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By using a quasistationary approach, we consider the mass evolution of Schwarzschild black holes in

the presence of a nonminimally coupled cosmological scalar field. The mass evolution equation is

analytically solved for generic coupling, revealing a qualitatively distinct behavior from the minimal

coupling case. In particular, for black hole masses smaller than a certain critical value, the accretion of the

scalar field can lead to mass decreasing even if no phantom energy is involved. The physical validity of the

adopted quasistationary approach and some implications of our result for the evolution of primordial and

astrophysical black holes are discussed. More precisely, we argue that black hole observational data could

be used to place constraints on the nonminimally coupled energy content of the Universe.
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I. INTRODUCTION

The accretion of matter is one of the most studied
physical processes involving black holes. Assuming the
validity of certain energy conditions for the accreting
matter, the black hole mass will never decrease. In fact,
if the null energy condition holds, no classical process can
lead to mass decreasing for black holes [1]. The situation
changes completely if quantum processes are allowed: a
black hole can, in fact, shrink due to the emission of
Hawking radiation [2]. Such processes are particularly
relevant, for instance, to primordial black holes (PBHs)
[3]. One of the most striking features of PBHs is that they
could indeed evaporate completely due to the emission of
Hawking radiation. It is known, in particular, that a PBH
with mass smaller than the so called Hawking mass MH ¼
1015 g should have already evaporated by now. PBHs with
masses close to that limit are specially relevant because
their emitted Hawking radiation might, in principle, pro-
duce observable effects in the present-day Universe [4].

The interest in these problems has increased consider-
ably in the last years due to the many dark energy phe-
nomenological models that have been proposed to describe
the recent accelerated expansion of the Universe [5]. Such
models [6] typically involve a scalar field pervading all the
Universe that could, in principle, be absorbed by any black
hole, implying consequently new channels for black hole
mass accretion [7]. It is interesting to notice that the study
of black holes growth in the presence of scalar fields was
initiated before [8] the discovery of the recent acceleration
of the Universe and, thus, before the proposal of any dark
energy model.

The mass evolution of any black hole is governed by two
competing processes. The first one is Hawking radiation,

which decreases the black hole mass due to the emission of
a thermal radiation. The other one, which tends to increase
the black hole mass, is the accretion of the surrounding
available matter and energy. The survival or not of a PBH,
for instance, was believed to depend on the detailed bal-
ance of these processes. The unexpected possibility that

black hole masses could effectively decrease due to the
accretion of exotic (phantom) dark energy [9] was received
with great interest because, mainly, it could alter qualita-
tively the evolution of any black hole, implying, occasion-
ally, observational consequences for both astrophysical
and primordial black holes. Since phantom dark energy
violates the usual energy conditions, there is no contra-
diction between these results and the classical theory of
black holes. Nevertheless, one should keep in mind that the
physical viability of models involving phantom energy has
been constantly challenged by their severe inherent classi-
cal and quantum instabilities [10].
In this paper, we study the mass evolution of Schwarz-

schild black holes in the presence of a nonminimally
coupled scalar field. A quasistationary approach is intro-
duced and the mass evolution equation is analytically
solved for generic coupling. Our main conclusion is that,
for black hole initial masses smaller than a certain critical
value, one could indeed have mass decreasing even in the
absence of the Hawking evaporation mechanism and with-
out any component of phantom energy in the model. This is
a more robust scenario for mass decreasing of black holes
due to the accretion of exotic matter since it is not plagued
by the phantom energy instabilities. Moreover, one could
have, in principle, mass decreasing for considerably larger
black holes than the minimally coupled case, with possible
implications for primordial and astrophysical black holes,
which could be explored in order to place observation
constraints on the nonminimally coupled energy content
of the Universe.
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II. NONMINIMALLY COUPLED SCALAR FIELDS
AROUND BLACK HOLES

We are concerned here with a scalar field� governed by
the action

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½Fð�ÞR� @a�@a�� 2Vð�Þ�; (1)

surrounding a Schwarzschild black hole. Nonminimally
coupled cosmological models of the type (1) have been
intensively used in modern cosmology [11]. Models for
which it is indeed possible to reach Fð�Þ ¼ 0 are known to
be plagued with singularities [12]. The hypersurface
Fð�Þ ¼ 0 marks, in a sense, the boundary between stan-
dard [Fð�Þ> 0] and phantomlike [Fð�Þ< 0] behavior for
the scalar field � [13]. We are mainly interested here in
models such that Fð�Þ> 0 everywhere since, in such
cases, phantomlike behavior is excluded by construction.

