 days of SBF immersion α-TCP reached a higher 
compressive strength (p < 0.05).

(1250 °C). Based on results reported on the literature22-24 
depending on the Magnesium content in the precursors 
employed the temperature at which pure α-TCP can be 
synthesized could be raised up to 1500 °C, however, if 
the material is sintered at the right temperature and for 
enough time to guarantee the total β → α conversion it is 
possible to obtain pure α-TCP no matter how high is the 
Mg contamination. Then, if the powders synthesized on this 
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