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Abstract. In this article we give first a survey on recent results on some
Trudinger-Moser type inequalities, and their importance in the study of non-

linear elliptic equations with nonlinearities which have critical growth in the

sense of Trudinger-Moser. Furthermore, recent results concerning systems of
such equations will be discussed.

1. Introduction. Elliptic equations and systems with critical growth nonlineari-
ties have been widely studied in recent years. In dimensionN ≥ 3 the critical growth
is given by the Sobolev embeddings. While equations with subcritical growth are
solved by standard variational methods, equations with critical growth need more
specific methods due to the loss of compactness. Indeed, the existence results be-
come very subtle: the equation

−∆u = u
N+2
N−2 in Ω , u|∂Ω = 0 , Ω starshaped ,

has no nontrivial solution due to Pohozaev’s identity [50], while the perturbed
equation

−∆u = λu+ u
N+2
N−2 in Ω , u|∂Ω = 0 (1.1)

has positive solutions for 0 < λ < λ1 (N ≥ 4) due to the famous result by Brezis-
Nirenberg [13]. While the situation in N ≥ 3 is by now well-understood [13, 22],
the case N = 2 is quite different, and there are less results available. The critical
growth is of exponential type, and is governed by the Trudinger-Moser inequality.

In this paper we give an overview of recent results concerning Trudinger-Moser
type inequalities and on related equations and systems of equations with critical
Trudinger-Moser nonlinearities in domains in R2.
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2. Trudinger-Moser type inequalities.

2.1. The Trudinger-Moser inequality. Let Ω ⊂ RN be a smooth and bounded
domain. The well-known Sobolev embedding theorems say that for p < N

W 1,p
0 (Ω) ⊂ Lq(Ω)

if

1 ≤ q ≤ pN

N − p
,

where W 1,p
0 (Ω) is the standard Sobolev space of Lp-functions whose weak derivatives

belong also to Lp. The Trudinger-Moser inequalities concern the borderline cases

p = N .

Indeed, since (formally) pN
N−p ∼ +∞, one may ask if in this case the embedding

of W 1,N
0 goes into L∞. This is not the case, as simple examples show. So, it was

expected that there must be a maximal growth function g(t) such that u ∈W 1,N (Ω)
implies that

∫
Ω
g(u)dx <∞. Indeed, S. Pohozaev [49] and N. Trudinger [60] showed

that this maximal growth is of exponential type. More precisely, let p = N , then

u ∈W 1,N
0 (Ω) =⇒

∫
Ω

e|u|
N′

dx <∞ ,

where

N ′ =
N

N − 1
.

The inequalities are sharp in the sense that for any higher growth one finds functions
for which the corresponding integral becomes infinite. The proofs of Pohozaev and
Trudinger use the same idea, namely developing the exponential in a power series,
which reduces the problem to show that a series of Lm-norms (m ∈ N) remains
finite. By controlling the embedding constants of W 1,N ⊂ Lm one obtains the
result.

The above assertions were sharpened by J. Moser. He proved

Theorem 2.1. (see [48])

Denote by ‖∇u‖N the (equivalent to the standard) norm in W 1,N
0 (Ω). Then

sup
‖∇u‖N≤1

∫
Ω

eα |u|
N′

dx

{
≤ c |Ω| , if α ≤ αN
=∞ , if α > αN

, (2.2)

where αN = Nω
1/(N−1)
N−1 , and ωN−1 is the measure of the unit sphere in RN .

Inequality (2.2) is now called the Trudinger-Moser inequality.

Proof. (Sketch) To prove this result, J. Moser used symmetrization; that is, to every
function u is associated a radially symmetric function u∗ such that the sublevel-
sets of u∗ are balls with the same area as the corresponding sublevel-sets of u, i.e.
|{x ∈ RN : u∗(x) < d}| = |{x ∈ Ω : u(x) < d}|, where |A| denotes the Lebesgue
measure of the set A. Then u∗ is a positive and non-increasing function defined on
BR(0) with |BR| = |Ω|. By construction, one has the following property:

Let f ∈ C(R), then ∫
BR

f(u∗) dx =

∫
Ω

f(u) dx ;
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furthermore, the well-known Pólya-Szegö inequality asserts that∫
BR

|∇u∗|N dx ≤
∫

Ω

|∇u|N dx

From this we clearly deduce that

sup
‖∇u‖N≤1

∫
Ω

eα|u|
N′

dx ≤ sup
‖∇u∗‖N≤1

∫
BR

eα|u
∗|N
′

dx ,

and hence it is sufficient to consider the radial case.

Next, we perform a change of variables: set

r = |x| = Re−t/N and w(t) = N
N−1
N ω

1
N

N−1 u
∗(r) .

One checks that∫
BR

|∇u∗|N dx =

∫ ∞
0

|w′(t)|N dt ,

∫
BR

eα|u
∗|N
′

dx = |BR|
∫ ∞

0

e
α
αN
|w(t)|N

′
−t

dt

Thus, we have reduced the problem to

sup∫∞
0
|w′|N dt≤1

|BR|
∫ ∞

0

e
α
αN
|w(t)|N

′
−t

dt . (2.3)

Assume now that α < αN ; assuming that w ∈ C1 we have

w(t) =

∫ t

0

w′(s) ds ≤ t1/N
′
(∫ t

0

|w′(t)|N dt

)1/N

≤ t1/N
′
,

by assumption. Inserting this in (2.3) we find∫ ∞
0

e
α
αN
|w(t)|N

′
−t

dt ≤
∫ ∞

0

e
α
αN

t−t
dt <∞ .