Since Schwarzschild spacetime is Ricci-flat, the equa-
tion of motion for � obtained from (1) reads simply

h� ¼ V 0ð�Þ; (2)

and the associated energy momentum tensor is given by

Tab ¼ @a�@b�� gab
2

ð@c�@c�þ 2VÞ þ rarbF

� gabhF: (3)

Note that, due to the Ricc flatness of Schwarzschild space-
time, we have rbTa

b ¼ 0. By adopting the usual
Schwarzschild coordinates, the spherically symmetrical
version of Eq. (2) will be given by
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V 0ð�Þ: (4)

The standard formulation of the stationary Bondi accretion
process [14] for this problem consists in considering solu-
tions of (4) with the following boundary condition:

lim
r!1�ðt; rÞ ¼ �cðtÞ; (5)

where �cðtÞ corresponds to the cosmological homogene-
ous and isotropic solution of the model (1), with cosmo-
logical and Schwarzschild time coordinates identified.
Since no back reaction of the scalar field is taken into
account, our approach requires that the energy content of
the scalar field must remain bounded and small around the
black hole. Once we have a solution �ðt; rÞ of (4) with
bounded energy and obeying the boundary condition (5),
we assume that its energy flux on the black hole horizon is
completely absorbed by the black hole, implying that

dM

dt
¼

I
r¼2M

r2Tt
rd�: (6)

This problem was solved, for Fð�Þ ¼ 1 and Vð�Þ ¼ 0, in

[15]. In the Eddington-Finkelstein coordinates ðv; rÞ, with
v ¼ tþ rþ 2M logðr=2M� 1Þ corresponding to incom-
ing light geodesics, the pertinent solution corresponds to
the stationary configuration

�ðv; rÞ ¼ �þ �

�
v� rþ 2M log

2M

r

�
; (7)

with � and � constant. We do not expect to have stationary
solutions like this for the generic model (1). In fact, sta-
tionary solutions are possible only for actions that are
invariant under shifts � ! �þ � (see [16]). We can,
however, adopt a quasistationary approach based on the
observation [17] that, for slowly varying cosmological
solutions�cðtÞ, the ‘‘delayed’’ field configuration given by

�ðv; rÞ ¼ �c

�
v� rþ 2M log

2M

r

�
(8)

is an approximated solution of (4) for certain potentials
Vð�Þ. The validity of this approximation will ensure, of
course, the validity of our quasistationary approach. By
substituting (8) in (4) one gets

�
1þ 2M

r
þ

�
2M

r

�
2 þ

�
2M

r

�
3
�
€�c þ V0ð�cÞ ¼ 0; (9)

with the dots standing for the derivative with respect to t.

Hence, our approximation is valid if €�c � 0 and V0ð�cÞ �
0. Because of the typical cosmological time scales, the

assumption of a quasistationary ( €�c � 0) evolution around
the black hole is not, in fact, too restrictive. The same is
true for the assumption V 0ð�cÞ � 0, but the argument is
more involved. Assuming a small variation of �c, the
potential can be linearized as Vð�cÞ ¼ ��c, since the
constant factor is irrelevant here. In this case, Eq. (4) will
be a linear equation, and it is possible to find a stationary
solution obeying the Bondi boundary condition (5). The
approximation will be valid provided �c is small and r is
kept smaller than the cosmological horizon scale (see [7]
for the details). It is interesting to notice that the explicit
examples of failure of the approximation (8) presented in
[17] correspond clearly to situations where one cannot

ensure €�c � 0 or V 0ð�cÞ � 0.
For the solution (8), one has

Tr
t ¼

�
2M

r

�
2
�
ð1þ F00Þ _�2

c þ F0 €�c � F0

4M
_�c

�
: (10)

