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The fractional-dimensional space approach is extended to study exciton and shallow-donor states in
symmetric-coupled GaAs-Ga,Al,As multiple quantum wells. In this scheme, the real anisotropic “exciton
(or shallow donor plus multiple quantum well” semiconductor system is mapped, for each ex@tatono)
state, into an effective fractional-dimensional isotropic environment, and the fractional dimension is essentially
related to the anisotropy of the actual semiconductor system. Moreover, the fractional-dimensional space
approach was extended to include magnetic-field effects in the study of shallow-impurity states in
GaAs-Ga_,Al,As quantum wells and superlattices. In our study, the magnetic field was applied along the
growth direction of the semiconductor heterostructure, and introduces an additional degree of confinement and
anisotropy besides the one imposed by the heterostructure barrier potential. The fractional dimension is then
related to the anisotropy introduced both by the heterostructure barrier potential and magnetic field. Calcula-
tions within the fractional-dimensional space scheme were performed for the binding energisdike 1
heavy-hole direct exciton and shallow-donor states in symmetric-coupled semiconductor quantum wells, and
for shallow-impurity states in semiconductor quantum wells and superlattices under growth-direction applied
magnetic fields. Fractional-dimensional theoretical results are shown to be in good agreement with previous
variational theoretical calculations and available experimental measurements.

[. INTRODUCTION SL’s. An external perturbation of a system, such as the ap-
plication of electric and/or magnetic fields, is a powerful tool
Low-dimensional semiconductor systems have been ofor investigating matter properties, and it allows many stud-
great interest for the past two decades, not only because @#s in semiconductor systems. In particular, the application
the physics underlying various properties of these systemsf a magnetic field perpendicular to the semiconductor layers
but also due to their importance for potential applications inis expected to provide useful band structure data and several
electronic and optoelectronic devices. For a number of reamagneto-optical studies have been performed that yield
sons, most work on semiconductor systems has been carriestperimentdf*~2? and theoretica? =32 valuable information
out on llI-V semiconductor heterostructures, andon shallow impurity and exciton states under magnetic fields.
GaAs-Ga_,Al,As heterostructures, such as quantum wells Experimentally, of particular interest to this work, is the
(QW'’s), symmetric and asymmetric double QW’s, multiple investigation by Westgaardt al* of exciton states in
quantum wells(MQW'’s), quantum-well wires(QWW'’s), GaAs-Gg /AlgsAs symmetric coupled double quantum
quantum dotgQD’s), periodic and quasiperiodic superlat- wells (SCDQW'S by photoluminescencéL) and photolu-
tices(SL’s), and so on, have been widely studied. The con-minescence excitatiofPLE) spectroscopy, the study by
finement of carriers in GaAs-Ga,Al,As MQWs and SLs Reynoldset al,'® who measured the exciton diamagnetic
leads to the formation of subbands with a dispersion thashifts in bulk GaAs and in GaAs-GaAl,As MQW'’s as
would depend on the strength of the interwell coupling. Infunctions of applied magnetic fields using high-resolution
particular, impurity and exciton states may be significantlyoptical spectroscopy at liquid-helium temperature, and the
modified by the confinement, and much experiméntand  work by Skrommeet al.,*® who studied the cyclotron motion
theoreticdi~*3 work have been devoted to the quantitative of electrons in coupled-well GaAs-GaAl,As SL's by PL
understanding of the physical properties of shallow impuri-of conduction-band to acceptor transitions in magnetic fields
ties and excitons in GaAs-Ga,Al,As QW’'s, MQW'’s and up to 13 T, applied either parallel or perpendicular to the
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layers. From the theoretical point of view, the problem of Il. FRACTIONAL-DIMENSIONAL SPACE APPROACH:
hydrogeniclike systems, in free space or in bulk semiconduc- MAGNETIC FIELD EFFECTS
tors, under a constant external magnetic field was extensively

. . - We first ider th bl f a shallow d t th
studied by Aldrich and Greerfé,who used a variational © Tirst consider :he provlem of a shaliow donor at the

osition r; in a semiconductor GaAs-GaAl,As hetero-

gies of the E-like ground state and of 2. excited states of QW, MQW, or a S, within the effective-mass and nonde-

band and confined in a GaAs-GaAl,As QW were calcu-  magnetic field. The Hamiltonian for the shallow impurity
lated, using a variational procedure, by Chaudhuri angnay be given by

Bajaf* and Greene and Bafdjas functions of the GaAs well
width and applied magnetic field along the axis of growth of 1 e \? e?
the heterostructure. The magnetic-field dependence of hydro- H= W( p+ EA> W
genic energy levels in GaAs-GaAl,As QW structures was '
also studied in Ref. 26, whose authors used strongwherem* is the conduction-band effective mas4z) is the
perturbation theory and a perturbative-variational approachheterostructure confining potential, ardis the dielectric
The fractional-dimensional space approdcf?was suc- constant of the semiconductor GaAs,GgAl,As hetero-
cessfully used to describe the absorption spectra, and excit@tructure(for simplicity, m* and e are taken as the GaAs
and donor properties in semiconductor QW’s, QWW'’s andbulk values throughout the heterostrucjuré/e choose the
SL'’s, and biexcitons, exciton-phonon interaction, the Starkmagnetic field along the direction and the symmetric gauge
shift of excitonic complexes, and the refractive index in QWfor the vector potential, so tha#=Bxr/2, and Hamiltonian
structures. In this approach, the anisotropic problem in d2.1) may be written as
three-dimensional environment is treated as isotropic in an
effective fractional-dimensional space, and the value of the,

