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We outline a theory for conduction electron-spin resonance(CESR) in highly oriented pyrolytic graphite.
The fundamental approximation is to treat the spin-orbit interaction as an effective field. In this approach, the
shift in theg factor, which is associated with the mean value of the field, is related to the orbital susceptibility
of the electrons. The linewidth comes from fluctuations in the effective field caused by the scattering of the
electrons. The theory is used to interpret our CESR measurements.
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I. INTRODUCTION

Recently, there has been renewed interest in measure-
ments of the electronic and magnetic properties of graphite.
Some of these studies have revealed behavior that may not fit
within the framework of an independent-electron model.1–3

Among the probes that have been employed is conduction
electron-spin resonance(CESR).3–6 In these references, mea-
surements of the temperature-dependentg factor and the
linewidth were reported that showed significant asymmetry
and temperature dependence below 200 K. The interpreta-
tion of the CESR results is uncertain.7–9According to Ref. 7,
“a reliable theory for theg factor in graphite remains to be
developed.” The approach outlined in Ref. 9, which is the
most detailed independent-electron theory to date, gives the
wrong sign for theg shift when evaluated with positive spin-
orbit parameters. Furthermore, the calculations of Ref. 9 deal
only with theg factor and are unsuited to characterizing the
resonance in regimes where electron-electron interactions are
important. The purpose of this note is to outline a theory for
the CESRg factor and linewidth in graphite that does not
invoke the independent-electron approximation. The funda-
mental approximation is to treat the spin-orbit interaction as
an effective field. In our approach, the shift in theg factor is
related to the average value of the effective field while the
linewidth is associated with the fluctuations in the effective
field arising from the scattering of the electrons. We use the
effective-field model to interpret our experimental results for
the CESRg factors and linewidths in highly oriented pyro-
lytic graphite(HOPG).

II. CESR IN HOPG

In our approach to CESR in HOPG, we express the spin-
orbit interaction in the single-orbitals2pzd, tight-binding

limit where it is written LlW·sW. The spin-dependent compo-
nents of the static Hamiltonian take the form

HS= 2mBo
j

szjH + Lo
j

lWj ·sW j . s1d

Heres denotes the electron spin andl is the orbital angular
momentum. Since the spin-orbit coupling in carbon is very

weak, we treat the interaction as an effective field whose
static and dynamic properties are those of an electron gas
without spin-orbit interactions. If we add toHS the orbital
Zeeman termmBLzH, whereLz is the z component of the
total orbital angular momentum, we obtain a Hamiltonian
that is formally identical to the Hamiltonian of a system of
exchange-couple unlike spins,10–12 with the unlike spins be-
ing identified with the orbital moments. Because of this cor-
respondence, we can make use of techniques developed in
Refs. 10–12 in our analysis.

An essential assumption in our approach is that the fluc-
tuations in the orbital moments, which can arise from both
elastic- and inelastic-scattering processes, decay on a time
scalet, which is short in comparison with the precession
period of the spins. This assumption, which is equivalent to
the “rapid modulation limit,” is what distinguishes our ap-
proach from previous calculations of theg factor which ne-
glect the scattering processes and hence are equivalent to the
“static” limit. As we will see below, the absence of signifi-
cant frequency dependence in the linewidth supports such an
assumption.

We begin by introducing the Fourier expansions of the
local spin and orbital operators:

sW j = N−1o
kW

eikW·rW jSWskWd, s2d

lWj = N−1o
kW

eikW·rW jLW skWd, s3d

whereN denotes the number of electrons and the sum is over
the Brillouin zone. The spin Hamiltonian takes the form

HS= 2mBSzs0dH + LN−1o
kW

LW s− kWd ·SWskWd. s4d

We obtain the shift in theg factor from the equation
of motion of the transverse component of the total spin
S+s0d after replacingLs-kd by its thermal average. In the
presence of a uniform magnetic field directed along thez
axis, only kLzs0dl survives the thermal averaging. Writing
gsTd=2+DgsTd, we have for theg shift,
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Dg = LkLzs0dl/NmBH = − Lkmzl/mB
2H. s5d

Here kmzl is the average orbital magnetic moment per reso-
nating electron, and we have utilized the result that the mag-
netic moment is antiparallel to the angular momentum.13 The
ratio kmzl /H defines the fixed-field, single-electron orbital
susceptibility which we identify with the ratio of the bulk
fixed-field orbital susceptibility,xorbsT,Hd;MsT,Hd /H, to
an effective electron densityNef fsT,Hd. We thus obtain

DgsTd =
−LxorbsT,Hd
mB

2Nef fsT,Hd . s6d

Equation(6) is our final result for the shift in theg factor.
Although we defer comparison with experiment until later,
we note that the orbital susceptibility in HOPG is largest
when the field is parallel to thec axis. As a consequence, the
g shift in the parallel configuration is much greater than
when the field is perpendicular to thec axis. Becausexorbi is
negative, the correspondingg shift is positive since the spin-
orbit parameterL is positive.