The case α = αN is more delicate, we refer to [48].

Finally, we show that the exponent αN is optimal. Indeed, suppose that α > αN ,
and define the so-called Moser-sequence

wn(t) :=

{
t

n1/N , 0 ≤ t ≤ n

n1/N ′ , n ≤ t

Then clearly
∫∞

0
|w′n(t)|N dt = 1, and∫ ∞

0

e
α
αN
|wn|N

′
−t

dt ≥
∫ ∞
n

e
α
αN

n−t
dt = e

( α
αN
−1)n →∞

2.2. Best constant attained. It is well-known that in the case of the Sobolev-
embedding W 1,2

0 (Ω) ⊂ L2∗(Ω), the best embedding constant

S2∗

N = sup
‖∇u‖2=1

∫
Ω

|u|2
∗

dx (2.4)

is not attained if Ω 6= RN . Note that (2.4) is in an analogous form to (2.2).

By contrast, in the situation of Trudinger-Moser (2.2), one has the following
surprising result by L. Carleson and A. Chang.
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Theorem 2.2. (see [16])

If Ω ⊂ RN is the ball B1(0), then the supremum in (2.2) is achieved when α ≤ αN .

Proof. (Idea of the proof in the case N = 2) By symmetrization one may restrict
to radially symmetric functions. Carleson-Chang proceed as follows: Assuming
that the supremum in (2.2) is not attained, they conclude that any maximizing
sequence must concentrate in the origin. Using this information, they then succeed
to determine the limit value of the integral

lim
n→∞

∫
B1(0)

e4πu2
n dx = (1 + e) |B1|

along any concentrating maximizing sequence. Thus, this level represents a non-
compactness level. Finally, they exhibit an explicit function for which the integral
(2.2) is above this value, thus reaching a contradiction.

M. Struwe [57] showed that this result continues to hold for small perturbations
of the ball in R2, and M. Flucher [35] extended the result to any bounded domain
in R2. Lin [45] generalized the result to any dimension.

In [26] an explicit concentrating sequence was constructed, along which the in-
tegral (2.2) converges to the non-compactness level found by Carleson-Chang. Fur-
thermore, it was shown (by an asymptotic analysis) that along this sequence the
integral (2.2) converges from above to this value. This gives a new proof of the
result of Carleson-Chang, and it also shows that that there is a strong analogy with
the famous result of Brezis-Nirenberg [13] concerning perturbations of the Sobolev
case.

We remark that the following differential equation is associated to the problem
(2.2) in the case N = 2:{

−∆u = λueu
2

, in Ω

u = 0 , on ∂Ω
, where λ =

1∫
Ω
u2eu2 dx

, (2.5)

and the fact that the supremum in (2.2) is attained yields a (positive) solution to
this equation.

2.3. Higher order Sobolev spaces: The inequalities of D.R. Adams. The
Trudinger-Moser inequality was generalized to higher order Sobolev spaces by D.R.

Adams. Consider W
k,Nk
0 (Ω), with N

k > 1 where

W
k,Nk
0 (Ω) = cl

{
u ∈ C∞0 (Ω) : ‖u‖

Wk,N
k
<∞

}
Note that for

k even : ‖∇ku‖
L
N
k

:= ‖∆ k
2 u‖

L
N
k

k odd : ‖∇ku‖
L
N
k

:= ‖∇∆
k−1

2 u‖
L
N
k

 equivalent norms on W
k,Nk
0 (Ω)

Then one has (see D.R. Adams [2]):

Theorem 2.3.

sup
‖∇ku‖

L
N
k
≤ 1

∫
Ω

eβ |u|
N
N−k

dx

{
≤ c, if β ≤ βk,N
= +∞ , if β > βk,N

(2.6)
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where βk,N are explicit.

Proof. (Idea) We recall that J. Moser used symmetrization for proving his result
(2.2), thereby reducing the problem to the inequality (2.3) for functions of one
variable. This inequality is equivalent to the following one-dimensional calculus
inequality:

For any measurable function φ : R+ → R+ satisfying∫ ∞
0

(φ(t))N dt ≤ 1

holds ∫ ∞
0

e−F (t) dt ≤ c0 , where F (t) = t−
(∫ t

0

φ(s) ds
)N/(N−1)

(2.7)

For the extension to higher order derivatives, the method of symmetrization is
not available. But working with Riesz potentials, D.R. Adams [2] was again able
to reduce the problem to a one-dimensional calculus inequality, namely to

Adams’ inequality: Let a : R× R+ → R+ be a measurable function such that

a(s, t) ≤ 1, if 0 < s < t, and sup
t>0

(∫ 0

−∞
+

∫ ∞
t

a(s, t)p
′

ds
)1/p′

= b <∞

Then there exists a constant c0(p, b) such that for φ : R→ R+ satisfying∫ ∞
−∞

φ(s)p ds ≤ 1

holds ∫ ∞
0

e−F (t) dt ≤ c0 , where F (t) = t−
(∫ ∞
−∞

a(s, t)φ(s) ds
)p′

(2.8)

Notice that the above one-dimensional inequality of J. Moser corresponds to the
case

a(s, t) = 1 , if 0 < s < t ; a(s, t) = 0 otherwise

in Adams’ inequality. The inequalities (2.6) follow from Adams’ inequality in
much the same way as the Moser result from the above simpler calculus inequality
(2.7).