+V(2), (2.1

2 2

h 2 i 1 * () 2(y2 2
fractional dimensiorD is associated with the degree of an-?_'_ Tome v AL s MRy~ elr—ril V().
isotropy of the actual three-dimensional system. Recently, (2.2
we used the fractional-dimensional space scheme to.
study shallow-impurity and exciton statés*? in With
GaAs-Ga_,Al,As QW’s and SL'’s and proposed a system- eB 1
atic procedure to determine the appropriate fractional dimen- Q = g (2.3

. . K . = 2m*c = 2
sion of the isotropic space which would model the actual

system. As in semiconductor MQW'’s, variational procedures(,mdl:Z is thez component of the angular momentum opera-

are very demanding on computer 'Fime in comparison Wm}or Due to the cylindrical symmetry, we may write as the
single QW structures, we were motivated to extend our pre-, ’ '

. . X : donor-electron wave function,
vious fractional-dimensional approd€h*?to the case of ex-
citons and shallow impurities in doped semiconductor

ime
MQW's. Of course, a magnetic field applied to a semicon- V(r)= © W(p,2), (2.4)
ductor heterostructure introduces an additional degree of N2
confinement and anisotropy besides the one imposed by the, _ PSR
heterostructure barrier potential, and interesting changes inthzthe magnetic quantum number=0,+1,%2,..., p

— 2\1/2 H H H H
impurity- and excitonic-related far-infrared and electronic = (X" TY“)™* and using Hamiltoniaii2.2), we obtain
properties may be achieved. Therefore, the fractional dimen-

2 2
sion should also depend on the degree of anisotropy intro- _ h_ E i(pi) _ ﬂ} #(p.2)
duced by the applied magnetic field, and an extension of the 2m* |p ap\" dp| p? '
fractional-dimensional space approach to include the effects 1 2
of applied magnetic field would certainly be of great interest. + Zm*02p2— ) W(p,2)

This work is concerned with an extension of the 2 elr—ril

fractional-dimensional scheme to the study of direct exciton 52 92
states and shallow-donor states in GaAs-Gal,As {— —5 —= +V(2)|¥(p,2)
MQW’s. Moreover, the fractional-dimensional approach is 2m* Jz
extended to include magnetic-field effects in the study of m
shallow-impurity states in GaAs-Ga,Al,As semiconductor = ( E- Eﬁmc) P(p,2). (2.5

heterostructures such as QW'’s and SL’s. The study is orga-
nized as follows. In Sec. Il the theoretical basis of the
fractional-dimensional scheme, developed by de Dios—LeyV:ﬁO
and co-worker®*?for exciton and shallow-donor states in
QW'’s and SL's, is extended to the case of excitons and shal- _

low donors in GaAs-Ga. ,Al,As MQS’s, and to include the Yolp.2)=x(p)1(2), 28
effects of applied magnetic fields perpendicular to the layersvith f(z) being thez part of thek, =0 electron envelope

in the study of shallow-impurity properties of wave function for the GaAs-Ga,Al,As semiconductor het-
GaAs-Ga_,Al,As semiconductor heterostructures. Resultserostructure in the absence of magnetic field and Coulomb
and discussion are in Sec. lll and conclusions in Sec. IV. potential, and

In the absence of the Coulomb potential, the above equa-
n may be solved, and the solution is
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Xn, m(p)~EMe” €6, (&), 2.7

with é=p/\g, and\g=v2lg=v2Ac/eB (Ig is the cyclo-
tron radiug. In the aboveG may be found in terms of the

generalized Laguerre polynomidf, i.e., Gnr,m(g)
~L‘,{':‘(§2), where
m+|m|+1
E, m=haoc n+—F5——
r 2
is the energy of the Landau level, ang=0,1,2 . .. is the

radial quantum number. The total electron enefgycf Eq.

(2.5)] in the absence of the Coulomb potential is then given

by Eo=E, mtee, Wheree, is the confining energy for
electrons in theV(z) heterostructure potentii€orrespond-
ing to thez part of Eq.(2.5), i.e., calculated in the absence of
magnetic field and Coulomb potenfialherefore, for each
heterostructures, level, one has an infinite set of Landau
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is the D fractional-dimensional space Hamiltoni&hand

We h? /3+ 1 0ohy 2rsirfg\ o #H2 1

To2m*r hg ar N2 Jor 2m* r?
y o+ 1 dhg ,sin26)| 9 o1
Bco h—oﬁ r)\—éﬁ, (214

where B=3—D, and hy=hg(r cos6+z). Notice that Eq.
(2.14 reduces to Eq(2.6) of de Dios-Leyvaet al* in the
zero-magnetic field limit. Alternatively, one may writ¥ as

n2 [(B 1oh)o 1 10h\ 9
“ome v P harar ez Aot G5 gal
(2.15

with h given by Eq.(2.10. We now stress that ER.15 has
the same form as E¢R2.6) of Ref. 40, except thdt is defined
by Eq.(2.10, and includes the effects of the applied mag-

levels, and, for a given applied magnetic field, the ground; oiic field. It immediately follows from Eqg2.12—(2.19

state level(without the effect of the Coulomb potentiak
se’0+%ﬁwc, with e, being the heterostructure electron
ground statd¢associated with the wave functidg(z)].

that the system “shallow donor plus heterostructure plus
magnetic field” may be modeled by an effective isotropic
hydrogenic system in a fraction&-dimensional space, a