Also from (8), we see that, on the black hole horizon, the
field � assumes the value of �c, propagated along an
incoming light geodesic, but arriving with a certain ‘‘de-
lay’’[17]. Our quasistationary analysis neglects also such
delay and, hence, in the quasistationary approximation

�cðtÞ � �1 þ _�1ðt� t0Þ; (11)

with �1 and _�1 constants, we have

_M ¼ 16�M2ð1þ F00Þ _�21 � 4�MF0 _�1: (12)
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For the minimal coupling case, Fð�Þ ¼ 1 and (12) reduce
to the usual scalar field accretion rate [15]. It is clear,
however, that for the nonminimally coupled case one could
have, in principle, _M< 0 even in the absence of phantom
modes. The rate (12) corresponds only to the accretion of
the scalar field. The complete mass evolution equation is
obtained by adding to the right-hand side a term / M�2

corresponding to the Hawking radiation. As we will see in
the next section, the fact that the two accretion terms in
(12) have different signs and different powers ofM implies
the existence of a critical mass Mcr delimiting the mass
increasing and decreasing accretion regimes.

We finish this section by noticing that the possibility of
negative energy fluxes for nonminimally coupled scalar
fields and their implications for a mass decreasing process
involving black holes has been already considered previ-
ously in another context, namely, in the investigation of the
generalized second law of thermodynamics [18].

III. MASS EVOLUTION

For a generic coupling function Fð�Þ, the complete
mass evolution equation has the general form

_M ¼ fðtÞM2 � gðtÞM� �

M2
; (13)

where fðtÞ and gðtÞ are smooth functions and � is a
characteristic constant for Hawking radiation. Let us con-
sider, initially, only the accretion process (� ¼ 0). By
introducing MðtÞ ¼ GðtÞPðtÞ, with

GðtÞ ¼ e
�
R

t

t0
gðsÞds

; (14)

we obtain a separable equation for PðtÞ, which can be
easily solved, leading to the following solution for (13)
with � ¼ 0:

MðtÞ ¼ M0GðtÞ
1�M0HðtÞ ; (15)

where Mðt0Þ ¼ M0 and

HðtÞ ¼
Z t

t0

fðsÞGðsÞds: (16)

Typically, if the denominator of (15) does not vanish, the
mass MðtÞ decreases according to (14) for positive gðtÞ.
Mass increasing solutions appear when the denominator
vanishes. For positive and well behaved fðtÞ and gðtÞ, the
function HðtÞ will be monotonically increasing and
bounded by H1 ¼ limt!1HðtÞ, leading to a critical mass
Mcr ¼ H�11 . Any black hole with initial massM0 such that
0<M0 <Mcr, even in the absence of Hawking radiation,
will disappear due to the accretion of the scalar field, but
such a process typically will take an infinite amount of
time. On the other hand, those black holes with initial
masses M0 >Mcr will grow by accreting the scalar field.
In fact, in this case, the denominator of (15) vanishes for

t ¼ tcr, with HðtcrÞ ¼ M�1
0 , implying that the black hole

grows up to infinite mass in a finite time. The larger the
black hole initial mass M0, the shorter tcr is. In contrast to
the 0<M0 <Mcr case, such behavior for M0 >Mcr is
similar to that observed for the minimally coupled case
F ¼ 1. The qualitative evolution for the case M0 ¼ Mcr

will depend on the details of the functions fðtÞ and gðtÞ.
For situations with large Mcr, the inclusion of Hawking

radiation will alter qualitatively only the final instants of
the mass decreasing process. In such a case, forM0 <Mcr,
the black hole also disappears, but now in a finite time,
since Hawking radiation dominates the process forMðtÞ �
1. In fact, forM>Mcr, the Hawking radiation term can be
neglected and the dynamics are essentially that described
by (15). Let us now consider some explicit examples of the
coupling function Fð�Þ in order to elucidate these points.