3. Unbounded domains. From (2.2) one sees that these inequalities are valid
only for bounded domains, and therefore the Trudinger-Moser inequality is not
available for unbounded domains. Related inequalities for unbounded domains have
been first considered by Cao [5] in the case N = 2 and for any dimension by

J.M. do Ó [32] and Adachi-Tanaka [1]. All these results have been proved in the
case of the unit ball and the supremum taken with respect to the Dirichlet norm∫

Ω
|∇u|N dx, and assuming in some sense a subcritical growth: eα|u|

N/(N−1)

with
α < αN . In [53] it was shown that in the case N = 2 the result of J. Moser (2.2)
can be fully extended to unbounded domains (and thus to all of R2) if the Dirichlet
norm

∫
Ω
|∇u|2 dx is replaced by the full H1-norm ‖u‖21 =

∫
Ω

(|∇u|2 + |u|2) dx. More
precisely, one has:
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Theorem 3.1. Let Ω be a domain in R2, and consider the Sobolev space H1
0 (Ω)

with ‖u‖1 =
( ∫

Ω
(|∇u|2 + |u|2) dx

)1/2
. Then there is a constant d independent of Ω

such that

sup
‖u‖1≤1

∫
Ω

(
e4πu2

− 1
)

dx ≤ d (3.9)

Proof. It is sufficient to consider the case Ω = R2. By symmetrization we can reduce
to the radial case, and thus we may assume that u is radial and non-increasing.
Dividing the integral into two parts∫

R2

(
e4πu2

− 1
)

dx =

∫
|x|≤r0

(
e4πu2

− 1
)

dx+

∫
|x|≥r0

(
e4πu2

− 1
)

dx ,

one writes the second integral as a series∫
|x|≥r0

(
e4πu2

− 1
)

dx =

∞∑
k=1

∫
|x|≥r0

(4π)k |u|2k

k!
dx . (3.10)

Using a “radial lemma” (see [12, 56]) one estimates

|u(r)| ≤ 1√
π
‖u‖L2

1

r
, for all r > 0 ;

from this one obtains easily that the series in (3.10) converges for r0 sufficiently
large, and hence ∫

|x|≥r0

(
e4πu2

− 1
)

dx ≤ c(r0)

For the first integral, once writes u(r) = u(r)−u(r0) +u(r0) =: v(r) +u(r0) and
estimates

u(r) ≤ v(r)

(
1 +

1

πr2
0

‖u‖2L2

)1/2

+ d(r0) =: w(r) + d(r0) , (3.11)

where we have used again the radial lemma. Hence∫
Br0

e4πu2

dx ≤ c
∫
Br0

e4πw2

dx ≤ d

by Moser’s inequality, since w ∈ H1
0 (Br0) with∫

Br0

|∇w|2 dx

=

∫
Br0

|∇v|2 dx

(
1 +

1

πr2
0

‖u‖2L2

)
=

(
1 +

1

πr2
0

‖u‖2L2

)∫
Br0

|∇u|2 dx

≤
(

1 + 1
πr2

0
‖u‖2L2

) (
1− ‖u‖2L2

)
≤ 1 ,

provided that πr2
0 ≥ 1.

Again, one can ask the question whether the supremum in (3.9) is attained.

Theorem 3.2. (see [53])

For Ω = BR(0), the ball of radius R, and for Ω = R2 the supremum in (3.1) is
attained.
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Proof. (Idea) As in the proof of Carleson and Chang, the proof relies on the de-

termination of the limit of
∫
BR(0)

(
e4πu2 − 1

)
dx along a concentrating maximizing

sequence. Indeed, one shows that for any concentrating maximizing sequence (un)

lim
n→∞

∫
BR(0)

(
e4πu2

n − 1
)

dx = πe1−D(R)

where

D(R) = 2K0(R)

(
2RK1(R)− 1

I0(R)

)
;

here K0,K1, I0 are modified Bessel functions, i.e. solutions of (for k = 0, 1)

−x2u′′(x)− xu′(x) + (x2 + k2)u(x) = 0

One shows that
D(R) ∼ −2 logR , for R small

D(R) ∼ 1
ReR

, for R large

and hence one obtains for Ω = R2 that for concentrating maximizing sequences

lim
n→∞

∫
R2

(
e4πu2

n − 1
)

= πe

Finally, one shows by constructing an explicit concentrating maximizing sequence
that the convergence is from above,i.e. there exists n0 such that for all n ≥ n0∫

BR(0)

(
e4πu2

n − 1
)
> πe1−D(R)

and hence

sup
‖∇u‖22+‖u‖22≤1

∫
BR(0)

(
e4πu2

− 1
)
> πe1−D(R)

From this it follows immediately that the supremum in (3.9) is attained.

4. Generalized Trudinger-Moser inequalities. Numerous generalizations, ex-
tensions and applications of the Trudinger-Moser (TM) inequality have been given
in recent years:

TM-type inequalities involving higher order derivatives were given by D.R. Adams
[2]. For extensions of the TM-inequality to manifolds, see P. Cherrier [18], L.
Fontana [36], Y. Li [43, 44], Y. Yang [61].