If one includes the effect of the impurity Coulomb poten- problem which may be solved analyticaf.It is then

tial, and is only concerned with thesdike donor ground
state, the eigenfunction corresponding to E2j2) may be
taken as ¢e(r)="fo(z) xoolp) #e, (r), where xodlp)
=exp(—p?/4l é) is then,=0, m=0 electron wave function
corresponding to the lowest Landau leyel. Eq.(2.7)], and
¢e, () satisfies(see Appendix A

h? 1 9 . ; (9)

Sin %

1 49 2 J N
2m* [r29r\ ar]  r?sind 90

#? 1{ah d
S

1 oh o
2m* hlar or 1296 96 e, (1)
2

— = e, (1 =Essde (1), 2.9

with r=\/x2+y2+(z—zi)2. The total electron energy is

now
E=8e’0+%ﬁwc+ EIS! (29)

the impurity binding energy is- E;5, spherical coordinates

straightforward to extend the framework developed by de
Dios-Leyvaet al*°in the case of shallow donors in semicon-
ductor GaAs-Ga ,Al,As QW’s and SL’s in order to con-
sider effects of the applied magnetic field within the
fractional-dimensional space approach. One then finds that,
for a given state of the “shallow donor plus heterostructure
plus magnetic field” anisotropic system, one may choose the
D parameter in order to map the actual system into an effec-
tive isotropicD-dimensional space via the conditf8n*?

J J hr2sin0EWe;dr do=0, (2.16
where the operatoW in Egs.(2.14) and(2.15 includes the
effect of the applied magnetic field. In the above equation,
¢e(r) is the corresponding impurity eigenfunction, agl
and E; are the eigenfunctions and eigenvalues of the
D-dimensional Hamiltonian. We would like to stress that the
above approach for determining the fractional dimensional
parameteD is valid for a general GaAs-Ga,Al,As semi-
conductor heterostructure grown along thexis, such as

are taken with the origin at the impurity position, and theQW's, double symmetric or asymmetric QW's, multiple

weight functiod®~*?h is given by

r2sir? 6
h=h(r,0)=hg(r cosf+z)ex -z | (2.10
B

ho(2)=f3(2). (2.19)

Moreover, one may write Eq2.8) as
[Hpo+Wl¢e, (r)=Eis¢e (1), (2.12

where

h? e?

2_ =
Ho== 5% Vb er 213

QW's, periodic and quasiperiodi€ibonacci, etg.SL'’s, and
so on. Notice that Eq(2.16 depends onfy(z) [see Egs.
(2.10, (2.11), and(A4)], which would depend on th¥(z)
heterostructure confining potentiébr explicit expressions
of fy(2) in the QW, SCDQW, MQW, and SL cases, for
example, see Oliveird Thoar® Chaudhuri and Helm
et al,” respectively.

As we are interested in evaluating the magnetic-field ef-
fects on the donor binding energy, which is associated to the
1s-like ground-state energ¥,s, one may approximately
choosege= ¢j-¢ in Eq. (2.16, with ¢;_, being the &
ground-state exact solution of thB-dimensional Hamil-
tonian, i.e.,¢p;_o=p15(r) =€, with x=2[aj(D—1)],
whereag is the donor Bohr radius. For the case of a semi-
conductor GaAs-Ga ,Al,As QW or SL, one then obtains



PRB 61 EXCITONS AND SHALLOW IMPURITIES IN GaAs. .. 13107

the following transcendental equation to be solved for the h2 [(Bug 1 dug) a
fractional-dimensional parametér[see Eq.(2.16 and Ap- W=s—o—|| -+ — |
: 2my |\ r hg  hg ar Jor
pendix BJ:
+1( U (o g\ 9
1,0, (" 1, (e 2\ PR et 1 G0 |50
B—Z—Ea Ng f F(r,zi)e‘a’dr+§a)\8f [fo(r+2z)
0 0 h? U\l 1 a9
2 Fam\ o/ [T A T
+f5(r—z)le #dr=0, (2.17 My, o/Lr r r
+ ! O | sirp-2 0 i 2.2
wherea=2\, f=3-D, and ZsiP %) 96 sin®4( )50 ,  (2.22
- , which corresponds to E¢2.8) in Ref. 41 for excitongwith
F(r,z)=e " “sj [fa(z+ zi)—l—f(z)(z—zi)]ezz/)‘sdz_ the exciton reduced mags, substituted by the donor effec-
0 tive mass m, in the GaAs wel. In Eq. (2.22, hy
(218 —phy(r cos#+2z) and uy=uo(r cosé+z), and are given by

ho(z)=f§(z) andug(z) = myhg(2)/m(z) [wherefy(z) is the
Notice that Eq.(2.17) depends orD and fy(z) [see Eg. zpart of the electron ground-state envelope wave function—
(A4)]. Once the fractional-dimensional parameleis calcu-  see Eq.(A4)—for the MQW], with m(z) given by
lated as a function of the applied magnetic field, the donor
binding energies may then be obtained in a straightforward
way throughEg=—E;=4/(D—1)?R*, whereR* is the
donor effective Rydberg. In the particular case of bulk GaAs,

11
= —)(®[Lb/2—|2|]

mY(z)=—+
my my, my

fo is a constant, the energy, ;=0 (the origin of energy at +0[|z —(Lw+Lu/2)]), (2.23
the bottom of the conduction bandand Eq.(2.17) reduces  for 3 SCDQW, with the origirz=0 taken at the center of the
to (see Appendix B central barrier, and
T e ! T S 1)(@)[| (Ly+Ly/2)|—Ly/2]
= mY(z)=—+|—— z— -
fo 4%+ |<2dX 4-2B+k?’ (219 my, \mp, my weTe b
_ +0O[(3L,/2+L,—|2z])]
with
+0[|z+ (Ly,+Ly/2)|—Ly/2]) (2.249
_ 4v2 |_B for a symmetric coupled triple QWSCTQW), with the ori-
D-1aj" gin z=0 taken at the center of the central well. In the above,