In the analysis of the linewidth, we make use of a general
expression forT2 derived previously.14 In Ref. 14, the aniso-
tropic terms in the spin Hamiltonian gave rise to the line-
width. In the present problem that role is played by the spin-
orbit interaction since it does not commute with the total
spin. We have

1/T2 =
mB

2

kTV"2xSs0d

3E−`
+`dtkhfS+s0,td,Hsostdg,fHsos0d,S−s0,0dgjl.

s7d

HerexSs0d denotes the uniform-field spin susceptibility,V is
the volume,Hso is the spin-orbit interaction appearing in Eq.
(4) and the curly brackets denote a symmetrized product.

The commutators in Eq.(7) have the form

FS±s0d,LN−1o
kW

LW s− kWd ·SWskWdG
= 7 LN−1o

kW
Lzs− kWdS±skWd ± LN−1o

kW
L±s− kWdSzskWd.

s8d

As will be discussed below, we expect that when the static
field is along thec axis the dominant contribution to the
linewidth comes from the first term on the right hand side of
Eq. (8), i.e., the longitudinal fluctuations in the orbital angu-
lar momentum. Consistent with the weak coupling approxi-
mation, we factor the spin and orbital terms in the correlation
function in Eq.(7), obtaining an expression of the form

o
kW

kS+skW,tdS−s− kW,0dlkLzs− kW,tdLzskW,0dl.

If we further assume that the decay time for the
momentum correlations (see above) satisfies the
condition vt!1, where v /2p is the precession
frequency of the spins, then the integrand becomes

skBTV/2mB
2dokWxSskWdkhLzs−k,td ,Lzsk,0djl. where xSskd de-

notes the wave-vector dependent static spin susceptibility.
After making these approximations, the linewidth takes the
form

1/T2 =
L2

2"2xSs0d
N−1o

kW
xSskWdE

−`

`

dtkhLzs− kW,td,LzskW,0djl.

s9d

Equation (9) is our final result in which the linewidth is
expressed as a sum overk, weighted by thek-dependent
static spin susceptibility of a time integral over ak-dependent
orbital angular moment correlation function. We postpone
discussion of this equation until after we present our experi-
mental findings.

III. EXPERIMENTAL RESULTS

Experimental results for the resonance field, the line-
width, andgi for HOPG were reported in Ref. 3 forQ, X,
andS-band frequencies. In this section we present additional
X-band data for theg factors and linewidths as well as fixed-
field susceptibility measurements on the same sample used in
the CESR work which was synthesized at the Research In-
stitute “Graphite” (Moscow). The data were taken with a
Bruker ELEXSYS-CW spectrometer atX-band frequency
using a TE102 room temperature cavity and a He gas flux
temperature controller. Figure 1 displays theX-band
s9.482 GHzd data between 4.2 K and 300 K. In both con-
figurations,H ic andH'c, the microwave and dc-magnetic
fields were kept mutually perpendicular in order to achieve
maximum microwave penetration to avoid a line shape
change caused by anisotropic skin depth effects.15 In all
cases, the line shape was Dysonian indicating conducting
behavior of the sample.

Figure 1 displays the linewidth andg factor data for both
the parallel and perpendicular configurations. It is evident
that g' is essentially constant and close to the free-electron
value of 2.0023. In contrast,gi is <2.05 at 300 K and in-
creases to a value close to 2.16, before leveling off. The
linewidth data forH ic increase rapidly with decreasing tem-
perature, reaching a value,95 Oe at 10 K; in contrast, the
linewidth for H'c increases much less rapidly, reaching a
maximum of 30 Oe before showing a slight downturn.