Recently, Adimurthi - O. Druet [5] have given an improved TM-inequality with
remainder term; they proved the following result

Theorem 4.1. Let Ω ⊂ R2 be a bounded domain, and set

Cα = sup
u∈H1

0 (Ω),‖∇u‖2≤1

∫
Ω

e4πu2(1+α)‖u‖2 dx

Let λ1 denote the first eigenvalue of the Laplacian in H1
0 (Ω). Then

Cα <∞ , if α < λ1

Cα = +∞ , if α ≥ λ1
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The sharpness is obtained by suitably modified Moser-type sequences, while the
proof of the convergence is inspired by the following concentration-compactness
result by P.-L. Lions [46]:

Theorem 4.2. Let (uε)ε>0 be a sequence of functions in H1
0 (Ω) with ‖∇uε‖ = 1

such that uε ⇀ u0 weakly in H1
0 (Ω). For any p < 1/(1− ‖u0‖22),

lim sup
ε→0

∫
Ω

e4π pu2

dx < +∞

This result gives more precise information than the Trudinger-Moser inequality
(2.2) in the case when uε ⇀ u0 in H1

0 (Ω) with u0 6= 0.

Adimurthi-Druet extend the result of Lions, giving extra information even when
uε ⇀ 0 in H1

0 (Ω). They obtain this extra information by doing a careful blow-up
analysis of sequences of solutions to approximate elliptic equations with near critical
Trudinger-Moser growth.

We also mention that recently TM-inequalities with other boundary data, and
Trudinger-Moser trace inequalities have been obtained, see A. Cianchi [20], [21].

Finally, we mention TM-type inequalities in other function spaces, in particular
in Orlicz spaces, Zygmund spaces, Lorentz spaces, Besov spaces etc., see e.g. A.
Cianchi [19], N. Fusco - P.-L. Lions - C. Sbordone [37], A. Alvino - V. Ferone - G.
Trombetti [7], D.E. Edmunds - P. Gurka - B. Opic [34], S. Hencl [40], H. Brezis -
S. Wainger [14].

In particular, we recall here some recent results for embeddings of Lorentz-
Sobolev spaces into Orlicz spaces and the related TM-inequalities.

We first recall the definition of Lorentz spaces:

4.1. Sobolev-Lorentz spaces. Lorentz spaces Lp,q are scales of interpolation
spaces between the Lebesgues spaces Lp, and are obtained via spherically decreasing
rearrangement: for a measurable function u : Ω→ R let u∗(s) denote its decreasing
rearrangement. Then the function u belongs to the Lorentz space Lp,q(Ω) if

‖u‖p,q =

(∫ ∞
0

[u∗(t) t1/p]q
dt

t

)1/q

< +∞ .

We refer to [3] for the precise definitions; we recall here only that, for Ω ⊂ RN of
finite measure,

Lp,p = Lp , Lp,q1 ⊂ Lp,q2 , if q1 < q2 ,

Lr ⊂ Lp,q ⊂ Ls , if 1 < s < p < r , for all 1 ≤ q ≤ ∞

We denote the norm in Lp,q by ‖u‖p,q. The following Hölder inequality holds:∣∣∣∣∫
Ω

fg dx

∣∣∣∣ ≤ ‖f‖p,q‖g‖p′,q′ , where p′ =
p

p− 1
, q′ =

q

q − 1
(4.12)

First, we recall that the standard Sobolev embeddings can be sharpened by the
use of Lorentz spaces, see e.g. [8]. Denoting

W 1
0L

p,q(Ω) = cl
{
u ∈ C∞0 (Ω) : ‖∇u‖p,q <∞

}
, Ω ⊂ RN bounded

one has the following
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Sobolev-Lorentz embedding: Suppose that 1 ≤ p < N ; then

W 1
0L

p,q ⊂ Lp
∗,q , where p∗ =

pN

N − p
,

and hence in particular, since p < p∗

W 1,p
0 = W 1

0L
p,p ⊂ Lp

∗,p ⊂
6= Lp

∗,p∗ = Lp
∗
.

For the limiting case p = N , once has the following important refinement of the
Trudinger embedding, see Brezis-Wainger [14] and A. Alvino, V. Ferone and G.
Trombetti [7]:

Theorem 4.3. If u ∈ W 1
0L

2,q(Ω) , then e|u|
q′ ∈ L1(Ω) , where q′ = q

q−1 , and

following corresponding Moser-type inequality holds:

Brezis-Wainger inequality: There exist numbers βq > 0 such that

sup
{‖∇u‖N,q≤1}

∫
Ω

eβ|u(x)|
q
q−1

dx

{
≤ C(N, q)|Ω| , for β ≤ βq
= +∞ , for β > βq

(4.13)

The Trudinger-Moser inequality corresponds to the caseW 1,N
0 (Ω) = W 1

0L
N,N (Ω).

It is remarkable that in (4.13) the exponent depends only on the second index q of
the Lorentz space, and is independent of N .

Note that the inequalities (2.2) and (4.13) are sharp with respect to the coeffi-
cients α, resp. β, in the exponents. In fact, considering for simplicity the inequality
(2.2) in the case N = 2, one notes that if α = α2 = 4π, then any unbounded lower
order perturbation f(s) in the exponent (i.e. f(s) with lim|s|→∞ f(s) = +∞ and

lims→∞
f(s)
s2 = 0) will yield

sup
‖∇u‖2≤1

∫
Ω

e4π|u(x)|2+f(u(x)) dx = +∞ .

In [54] the TM-inequality (2.2) and the more general Brezis-Wainger inequality
(4.13) were generalized with regard to such lower order perturbations. More pre-
cisely, concerning inequality (2.2) (with N = 2) it was asked: in the limiting case
α = α2 = 4π, and given an unbounded lower order perturbation function f(s), can
we characterize a largest space Λ(g) of Lorentz type such that

sup
‖∇u‖Λ(g)≤1

∫
Ω

e4π|u(x)|2+f(u(x)) dx < +∞ . (4.14)

Thus, we reverse the question: given an unbounded perturbation of the Trudinger-
Moser nonlinearity, what integrability condition must be imposed on the gradient
of u in order to have a bounded integral of u with respect to this perturbed TM-
nonlinearity.