L, andL,, are the widths of the barrier and well regions of
Of course, Eq(2.19 is valid in the case of Wannier excitons the MQW, respectively, an® is the Heaviside function.
in bulk GaAs, withm* substituted by the exciton reduced One then obtaingEq. (2.16), with h=hg] the following tran-
mass. Also, as shown in Appendix[Bee Eq(B11)], in the  scendental equation to be solved for the fractional-

zero-magnetic-field limjtEq. (2.16) leads t4? dimensional parametéd,
5 IL(a,2)+G(az)]
(B-Dl(az)-az-L(az)=0, (220 (PF7IL@n)FClaz)7a ia 0
“« (2.25
with where
L(a,zi):f+mdr exp(—ar)[ho(r+z)+he(r—z)], (2.2 L(a,Zi):fo e *hg(z+2)+ho(z-2z)]dz (2.26
0
and

which corresponds to E@2.2) of Ref. 42.

Moreover, in the zero-magnetic-field case, it is quite 7 —a
straightforward to extend Eq.(2.20 for donors |qn Gla.z)= fo e uo(z+2) FUg(z=2z)]dz (2.27
GaAs-Ga_,Al,As MQW's in order to include effects due to
different masses in the GaAs well andGgAl,As barrier. Notice that if the effective mass is taken as constant and
In what follows, we consider conduction-band effective equal to the GaAs value throughout the heterostructure, then
masse$;”® in units of them, free-electron mass, as, m(z)=m,,, Uy=hy, andG=L, with the result that one re-
=0.0665 andm,=0.0665+ 0.083%, in whichw andb are  covers Eq(2.20, as expected. Once E®.25 is solved for
labels for well and barrier, respectively. Following a similar the fractional dimension, theslike MQW shallow-donor
procedure as outlined above and in Appendix A, the operatdbinding energies may then be obtained throlgg 4/(D
W may then be written as —1)?R*, whereR* is the shallow donor effective Rydberg.
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In the zero-magnetic-field limit, one may also deal quite 18 ]
straightforwardly with the problem of a direct heavy-hole s (@@L, =5m .
exciton in a semiconductor GaAs-GgAl,As SCDQW £ + L, =10nm .
(growth axis along thez direction. We work within the 5 wor ’ 3
effective-mass and nondegenerate parabolic band approxi- T2 C ]
mations, and for simplicity we assume the relative motion of > 5 E 3
the carriers and that of the center of mass are independent, 5 r ]
although one may only make this separation in the plane of = C ]
the well*®4” We take the effective masses, in units of the ol
free-electron mass, 4% m,,=0.0665, m,,=0.0665 0 2 () 10
+0.083%, my,,=0.34, andm,=0.34+ 0.4, in whichw :
andb are labels for well and barrier, respectively, andnd A el T
. c (b)L =5nm
h denote an electron and a heavy hole, respectively. One may ] w
then show(this is a straightforward extension of the formal- % o L,=tonm 1
ism of Ref. 4] that the fractional-dimensional parameter of _E
the effective “exciton plus semiconductor SCDQW” is ob- = - 7]
tained by é
Q
d[L(a)+G(a)] i
(28=3)L(0)+C(a)~a——5—— =0, P P R
« 0 5 10
(2.28 z (nm)
with . - .
FIG. 1. Shallow-donor §-like binding energiega) and corre-
w sponding fractional dimensior(b) as functions of thez; impurity
L(a)=f e ?%hy(z)dz (2.29 positions in a 10-nm-barrier, 5-nm-well GaAs-GAlyAsS
0 SCDQW. Solid curves correspond to the present fractional-
and dimensional calculation and dashed lines are variational results
from Thoai(Ref. 8. The impurity position is referred to the center
% of the central barrier.
G(a)=f e %uy(z)dz (2.30
0 [ll. RESULTS AND DISCUSSION
which is very similar to Eq(2.29 for shallow donors, except In what follows, we will first present our theoretical re-

that the functiondi, andu, depend now orfg andf} (thez  suits in the fractional-dimensional space approach, in the
part of the electron and hole ground-state envelope wavgero-magnetic-field limit, in the case of shallow donors in
functions for the SCDQW and are given b} GaAs-Ga_,Al,As SCDQW’s and SCTQW's, and including
. effects due to different masses in the GaAs well and
ho(Z)Zf [fg(z)]z[fﬁ(g—z)]zdg, (2.31) Gai_XAI.XA_s ba_rru_er. Secgnd, we will deal wlth t_he zero-
— magnetic-field limit of a direct heavy-hole exciton in a semi-
conductor GaAs-Ga ,Al,As SCDQW, and finally we will

+oo [fi{,’(z)]z[fﬂ(g—z)]2 present results for shallow-impurity states in semiconductor
Uo(2)=,U«WJ W(E.2) dé, (232 quantum wells and superlattices under applied magnetic
o ' fields along the heterostructure growth direction.
and The fractional-dimensionalstlike shallow donor ground-

state theoretical resulfsee Eq(2.25], for a 10-nm-barrier,

5-nm-well GaAs-GgeAlgsAs SCDQW, are compared in
){®[Lb/2_|§|] Fig. 1 with the corresponding variational calculations by
Thoai? as functions of the; impurity positions referred to
the center of the central barrier. From Figa)l one may