A. Fð�Þ ¼ 1þ ��

In this linear coupling case, Eq. (13) is autonomous, with

fðtÞ ¼ 16� _�21 and gðtÞ ¼ 4�� _�1, and can be integrated
by quadrature for any value of �. We do not need, however,
the exact solution here. We assume � and � to both be
positive in order to avoid possible singularities [12] and,
without loss of generality, t0 ¼ 0. The functions GðtÞ and
HðtÞ are in this case

GðtÞ ¼ e�4�� _�1t (17)

and

HðtÞ ¼ 4 _�1
�

ð1�GðtÞÞ: (18)

For positive _�1, we have

Mcr ¼ �

4
_��11 ; (19)

and

tcr ¼ 1

4�� _�1
log

M0

M0 �Mcr

: (20)

Notice that, for typical cosmological situations, _�1 is
small, implying large values of Mcr for � of the order of
unity (in Planck units). In these cases, the Hawking radia-
tion is important only in the final instants of the mass
decreasing phase.

B. Fð�Þ ¼ 1þ ��2

We assume � > 0. We have fðtÞ ¼ 16�ð1þ 2�Þ _�21 and

gðtÞ ¼ 8��ð�1 _�1 þ _�21tÞ in this case. The pertinent
functions are, for t0 ¼ 0,

GðtÞ ¼ e�4��ð2�1 _�1tþ _�21t2Þ (21)

and
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HðtÞ ¼ 16�ð1þ 2�Þ _�21
Z t

0
e�4��ð2�1 _�1sþ _�21s2Þds: (22)

The critical mass is given by Mcr ¼ H�11 , with

H1 ¼ 4�
1þ 2�ffiffiffi

�
p j _�1je4���21½1� 	erfð2 ffiffiffiffiffiffiffi

��
p

�1Þ�;
(23)

where	 ¼ sgn _�1 and erfðxÞ is the error function [19]. For
the typical cosmological situations we have that�1 is very
small, leading to

Mcr �
ffiffiffi
�

p
4�ð1þ 2�Þ j

_�1j�1: (24)

Notice that, as in the previous case, Mcr / _��11 .

C. Fð�Þ ¼ e��

In this case, we have fðtÞ ¼ 16�ð1þ �2e�ð�1þ _�1tÞÞ _�21
and gðtÞ ¼ 4�� _�1e�ð�1þ _�1tÞ, leading, for t0 ¼ 0, to

GðtÞ ¼ expð�4�e��1ðe� _�1t � 1ÞÞ (25)

and

HðtÞ ¼ 16� _�21
Z t

0
ð1þ �2e�ð�1þ _�1sÞÞGðsÞds: (26)

The critical mass is given by

M�1
cr ¼ 16� _�1

�

�
�2

4�
þ expð4�e��1Þ�ð0;4�e��1Þ

�
; (27)

where �ðz; xÞ is the incomplete gamma function [19]. For
small �1, we have

Mcr � �

aþ 4�2
_��11 ; (28)

where a is a numerical constant of the order of unity,
namely, a ¼ 16�e4��ð0; 4�Þ � 3:72. Again, we observe

the same behavior Mcr / _��11 .

D. Radiation era with Fð�Þ ¼ 1þ ��

The previous examples involve only the nonminimally
scalar field in the quasistationary approximation. This is
not enough, for instance, to describe PBHs, since they were
created in the primordial Universe and have existed for eras
where dark energy was not the gravitationally dominant
content of the Universe. In the radiation dominated era, in
particular, the Universe was filled and dominated by ultra-
relativistic matter whose energy density is described in
Planck units by

"� ¼ 3

32�t2
: (29)

Such an energy density has also been available to be
accreted by the black hole and should be incorporated in

our analysis. The case of linear coupling Fð�Þ ¼ 1þ ��
in the presence of radiation with energy density (29) cor-

responds to the choices fðtÞ ¼ 16� _�21 þ ð3=2Þt�2 and

gðtÞ ¼ 4�� _�1. The GðtÞ and HðtÞ functions in this case
are

GðtÞ ¼ e�4�� _�1ðt�t0Þ (30)

and

HðtÞ ¼ 4 _�1
�

ð1�GðtÞÞ þ 3

2

Z t

t0

s�2e�4�� _�1ðs�t0Þds; (31)

leading to

H1 ¼ 4 _�1
�

�
1þ 3�e�

8 _�1t0
��ð�1; �Þ

�
; (32)

with � ¼ 4�� _�1t0. Since
lim
x!0

x�ð�1; xÞ ¼ 1; (33)

we have in the present case

Mcr ¼ H�11 � �

4 _�1

�
1þ 3�

8 _�1t0

��1
; (34)

if � is small.