This is a subtle question: note that if we replace in (2.2) the condition ‖∇u‖2 ≤ 1

by ‖∇u‖2 ≤ 1−δ, for an arbitrary δ > 0, then sup{‖∇u‖2≤1−δ}
∫

Ω
e4π( 1

1−δ |u(x)|)2

dx ≤
c, and hence for any subquadratic perturbation f(u) we get

sup
{‖∇u‖2≤1−δ}

∫
Ω

e4π|u(x)|2+f(u(x)) dx ≤ c .
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The adequate class of Lorentz spaces for this problem are weighted Lorentz spaces,
which were proposed by G.G. Lorentz [47] already in his original paper “On the
Theory of Spaces”. Weighted Lorentz spaces are defined as follows: Let φ : Ω →
R+ be a measurable function, and let φ∗(s) denote its decreasing rearrangement.
Furthermore, let w(t) : R → R+ a nonnegative integrable function, such that∫ t

0
w(s)ds < +∞ for all t > 0. The weighted Lorentz space Λp(w) is defined as

follows: φ ∈ Λp(w), 1 ≤ p < +∞, if

‖φ‖Λp(w) =

(∫ +∞

0

(φ∗(t))
p
w(t) dt

)1/p

< +∞. (4.15)

Surprisingly, one can establish a precise relation between a weight w(s) and
the corresponding lower order perturbation function f(u) to obtain sharp TM-type
inequalities. To formulate the result, let ϕ : R+ → R+ be a continuous function
(the “weight function”) such that

(H1) lim
t→+∞

ϕ(t) = 0

(H2)

∫ +∞

0

ϕ(t) = +∞

(H3) ϕ(t) is non increasing as t→ +∞

Then one has the following optimal Moser type inequality:

Theorem 4.4. Let Ω be an open subset of RN , of finite measure, and let ϕ : R+ →
R+ be a continuous function satisfying (H1)–(H3). Let f(t) ∈ C1(R+) be defined by

f(t) =

∫ αN t
N
N−1

0

ϕ(s)

1 + ϕ(s)
ds (4.16)

where αN = Nω
1/(N−1)
N−1 and ωN−1 denotes the (N − 1)-dimensional surface of the

unit ball in RN , N ≥ 2. Then

sup
{u∈C1

0 (Ω),‖∇u‖ΛN,ϕ≤1}

∫
Ω

eαN |u|
N
N−1 +f(u) dx ≤ C |Ω| , (4.17)

where

‖v‖NΛN,ϕ =

∫ +∞

0

(
v∗(s)

)N{
1 + ϕ

(∣∣ log
( s
|Ω|
)∣∣)}N−1

ds.

and C = C(‖ϕ‖∞) is a positive constant that depends only on ‖ϕ‖∞.

Furthermore, the result is sharp.

Examples:

1) Let ϕ1(s) = 1

2
√

4π (s+1)− 1
, then f(s) = s , i.e.

sup
‖∇u‖Λ2,ϕ1

≤1

∫
Ω

e4πu2+u dx ≤ C |Ω|

2) Let ϕ2(s) =
√
π p

s+4π
√
s+p

, then f(s) = p log(1 + |u|) , i.e.

sup
‖∇u‖Λ2,ϕ2

≤1

∫
Ω

(1 + |u|)p e4πu2

dx ≤ C |Ω|
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Proof. (Idea) The proof of Theorem 4.4 relies on a generalization of Adams’ in-
equality (2.8)

Lemma 4.1. Let ϕ : R+ → R+ be a continuous function satisfying hypotheses
(H1), (H2), and let f(t) be defined by (4.16). Let a(s, t) be a non-negative measur-
able function on R× [0,+∞) such that

a(s, t) ≤ 1, for a.e. 0 < s < t (4.18)

sup
t>0

(∫ 0

−∞
+

∫ +∞

t

a
N
N−1 (s, t)

1 + ϕ(s)
ds

)N−1
N

= γ <∞ (4.19)

Then there exists a constant c0 = c0(‖ϕ‖∞, γ) such that for φ ≥ 0 with∫ +∞

−∞
φN (s) (1 + ϕ(s))

N−1
ds ≤ 1 (4.20)

one has ∫ +∞

0

e−Ψ(t) dt ≤ c0 , (4.21)

where

Ψ(t) = t−
{(∫ +∞

−∞
a(s, t)φ(s) ds

) N
N−1

+ f

(
1

α
N−1
N

N

∫ +∞

−∞
a(s, t)φ(s) ds

)}
(4.22)

Note that for ϕ(s) ≡ 0 we have f(t) ≡ 0, and hence Ψ(t) = F (t) in Adams’
inequality.

Again, Theorem 4.4 follows directly from the above inequality.

5. Equations with critical Trudinger-Moser growth. Instead of equation
(2.5) one can consider the related (but not equivalent) equation{

−∆u = λueu
2

, in Ω

u = 0 , on ∂Ω
(5.23)

where λ > 0 is now a free parameter. This equation is the Euler-Lagrange equation
to the free functional

J : H1
0 (Ω)→ R

Jλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ
∫

Ω

e4πu2

dx
(5.24)

with a nonlinearity of critical growth, which manifests many of the characteristics
of such equations. We first discuss some existence results.