Meyp ew,

1 1
+®[|§|—<LW+Lb/2>]}+(—— —)

Mhp  Mpw notice the overall agreement between the present fractional-
dimensional results and Thoai's variatichalonor binding
X{O[Lp/2—[é-2|]]+O[|é-7| energies. In Fig. (b) we also display the corresponding frac-
—(Ly+Lpy/2)1}, (2.33  tional dimension used in the calculation of the-lke donor

binding energies. Notice that the fractional dimension may
where u,, is the reduced mass of the heavy-hole exciton ineven be larger than thr¢ef. Fig. 1(b)]: for the donor at the
the GaAs QW. Notice that E¢2.33 reduces to Eq2.5) of  center of the central barrieg=0), and as the donor GaAs
Ref. 41, ifL,=0, i.e., if one has a QW instead of a SCDQW. effective Bohr radius is=10 nm, one finds that the donor
Finally, we would like to stress that, in the above fractional-envelope wave function is essentially taken away from the
dimensional space approach, the fractional dimension is chompurity center and is concentrated at the two neighboring
sen via an analytical proceduref. Eq.(2.16)], and involves  wells (due to the anisotropy caused by the SCDQW poten-
no ansatz, and no fitting with experiment or previous variatial), with a strong distortion with respect to the isotropic
tional calculations. three-dimensiona(3D) situation, leading to a smaller con-
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15 L LR DL DL ‘_ 3 LI S B B I ML B B c 3 LI B R B B L B B
—~ - :“ )
> z = (Lb + Lw)/2 . & ‘Z’ | (b) ]
T A - 3 aé Lw=1.6
s 10 ] 'g E B b
S E ) ® 4 4
g R} . g, g \
r z=L1/2 ] 3 E- -0.4 4
g sp AT < E : Lm0
o I i o ¢ L1 2l b
£ L (a)L =10nm 4 0 1 2 0 1 2
o o FLL |bl ] Barrier thickness (a‘o) Barrier thickness (a'o)
0 5 10 15 = c 3 — —
Well width (nm) & § | (d) |
15 N IlIIIIIIIIIIIICI l- E g | L =1 1
s lz=(L +L )2 o 5 b
) [ i b W - 5 5 \ |
£ - E =] c L =05
= 10 = £ 2 b
> =] 5 - L 4
2 [ £ S
2 C ] o s T R
s C z=LJ2 ] %0 1 2 3 4
g’ 5 = Well thickness (a'o) Well thickness (a'o)
] C ]
E L b)L =5nm J . - . . .
m L (b) w J FIG. 3. Donor k-like binding energies and fractional dimen-

ol o o sions in GaAs-GgeAly As SCTQW's for different GaAs laydi(a)

0 5 10 15 20 and (b)] or barrier[(c) and (d)] thicknesses. Solid lines correspond
Barrier thickness (nm) to the present fractional-dimensional results, and dashed lines are

the variational calculations by ChaudhyRef. 7). Energies and

distances are expressed in terms of the impurity effective Rydberg

(R*) and the effective Bohr radiusf), respectively, and the im-

é)urity is at the center of the central GaAs well.

FIG. 2. Well-width dependence in a 10-nm-barrier
GaAs-Ga gAly,As SCDQW:(a) and barrier-width dependence in a
5-nm well GaAs-Gg,AlyAs SCDQW (b) of the 1s-like ground-
state binding energies of donors for impurity positions at the edg
of the barrier ¢=L,/2) and at the center of the GaAs wél;
=(Lp+Ly)/2]. The solid curves correspond to the presentdgreement with the variational calculations by Chaudhuri.
fractional-dimensional results, whereas dashed lines are variation&/e€ note that in Figs. 1, 2, and 3 we chose the same param-
calculations by Thoa{Ref. 8. The impurity position refers to the eters and coupled-well barrier potential as in works by
center of the central barrier. Thoaf and Chaudhud,respectively.

Fractional-dimensional theoretical results for the heavy-

finement(and binding energythan in the 3D situation, and hole 1s-like direct exciton transition energiéexciton peak
to an “effective” isotropic medium with a fractional dimen-

sion larger than three. In other words, anisotropic situations

with a “smaller-than-isotropic” 3D confinement lead to an 1700 _'(;)' L o140k

effective isotropic medium with a fractional dimensi@n 1650 b _

>3. Notice that stronger confinemef@nd larger donor i

1s-like binding energy occurs for the donor at the center of 1600 _

one of the GaAs wellsZ=7.5nm), as one would expect. In L )

that case, the donor envelope wave function is more concen- %‘ 1550 |- i

trated around the impurity site than in the isotropic hydro- E |

genic 3D case, and the fractional-dimensional paranizisr 3 500 Ll el o111

then < 3, i.e., a “larger-than-isotropic” 3D confinement g 40 60 80 100 120 140

leads to fractional dimensiori3<3. e Well width (A)
Figure 2 compares the fractional-dimensiona-like 2 1700 [

donor ground-state binding energies for GaAs- g (b)) L =198A -

Ga, _,Al,As SCDQW heterostructures, for varying barrier or = 1650 - .

well thicknesses, with the corresponding variational calcula-

tions by Thoaf for impurity positions at the edge of the 1600

barrier (z=L,/2) and at the center of the GaAs wél;

=(Lp+Ly)/2]. From Fig. 2, one again notes the good agree- 1550

ment between the present fractional-dimensional results and - ]