Figure 2 shows the results for the fixed-field bulk suscep-
tibility sM /Hd at a field of 3400 Oe for both the parallel and
perpendicular configurations. Note that this value of the field
corresponds to a resonance at 9.482 GHz with ag factor
equal to 2. The measurements were carried out in a Quantum
Design SQUID MPMS-5 magnetometer in the temperature
range between 2 K and 300 K. The susceptibility forH ic
decreases rapidly from room temperature approaching a
minimum of −2.94310−5 emu/g at 34 K before increasing
to −2.82310−5 emu/g at 2 K. The fixed-field susceptibility
for H'c is also negative but much smaller in magnitude
thanx'. The ratio ofxi /x' varies from 55 at 300 K to 104
at 5 K. Note that the measured susceptibilities,xi and x',
also have contributions from the diamagnetic core suscepti-
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bility and the paramagnetic Pauli susceptibility of the carri-
ers, both of which are isotropic.16 According to Ref. 16, the
former is on the order of −0.04310−5 emu/g, which is com-
parable to our measured values ofx', while the latter is
estimated to be much smaller, 0.0016310−5 emu/g.

IV. DISCUSSION

The theory outlined above establishes a connection be-
tween theg shifts and the orbital components of the fixed-
field susceptibilities. The behavior of the bulk susceptibilities
shown in Fig. 2 isqualitativelyconsistent with the variation

of theg values shown in Fig. 1. Sincexorbixorb.100 at low
temperatures, one expectsDg' to be smaller thanDgi by
about the same factor, i.e.,Dg'ø0.002. BecauseDg' is
small, it is difficult to distinguish the contribution of the
orbital susceptibility[Eq. (5)] from intra-atomic contribu-
tions and vacuum fluctuation effects.

The ratio of the parallelg shifts at the limiting tempera-
tures,Dgis2 Kd / Dgis300 Kd<3, is greater than one would
expect from the ratio of the susceptibilities,
xis2 Kd /xis300 Kd<1.5. We attribute this to the temperature
variation of the effective electron densityNef f. In graphite,
neither the value ofNef f nor L is known.17 It is important to

FIG. 1. (Color online) Linewidths andg val-
ues with applied fields parallel(solid triangles)
and perpendicular(open triangles) to thec axis of
HOPG. The measurements were carried out at
X-band frequency, 9.482 GHz. The dotted curves
are guides to the eye.

FIG. 2. (Color online) Fixed-field suscepti-
bilities for applied fields parallel(solid triangles)
and perpendicular(open triangles) to thec axis of
HOPG. The fixed-field susceptibility is defined as
the ratio of the bulk magnetization to the field in
an applied field of 3400 Oe. Note the change in
vertical scale between the upper and lower
curves.
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keep in mind that our effective electron density is defined by
the ratio Hxi / kmzl and is not identical to the carrier density
inferred from transport measurements, although it is reason-
able to expect similar temperature variations in the two pa-
rameters. The decrease inDgi from 0.15 at 50 K to 0.05 at
room temperature, together with the increase inxorbi from
−2.9310−5 emu/g to −1.9310−5 emu/g over the same tem-
perature range, is consistent with an increase inNef f by a
factor of 2. The fractional increase is comparable to the in-
crease in the carrier density over the same temperature
range.18

From Eq. (9) it is evident that the behavior of 1/T2 is
determined by the time integral of a correlation function as-
sociated with thefluctuationsin the orbital angular momen-
tum. At low temperatures, whereuxiu becomes large, it is
expected that the amplitudes of the longitudinal fluctuations
increase. It is also expected that the fluctuations will decay
more slowly, corresponding to an increase in the correlation
time. Both of these effects contribute to the increase in the
linewidth asT→0.

From Fig. 1, it is apparent that there is also a small in-
crease in linewidth when the static field is perpendicular to
thec axis. A possible explanation for this effect follows from
Eq. (7). In addition to the longitudinal terms, the linewidth
has contributions from the fluctuations in the orbital momen-
tum that are perpendicular to the applied field. When the
static field is parallel to thec axis, the perpendicular fluctua-
tions are smallsx' /xi !1d and their contribution to the line-
width at low temperatures is probably negligible. When the
static field is perpendicular to thec axis, however, there is a
contribution to the linewidth coming from thetransverse
fluctuations that are directed along the c axis. Although the
c-axis fluctuations are suppressed by the perpendicular field,
if the suppression is not complete, they may be giving rise to
the weak growth inDH' asT→0.