5.1. Existence of solutions. Existence results for equation (5.23) have been con-
sidered by Adimurthi [4], and then by de Figueiredo-Miyagaki-Ruf [28], in the more
general form {

−∆u = f(u) , in Ω

u = 0 , on ∂Ω
, (5.25)



466 DJAIRO G. DE FIGUEIREDO, JOÃO MARCOS DO Ó AND BERNHARD RUF

We first introduce the notion of critical Trudinger-Moser growth (TM-growth): Let
α0 > 0 be given. Then the function f ∈ C(R) has critical TM-growth α0 if

lim sup
|t|→∞

f(t)

eαu2 = 0 , ∀ α > α0

lim inf
|t|→∞

f(t)

eαu2 = +∞ , ∀ α < α0 ,

(5.26)

while we say that f has subcritical TM-growth if

lim
|t|→∞

f(t)

eαt2
= 0 , ∀ α > 0 (5.27)

In [28] the following theorem was proved (which refines and generalizes the result
of Adimurthi [4]).

Theorem 5.1. (see [28])

Suppose that f ∈ C(R) has the form

f(s) = h(s)eα0s
2

, where h(s) has subcritical TM-growth

Suppose in addition that f(0) = 0, f(s) = λs+o(s) for s near zero, λ ∈ [0, λ1), and

f1) 0 ≤ F (s) :=
∫ s

0
f(t)dt ≤Mf(s) , ∀ s ∈ R, for |s| ≥ s0

f2) 0 < F (s) ≤ 1
2f(s)s , ∀ s ∈ R \ {0}

Then equation (5.23) has a nontrivial solution provided that

lim inf
|s|→∞

h(s)s >
2

d2α0
, (5.28)

where d is the radius of the largest ball contained in Ω.

Proof. (Sketch) The proof uses the mountain-pass theorem of Ambrosetti-Rabinowitz
[10]. However, due to the critical growth, there is a loss of compactness, and one
cannot conclude directly. One proceeds similarly as in the proof by Brezis-Nirenberg
[13]:
a) One determines the level of non-compactness for the functional, or more precisely,
one shows that the functional

I(u) =
1

2

∫
Ω

|∇u|2 dx−
∫

Ω

F (u) dx

satisfies the Palais-Smale (PS) condition in the interval (0, 2π
α0

). Indeed, let un be a

(PS)-sequence, i.e. satisfying

i) I(un)→ c > 0 and

ii) |I ′(un)[v]| = |
∫

Ω
∇un∇v − f(un)v| ≤ εn‖un‖ , ∀ v ∈ H1

0 (Ω), with ε0 → 0, as
n→∞.

Combining these two conditions, one easily obtains that the PS-sequences ar
bounded, i.e. ‖un‖2 =

∫
Ω
|∇un|2 dx ≤ const., and hence we have for a subsequence:

un ⇀ u in H1
0 , and un → u in Lq, for every q > 1 .

We want to exclude that u = 0. Suppose by contradiction that u = 0, then
un → 0, for all q > 1. One shows that then also

∫
Ω
F (un) →

∫
Ω
F (u) = 0; this
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follows from the fact that
∫

Ω
f(un)un dx ≤ c by ii), and by assumption f1). Note

that then i) implies ∫
Ω

|∇un|2 dx→ 2c > 0

while ii) yields ∣∣∣∣∫
Ω

|∇un|2 dx−
∫

Ω

f(un)un dx

∣∣∣∣ ≤ εn‖un‖ ≤ εnC
Thus, if we can show that

∫
Ω
f(un)un → 0, then we have a contradiction. We claim

that for c < 2π
α0

this is indeed the case. In fact, we can estimate with Hölder

0 ≤
∫

Ω

f(un)un dx ≤
(∫

Ω

|f(un)|q dx
)1/q

‖un‖1/q
′

Lq′

Since the last factor on the righthand side tends to zero, it is sufficient to show that
the first factor is bounded. Indeed, we can estimate∫

Ω

|f(un)|q dx ≤ c(δ)
∫

Ω

eq(α0+δ)u2
n dx = c(δ)

∫
Ω

eq(α0+δ)‖un‖2( un
‖un‖

)2

dx

The last integral is bounded by Moser’s inequality (2.2) if

q(α0 + δ)‖un‖2 ≤ 4π

By i) we have

q(α0 + δ)‖un‖2 ≤ q(α0 + δ)(2c+ ε) < q(α0 + δ)
4π

α0
,

by our assumption on c (for ε sufficiently small). Hence we obtain the desired
estimate choosing q near 1 and δ sufficiently small.

b) Next, one uses the condition (5.28) to show that there exists a minimax level c
at level 2π

α0
.

Since f(s) = λs+ o(s) near zero, one easily sees that I(u) has a local minimum
in zero. One shows that there exists a w ∈ H1

0 (Ω) with ‖w‖ = 1 and such that

lim
t→∞

I(tw) = −∞ , and max
t≥0

I(tw) <
2π

α0

For simplicity, assume that B1(0) ⊂ Ω is the largest ball contained in Ω; define
the function w(x) identically zero in Ω \ B1(0), and radial in B1(0) by the Moser-
sequence

wn(r) =
1√
2π

 (log n)1/2 , 0 ≤ r < 1
n

log 1/r
(logn)1/2 ,

1
n ≤ r ≤ 1

One checks that wn ∈ H1
0 (B1) and ‖wn‖ = 1, and one shows that there exists a

n > 0 such that

I(tnwn) := max{I(twn) , t ≥ 0} < 2π

α0

Indeed, assuming to the contrary that

t2n
2

∫
Ω

|∇wn|2 dx−
∫

Ω

F (tnwn) dx = I(tnwn) ≥ 2π

α0

one gets that

t2n ≥
4π

α0
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On the other hand, at tn we have

d

dt
I(tnwn) = 0 iff t2n =

∫
Ω

f(tnwn)twn dx ,

and hence

t2n ≥
∫
B1/n

h(tnwn)tnwne
α0t

2
nw

2
n dx

Since by assumption h(tnwn)tnwn ≥ K − ε, for tnwn > rε, we get

t2n ≥ (K − ε) π
n2
eα0t

2
nw

2
n = (K − ε)πe2 logn (α0

t2n
4π−1)