Thoai's variationdl donor binding energies. The fractional- 1500 Lot Lo 141

40 60 80 100 120 140

dimensional 3-like donor binding energiedor the impurity Well width (A)

at the center of the central GaAs wednd corresponding
fractional dimensions are shown in Fig. 3 as functions of the  FIG. 4. Heavy-hole &like direct exciton theoretical transition
barrier (well) thicknesses in GaAs-GgAlg4As SCTQW'S  energies(solid lines as functions of the well width in 14.2-A-
for different well (barriep thicknesses. One notices that the barrier (a) and 19.8-A-barrier(b) GaAs-Gg-AlysAs SCDQW’s.
present fractional-dimensional results are in quite gooddpen dots are experimental values by Westgaaral. (Ref. 4.
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FIG. 5. Heavy-hole &like exciton transition energies in bulk 25 [ . ;
GaAs for three values of the heavy-hole effective mass, in units of ) S L 62107 Ba15T1
the mq free-electron mass, as functions of the magnetic field. Ex- g ‘ - \ -
perimental data of Reynoldst al. (Ref. 16 are shown as solid 2.0 C 20—
circles -0.5 0.0 0.5 -0.5 0.0 0.5
' z/L z/L
position are shown in Fig. 4 as functions of the well 3.5 c 4
width in 14.2-A-barrier (a) and 19.8-A-barrier (b) () =5T] g
GaAs-Gg-AlgAs SCDQW's, and compared with the ex- ., | L=50A E <
perimental values by Westgaaet al* Calculations were & 7 f L <250 A . _g 3
performed by using Eq(2.28, and once theD fractional w” C = ] s
dimension is obtainedwe use the same parameters and 15 - 3 8
coupled-well barrier potential as Westgaaet al?), the K71 = 1000 A N g | =50 AT
1s-like heavy-hole exciton binding energies may then be cal- 0.5 =l B
culated in a straightforward way throufi®> Eg=4/(D -0.5 0.0 0.5 -0.5 0.0 0.5

—1)? Ry*, where RY is the exciton effective Rydberg. No- zZL =

tice that the excellent agreement between our results and the
PLE measurements by Westgaatdal® (see Fig. 4suggests
that the exciton peak positions are not much modified by th

coupling petvyeen symmgtrlc and antllsymmetrlc exciton osition, for various values of the magnetic field, in a 50-A-width
sta_ltes, which is not taken into account in the present calc SaAs-Ga Al sAs QW. () Donor binding energies for various val-
lation. . . . . ues of the GaAs-GgAlyAs QW width, under a fixed magnetic
The fractional-dimensional space approach for appliegig|q of 5 T. Fractional-dimension parameters (i, (d), and (f)
magng:tlc fleIQS along the heterostructure growth d'reCt'Oﬂzorrespond to results if®), (c), and(e), respectively. The magnetic
was first applied to the case of bulk GaAs under magnetigie|q is applied along the growth direction of the QW, and results in
fields[cf. Eq.(2.19]. In Fig. 5, the magnetic-field-dependent the pulk limit are shown as dashed lines. The impurity position is
heavy-hole %-like exciton transition energie@xciton peak measured from the center of the GaAs QW.
positions in bulk GaAs are shown, within the fractional-
dimensional approach, and compared with experimental We now use the fractional-dimensional space approach
measurements by Reynoldsall® We have assumed differ- to investigate shallow-donor properties in  GaAs-
ent values for the GaAs heavy-hole effective mass, as th&a _,Al,As QW’s under magnetic fields applied in the
literaturé"?®*24>quotes values ranging from 0.3 up to 0.6, in growth direction[see Eq(2.17]. Figure 6 presents the the-
units of the free-electron mass. Within this uncertainty,oretical fractional-dimensional results for thes-like
agreement with experiméfiiis quite good. Of course, results shallow-donor binding energigwe use the same parameters
for shallow donors or excitons in bulk GaAs are identicaland barrier potential as in Ref. g@and corresponding frac-
within a hydrogeniclike treatment, provided they are writtentional dimensions for donors in GaAs-gG#l,As QW's.
in the corresponding reduced units. We note that in the limiResults are presented as functions of applied magnetic field
of vanishing magnetic fields we find the effective fractional- (and various widths of the GaAs QWér donor position in
dimension space as three dimensional<3), and its di- the QW (and varying magnetic fieJd The present calcula-
mension decreasing with increasing strength of the magnetigons show an increase in the donor binding energy as the
field. Moreover, we note that as the strength of the fielddonor confinement increases, i.e., with the decreasing width
increases, the system becomes more and more anisotro€the QW/[Figs. Ga) and Ge)] or the increasing strength of
and the simple approximationbe=¢;—o in EQ. (2.16  the magnetic fieldFigs. §a) and &c)]. In the limit of van-
should break down. One would then expect the presenthing applied magnetic field and large well widths, the sys-
fractional-dimensional results to be quantitatively reliabletem should exhibit a 3D behavior, and the fractional dimen-
only for low and moderate strengths of the applied magnetigion is 3[see Figs. @) and &b)]. Of course, large values of
field. the field and/or small values of the well width lead to a