IV. DISCUSSION

If we assume that _�21 is of the same order as the critical
density of the Universe today (
0 � 10�29 g=cm3), we
have Mcr � 1056 g for coupling constants � of the order
of unity (in Planck units) in the first three cases considered
in the last section, allowing all the black holes in the
Universe to be in the shrinking phase today. In fact, even
the galactic supermassive black holes withM � 106M� �
1039 g are far below such a limit. These black holes would
be shrinking today according to (15). The exact character-
istic decaying time will depend on the particular coupling
function. For the case of the linear coupling, the character-
istic time is, according to (17), 1017 s, similar to the
Universe’s age. Notice that all the other coupling functions
considered in the last section lead, typically, to faster
decreasing mass regimes.
The fact that there are likely many black holes around us

might be used to constrain the nonminimally coupled
energy content of the Universe during the cosmological
history. Let us consider, for simplicity, the last example of
the previous section: the linear coupling case during the
radiation dominated era. Suppose that the dark energy
content of the Universe has changed slightly after, say,

t0 ¼ 1 s. In this case, _�1t0 � 10�18 in Planck units, jus-
tifying taking � � 0 in (32) and leading to Mcr � 1038 g
for a coupling constant � of the order of unity. Thus, only
PBHs with mass greater than 1038 gwould escape from the
shrink phase. Notice that this mass is extremely large if
compared with the usual Hawking mass MH ¼ 1015 g.
Observational constraints on the PBHmass cutoff [4] could
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be used, in principle, to establish constraints on the non-
minimal coupling parameter �, although the details depend
on the coupling function Fð�Þ. If we take t0 ¼ 1011 s,
corresponding to the radiation-matter equality era, we

will have _�1t0 � 10�7, leading to Mcr � 1049 g. This is,
again, a huge mass and implies that virtually all black holes
present at the end of the radiation era have existed during
all the matter dominated era in a shrinking regime. They
should have lost two-thirds of their mass by now, suggest-
ing that observational data about supermassive black holes
could also be used to constrain the nonminimally coupled
energy content of the Universe.

We finish by noticing two points. First, one knows that it
is not expected, in general, to have constant values for �1
and _�1 along the cosmological history. Equation (13)

accommodates also situations where �1 and _�1 are func-
tions of t. However, we should keep in mind that our
formalism is based on the assumption of a quasistationary

evolution, requiring €�cðtÞ � 0 in order to work properly.
One needs to take backreaction into account in order to
treat nonstationary situations (see, for instance, [20] for a
recent discussion).

The second point is related to the hypothesis that � is a
field test around a Schwarzschild black hole. This is a good
approximation provided that the energy content of the
scalar field (dark energy) is negligible when compared

with the black hole physics scale. For the much larger
cosmological scale, on the other hand, the scalar field is
indeed the dominant energy content, being solely respon-
sible for the accelerated expansion of the Universe, usually
described by a quasi–de Sitter solution. In our Universe,
these two scales are very different. Since the dark energy
content is so small, in order to probe the quasi–de Sitter
properties of the spacetime one needs to consider length
scales of the same order as the Hubble radius. It is perfectly
possible, in particular, to apply condition (9) in a region far
from the black hole (large r), but still far from the cosmo-
logical horizon. Furthermore, provided that the effective
cosmological constant of the accelerated expansion is
small, the dynamics near the black hole horizon are essen-
tially the same as the Schwarzschild case, implying that
(12) is still valid. From a theoretical point of view, how-
ever, it is certainly interesting to consider the problem of
accretion onto Schwarzschild–de Sitter black holes as is
done, for instance, in [21] for the case of perfect fluids and
minimally coupled fields. We already know, however, that
our present analysis should arise naturally in the limit of
small �. These points are now under investigation.
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