One concludes first that t2n → 4π
α0

, and then

4π

α0
≥ (K − ε)π, ∀ ε > 0

Thus, if K > 4
α0

one obtains a contradiction. Refining the estimates, one improves

the condition K > 4
α0

to K > 2
α0

.

This result was generalized to the corresponding N−Laplacian equation in RN
by do Ó [31].

5.2. Non-existence of solutions. Theorem 5.1 is almost sharp; indeed, one has
the following non-existence result for positive solutions if Ω is the ball.

Theorem 5.2. (see [29])

Suppose that f ∈ C(R) is of the form f(s) = h(s)eα0s
2

, where h ∈ C2 satisfies the
following conditions: there exists r1 > 0 and σ > 0 such that

h1) h(r) = K
r , for r ≥ r0

h2) 0 ≤ h(r) ≤ cKr1+σ, for 0 ≤ r ≤ r1

Then there exists K0 such that for 0 < K < K0 equation (5.23) has no positive
radial solution.

The theorem gives non-existence of positive radial solutions. But by the result
of Gidas-Ni-Nirenberg [38] one knows that any positive solution of (5.23) is radial;
thus, Theorem 5.2 gives in fact non-existence of positive solutions.

Proof. (Idea) The radial equation (5.23) takes the form

urr +
1

r
ur + h(u)e4πu2

, in (0, 1) ; u′(0) = u(1) = 0

Using the Emden-Fowler transformation t = −2 log r/2 and setting y(t) = u(r),
this equations is transformed into

− y′′ = h(y)e4πy2−t , for t > 2 log 2 ; y(2 log 2) = y′(+∞) = 0 . (5.29)

One now uses the shooting method: that is, one considers solutions y(t) of (5.29)
with y′(+∞) = 0 and y(+∞) = γ, i.e. one shoots horizontally from infinity, and
tries to adapt the height γ in order to land at the point 2 log 2. By refining the
delicate estimates of Atkinson-Peletier [9] one proves that this is impossible under
the given assumptions, provided the constant K is sufficiently small.
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Remark 5.3. In the case N ≥ 3 the non-existence results come from Pohozaev’s
identity. In N = 2 no corresponding inequality is known to this date.

5.3. The effect of topology. Theorem 5.1 and Theorem 5.2 show that the line
between existence and non-existence is quite delicate. This phenomenon is typical
for problems with critical growth, and it is also seen in the Brezis-Nirenberg result,
where the addition of a lower order term to an equation with critical growth is
sufficient to produce a solution.

In the pioneering works of Coron [23] and Bahri-Coron [11] it was shown that also
geometric and topological properties of the domain are important in the question
of solvability of critical growth equations. In [59] M. Struwe showed that positive
solutions to the critical boundary value problem (5.23) exist for a large class of
critical growth nonlinearities on suitable non-contractible domains:.

Theorem 5.4. (see [59])

Suppose that f(s) has the form f(s) = s eϕ(s), where ϕ is a smooth function satis-
fying

(ϕ1) ϕ(0) = 0, ϕ(s) ≤ 1 for s ≤ 0, ϕ(s) ≤ 4πs2 for s ≥ 0

(ϕ2) −1 ≤ ϕ′(s)s ≤ 8πs2 , lims→∞ ϕ′(s)/s = 8π, ϕ′′(s) ≤ 8π

Then, for suitable numbers R0 > R1 > R2, problem (5.23) admits a positive solution
on any domain Ω ⊂ BR0

(0) containing the annulus R2 ≤ |x| ≤ R1 and such that
0 /∈ Ω.

Proof. (Idea) The proof uses an approximation strategy developed by Sacks-
Uhlenbeck [55], which consists in considering the following approximate problem

− div
[(

1 + |∇u|2
)α−1∇u

]
= f(u) in Ω ; u|∂Ω = 0 , α > 1 , (5.30)

with associated energy functional

Eα(u) =
1

2α

∫
Ω

[(
1 + |∇u|2

)α − 1
]

dx−
∫

Ω

F (u) dx ,

whose critical points uα ∈W 1,2α
0 (Ω) are weak solutions of equation (5.30).