FIG. 6. (a) Magnetic-field dependence of the on-center shallow-
onor binding energies, for various values of the GaAg-Bh, ;As
W widths.(c) donor binding energies as functions of the impurity
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FIG. 7. GaAs QW thickness dependence of the on-center donor FIG. 8. Magnetic-field dependence of (;[he photoluminescence
A L , k positions corresponding to the-A" transitions in a
binding energies in GaAs-GaAl,As QW's. Dashed curves are pea . . . _ .
from Ref. 26 whereas full curves are theoretical results within theG.a'A‘S'Ga‘"Al"As superlattice with well widta=540 A, barrier
fractional dimensional space approach. width b=10A, x=0.27 (Al contend, and T=13.8K (tempera-

ture). The full (dotted curve corresponds to theoretical transitions
decrease of the corresponding fractional dimension of thé acceptors at the centdge of the well. Experimental results of
effective isotropic mediurfiFigs. &b), 6(d), and &f)], as the Skr_onjmee_t al. (R_ef. 15 are shown as so_lid tr_iangles, and the mag-
anisotropy increases. Notice in Fig. 6 that the impurity bing-Netic field is applied along the growth direction of the superlattice.
ing energy is larger for donors at the well center than at the

on-edge position, as expected due to the larger confinemert1.247%, wherex is the Al concentration, and the* hole

of the donor-electron wave function. In Fig(fg one finds effective mass was takéhas 0.29 in units of the free-
that, for GaAstGa, Al)As QW'’s of widthL=250 and 1000 electron mass. For simplicityn* and e are taken as the

A, the fractional dimension may even be larger than 3. FoiGaAs bulk values throughout the heterostructure. Note that
donors at the GaAs QW on-edge position, the donor-electrotheoretical transitions are to acceptors at the edge and center
wave function may be strongly distorted and taken awayof the well whereas the measured energy peak which shows
from the impurity center, leading to a smaller confinementup in a photoluminescence experiment should depend on the
(and binding energythan in the 3D situation, and to a acceptor distribution in the SL as well as on the temperature,
fractional-dimensional parametBr>3. Moreover, the appli- which would affect the hole population at the acceptor states.
cation of a magnetic field increases the donor confinemenilhe excellent agreement between experiment and the theo-
and for strong enough magnetic fields, one may expect thatgtical predictions for transitions involving on-center donors
for on-edge donors under magnetic fields, a competing situndicates that, as a consequence of the quite large width of
ation would occur with respect to the effective fractional-the GaAs well(width of 540 A and a quite small barrigof
dimension parameter, with an interplay between an “expel-10 A), most of the acceptors behave essentially as on-center
ling” barrier potential and a “confining” magnetic field. acceptors in the bulk limit, as one would expect.

The GaAs QW thickness dependence of the on-center
(i.e., the donor is at the GaAs QW centaelonor binding
energies in GaAs-GgAlgAs QW’s are shown in Fig. 7,
which displays the present theoretical fractional-dimensional Summing up, we have extended the fractional-
results in comparison with the perturbative-variational re-dimensional space approach, in which a real anisotropic
sults of Ref. 26. The parametey=rfwJ/2R*=eiB/  semiconductor heterostructure in a 3D environment is treated
2m* cR* is a measure of the applied magnetic field, with theas isotropic in an effective fractional-dimensional space, to
effective massm* =0.067n, and reduced RydberdR* include magnetic-field effects in the study of shallow-
=5.83meV refering to shallow donors. Note that, for low impurity states in GaA$Ga,A)As QW’'s and SL’s. In the
and moderate strengths of the applied magnetic fiedden- fractional-dimensional scheme, the value of the fractional di-
tially up to y=1, i.e., up toB~7 T), the present fractional- mension is associated to the degree of anisotropy of the ac-
dimensional results are in overall agreement with the calcutual 3D semiconductor system. In the present study, the mag-
lations in Ref. 26. netic field was applied along the growth direction of the

Finally, in Fig. 8 we present the fractional-dimensional semiconductor heterostructure, and introduces an additional
theoretical results of the transitions involving the lowestdegree of confinement and anisotropy besides the one im-
Landau-level conduction electrons and acceptor stages (posed by the heterostructure barrier potential. The fractional
— A? transition$ of a GaAs-Ga_,Al,As SL under magnetic dimension is then related to the anisotropy introduced both
fields applied along the growth-axis direction, as comparedby the heterostructure barrier potential and magnetic field.
with the experimental peak positions by Skrometal® In Fractional-dimensional calculations fois-like bulk GaAs
SL calculations, we have used a GaAs dielectric congtant exciton transition energies were shown to be in good overall
of 12.35, and a 65%35%) rule for the conductiofvalence-  agreement with experimental measurements by Reynolds
barrier potential with respect to the total band-gap offsetet al*® Also, our calculated results for shallow-impurity
The band-gap discontinuity was takenas Eq(ev) states in GaA$6Ga,Al)As semiconductor QW's under ap-

IV. CONCLUSIONS
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plied magnetic fields were shown to be in overall agreement, #2 e?

under low and moderate strengths of the applied magnetic T om* Vi _ ¢Els(r)

fields, with previous calculations in Ref. 26. Moreover, our :

theoretical results for transitions from the lowest magnetic 72 V[fo(2) xodp)]

Landau conduction level to on-edge and on-center acceptor S T o o VoE (N=Esde (1),
oL . . m*  fo(2) xoolp)

states were in quite good agreement with experimental data

from Skrommeet al® The present work on the fractional- (AB)

dimensional space approach to include effects of applieg\lith

magnetic fields upon shallow-impurity properties in semi-

conductor heterostructures may be extended to study exciton E=g. +A0+E,.. (A7)

states in theses systems, and would be of importance in the & ts

quantitative understanding of future experimental work inBy defining

the area.
Finally, one should mention that the fractional- o 2
dimensional approach yields results in agreement with the h(f)=fo(z)exp — )\_é ' (A8)

exact results in two and three dimensions, and its applica-
tions to excitons and shallow impurities in semiconductorone may write Eq(A6) as
heterostructures such as QW’s, MQW'’s, and SL’s give over-

all agreement with previous variational calculations, as this nr ., € 2

work and previous works have shown. The applicability of |~ om* ve- elr—r| be, (W)~ ﬁF.V(bEls(r)
the fractional-dimensional approach to semiconductor sys-

tems of lower dimensionality such as quasi-one-dimensional =Es¢pg, (1). (A9)