With H ic, the dominant fluctuations in the effective field
are along the direction of the dc field. Under these condi-

tions, the linewidth is due almost entirely to dephasing ef-
fects. As a consequence, one hasT1@T2, whereT1 and T2
are the longitudinal and transverse relaxation times, respec-
tively. When one hasH'c, the c axis fluctuations are per-
pendicular to the applied field. If thec axis fluctuations were
still dominant, one would have largely lifetime broadening,
i.e., T2<2T1; more generally, one expects thatT1,T2,2T1.

We have also made measurements of the parallel and per-
pendicularg factors and linewidths atSbands4 GHzd andQ
bands34.4 GHzd frequencies. These results, along with theX
band data, are shown in Fig. 3. TheX- and S-band (and
Q-band forTù125 K) linewidths are nearly identical, as is
to be expected in the rapid modulation limit, wherevt!1.
Additional evidence in support of the rapid modulation ap-
proximation comes from measurements of the resistivity re-
ported by Duet al. in Ref. 2. From the transport data, they
infer a carrier scattering time associated with electron-
phonon interactions on the order of 1.7310−10 T−1 s (T in
K). Although caution is called for in utilizing scattering
times inferred from transport measurements to interpret
CESR data, it appears that the rapid modulation limit is ap-
propriate forS- andX-band measurements down to tempera-
tures on the order of 10 K or below. In the case ofQ-band
studies, the breakdown of the rapid modulation limit may
begin to occur at higher temperaturess50 K–100 Kd.

It should be noted that there is a small difference between
the X-band and theS- and Q-bandg factors in the parallel
configuration over the range 100 KøTø250 K. This differ-
ence, which is also seen in other HOPG samples, occurs in a
region where the bulk susceptibility is field independent for
the resonance fields used in the experiment. Within the
effective-field model, such a shift is associated with differ-
ences in the effective electron densityNef f. This effect
does not appear to be an experimental artifact since our
X-band data forgi are very similar to the values ofgi

reported in Ref. 9.

FIG. 3. (Color online) Linewidths andg val-
ues in the parallel and perpendicular configura-
tions for S-band, X-band, andQ-band frequen-
cies. Note the difference between theX-band and
the S- and Q-band values ofgi between 100 K
and 300 K.
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As mentioned previously, we used the tight binding or
atomic approximation for the spin-orbit interaction. The gen-
eral expression for the spin-orbit interaction takes the form
s" /2m2c2ds=V3pWd ·sW, whereV is the periodic potential and
p is the electron momentum. The axial vector=V3pW has the
same transformation properties as the orbital angular mo-
mentum. With the more general form of the interaction, theg
shift is given by

Dg = s"/2m2c2dks=V 3 pWdzl/mBH. s10d

Here the brackets denote a thermal average over the mani-
fold of hybridized 2p states contributing to the dynamic spin
susceptibility. If the tight-binding approximation is appropri-
ate, the variation ofks=V3pWdzl with field and temperature
should be similar to that ofklzl.

In summary, in the fluctuating field model for CESR in
HOPG, the anomalousg shift and linewidth that are ob-
served with the static field along thec axis are associated
with the longitudinal fluctuations in the orbital angular mo-
mentum[or its generalizations=V3pWd]. The g shift is re-
lated to the static orbital susceptibility, which characterizes
the equal-time correlations of the orbital moments, whereas
the linewidth is related to the dynamical correlations. The
theory predicts that the ratioDgi / Dg' is equal toxorb/xorb'.

Unfortunately, it has not been possible to test this prediction
becauseDg' is too small to separate the orbital part from
various temperature-independent contributions. Although we
do not have a detailed prediction for the magnitude and tem-
perature dependence of the linewidth, it may be possible to
check the predictions for the relative magnitudes ofT1 and
T2 in the parallel and perpendicular directions discussed
above.

As a final point, we mention that the approach outlined
here for graphite may also be useful for interpreting CESR in
carbon nanotubes. Although there are predictions for unusual
behavior in single-wall and multiwall nanotubes,19 the ex-
perimental evidence seems to support the interpretation that
the ESR in single-wall nanotubes is associated with para-
magnetic defects.20 In the case of multiwall nanotubes, a
variety of behaviors is found.20 We expect our theory to be
applicable to those samples where the line shape is Dysonian
indicating conducting behavior of the resonant electrons.
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