QWW'’s and quasi-zero-dimensional QD’s, however, is still

an open problem and it is not clear how meaningful the If one considers spherical coordinates with the origin at
fractional-dimensional results would be in the lifflitof  the impurity position, one finds

D—1 orD—0.
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pleted, for kind hospitality. = X?+y%+(z—z)?, andh now given by
r2sir? 0
APPENDIXA h(F)=h(r,8)=f3(r cos¢9+zi)ex;{—)\—2>.
_ 2
By substituting (ALD)
Ye(r)="To(2) xod p) de, (1) (A1)
. APPENDIX B
into
For the Is-like shallow-impurity ground state one may
Hie(r) =Eye(r), (A2) approximately choose the wave functicb@ls= $j—o in EQ.
with H given by Eq.(2.2), and using (2.16), with the fractional-dimensional wave-functiap; _g
&2t =¢p(r)=e"M, with \=2/a% (D—1). By using Eq(2.14),
0 .
V2e=xoof oV e, + fode, Vaxoot XooPe, g2 one may write Eq(2.16 as
1 ohy 2rsir? @
dfy 9%e, ff drdéhr?sing E+h—&—°— 2 )ez“=0.
+2 fOVpXO,O' VP¢E15+ ZXO,OE T, (A3) r o or B (B1)
n? d*f, By definin
— o 2 HV@ o= eedho, (Ad) Y Aemng
LI r2sirf 0
2 o(r)=| d@sinfhy(r cosf+z)exp — ———/|,
A ool 022 0 Ag
- Zm* Vp+ Em Q Y XO,OZﬁQXO,O! (AS) (BZ)

one obtains anda=2\, Eq. (B1) transforms into
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,BJMdr rexp—ar)o(r)
0

+ J+wdr rzexq—ar)ia(r)=0 (B3)
0 dr '

Using z=r cosé in Eqg. (B2), one obtains

1 1 r?
a(r)=FF(r,zi)=Fexr( - )

N
)\B
2

><frdz[fé(z+zi)+fg(z—zi)]exp{z—z), (B4)
0 )\B

and Eq.(B3) reduces to

(,lB—l)fOJroo drexp —ar)F(r,z)

dF(r,z)
ar

+J+wdrrexp(—ar) =0. (B5)
0

According to Eq.(B4), one may write

. 2
oF(rz) _;F(r,zi)+[fg(r+Zi)+fg(r_zi)]!
B

ar A
(B6)

and substituting Eq(B6) into Eq. (B5) one finds

(B—l)f:dr expl—ar)F(r,z)
- :7 Jowdr rZexp —ar)F(r,z)
B

+ J'Hcdr rexp(—ar)[f3(r+z)+f3(r—z)]=0.
0

(B7)

In the zero-magnetic-field limit, the functioR in Eq.
(B4) may be written as

F0<r,zi>=f;dz[f§<z+zi>+fé<z—zi>], (B8

and Eq.(B7) reduces to

(B—l)fmdr exq—ar)Fo(r,zi)+jmdrrexp(—ar)
0 0
X[f3(r+z)+f5(r—z)]=0. (B9)

Integrating by parts the first integral of E@®9) and defining

L(a,zi):fo+ocdrexp(—ar)[fg(r+zi)+f§(r—zi)],
(B10)

(ﬁ_l)l—(ali)_a%L(a’,Z):O, (B11)

which was previously obtained in Ref. 42. On the other hand,
integrating by parts the second integral in EB5), one ob-
tains

+
(B_Z)J; dr F(r,z)exp —ar)
+ oo
+af drrF(r,z)exp—ar)=0, (B12)
0

and, taking into account E4B4), one may write

(ﬁ—Z— %a%\é) f0+wdrF(r,zi)exp(—ar)

1 +o0
+ Ea)\éfo dr[f3(r+z)+f3(r—z)lexp—ar)=0,

(B13)

which is Eq.(2.17), i.e., the transcendental equation to be
solved for the fractional-dimensional paramefetaking into
account the effects of the applied magnetic field.

One may obtain the transcendental equation to be solved
for the fractional-dimensional parametér for the three-
dimensional limit case, in which the confinement potential
V(z) is taken equal to zero. In that case, the ground-state
eigenfunction of Eqg.(2.1) may be taken asyg(F)
=Xo.0(p) ¢E15(F), which is equivalent to takind, in Eqg.

(2.1) as a constant. In that cafeee Eq(2.14)],

ﬁ2

W3D: _
2m*

(,[_3 2rsin26>(9 (,B sinza)a

— _J’__ _— | —
r T 2 Cotd NG |36

;
(B14)

and, following a similar procedure to that outlined above for
the case of a semiconductor heterostructure under applied
magnetic fields, from Eq(2.16) one obtains, after some te-
dious although straightforward manipulations, that

fm e dx= ! B15
o x+ k2T 4287k (B15)
with

. 4\2 g

" D-1la}’

one may find the transcendental equation to be solved for thethich is Eq.(2.19, valid for the bulk case. Alternatively,
fractional-dimensional parameter in the limit of zero mag-one may obtain EqB15) [or Eq.(2.19] as the appropriate

netic field, i.e.,

limit of Eq. (B13).
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