One easily verifies that (5.30) admits a positive solution for any small α > 1 on
sufficiently small domains Ω. However, these solutions may degenerate as α→ 1. If
one now assumes by way of contradiction that the original problem (5.23) does not
admit a solution u > 0 with E(u) ≤ 1

2 , then for a sufficiently small, non-contractible
domain Ω Coron’s method may be applied to show that equation (5.23) admits for
sufficiently small α > 1 also solutions uα of saddle type, whose energies Eα(uα)
decrease monotonically to a limit β > 1

2 as α → 1. Restricting the shape of Ω
slightly more, one also gets the upper bound β < 1. By a careful blow-up analysis
one now obtains the result.
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5.4. Blow-up techniques. As in the Sobolev case, non-compactness is related to
the phenomenon of blow-up solutions. We recall the famous quantization result
by M. Struwe [58], who showed that Palais-Smale sequences {un} for the Brezis-
Nirenberg functional associated to (1.1)

Iλ(u) =
1

2

∫
Ω

|∇u|2 dx− λ

2

∫
Ω

|u|2 dx− 1

2∗

∫
Ω

|u|2
∗

dx

have the following property:

Iλ(un) = Iλ(u0) + kSN + o(1)

where u0 is a critical point of Iλ(u), k ≥ 0 is some integer, and SN is a fixed constant.
The interpretation is that compactness can only be lost through the formation of
“standard bubbles”.

An analogous result was recently proved by O. Druet [33] for the Trudinger-Moser
equation (5.23) and the corresponding functional (5.24):

Theorem 5.5. Suppose that {un} is a sequence of critical points of Jλn(u). Then

Jλn(un) = k4π + o(1) , as λn → 0 , for some k ∈ N .

The interpretation is the same as in the Sobolev case: compactness can only be
lost by the formation of standard bubbles each of which adds an energy quantum
of 4π.

The paper [30] by M. del Pino, M. Musso and B. Ruf is a counter part to the
paper of O. Druet: it gives sufficient conditions under which such blow-up solutions
actually exist.

To state the result, let G(x, y) be Green’s function of the problem

−∆xG(x, y) = 8πδy(x) and let H(x, y) = 4 log
1

|x− y|
− G(x, y).

Then H(ξ, ξ) is called Robin’s function of Ω.

For ξ1, . . . , ξk ∈ Ω and m1, . . . ,mk ∈ R+ consider now the function

ϕk(ξ,m) =

k∑
j=1

2m2
j (b+ logm2

j ) +m2
jH(ξj , ξj)−

∑
i6=j

mimj G(ξj , ξj).

We make the following

Definition 5.6. We say that ϕk has a stable critical point situation (SCS) if for
some region Λ compactly contained in its domain, any small C1(Λ̄)-perturbation of
ϕk has a critical point in Λ.

One has the following important facts:

• ϕ1(ξ,m) satisfies (SCS), with Λ a neighborhood of its minimum set, where

ϕ1(ξ,m) = 2m2(b+ logm2) +m2H(ξ, ξ)

• ϕ2(ξ,m) satisfies (SCS) whenever Ω is not simply connected, where

ϕ2(ξ,m) =

2∑
j=1

2m2
j (b+ logm2

j ) +m2
jH(ξj , ξj)− 2m1m2G(ξ1, ξ2).

One conjectures that (SCS) holds for any k ≥ 2 (Ω not simply connected).
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The stable critical points of ϕk determine the existence and the location of bub-
bling solutions:

Theorem 5.7. (see [30])

Assume that ϕk(ξ,m) has (SCS). Then there exist solutions uλ of (5.23) which

• blow up around k points ξj as λ→ 0, where ∇ϕk(ξ,m)→ 0

• away from the points ξj the solutions uλ take the form

uλ(x) =
√
λ

k∑
j=1

mj [G(x, ξj) + o(1) ]

Furthermore

Jλ(uλ) = 4πk + λ [−|Ω| + 8π ϕk(ξ,m) + o(1) ] .

Note that this result yields in view of the “facts” stated above for:

k = 1: a bubbling solution near the minimizer of H(ξ, ξ)

k = 2: a solution with two bubbles, provided that Ω is not simply connected.

Proof. (Idea) The proof follows the following lines:

- One first constructs an approximate solution, based on the “standard bubble”,
where the standard bubble is derived from the explicit solutions of the limiting
Liouville equation

−∆u = eu in R2 ; u(x) = uµ(x) = log
8µ2

(µ2 + |x|2)2
, µ > 0

- Then one linearizes equation (5.23) in this approximate solution, for given ξ =
(ξ1, . . . ξk) ∈ Ωk and parameters m = (m1, . . . ,mk) ∈ Rk+

- Then one does a finite dimensional variational reduction via a Lyapunov-Schmidt
procedure, to reduce the problem to a finite-dimensional functional fk(ξ,m) which
is C1-close to ϕk(ξ,m)

- The critical points of fk (which has critical points by the (SCS)-property of ϕk)
yield the k-bubble solutions, and the information on the location of the
bubbles.

6. Systems of equations with exponential type nonlinearities. In this sec-
tion we consider systems of elliptic equations with nonlinearities which are of expo-
nential type. More precisely, the systems we consider are Hamiltonian systems of
the following form: 

−∆u = g(v) , on Ω

−∆v = f(u) , on Ω

u = v = 0 , on ∂Ω

u > 0 , v > 0 , on Ω

, (6.31)
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where f, g ∈ C1(R), and Ω is a bounded domain in R2. Such systems have been
widely studied in recent years for domains in RN , N ≥ 3. The functional associated
to system (6.31) is given by

I : H1
0 (Ω)×H1

0 (Ω)→ R

I(u, v) :=

∫
Ω

∇u∇v dx−
∫

Ω

F (u) dx−
∫

Ω

G(v) dx
, (6.32)

where F and G are as before the primitives to f and g, respectively.

In dimension N ≥ 3, criticality for the functional (6.32) is given by polynomial
growth conditions which involve both nonlinearities, namely by the so-called critical
hyperbola:

Let |F (s)| ≤ c|s|p + c1 , |G(s)| ≤ d|s|q + d1, with

1

p
+

1

q
= 1− 2

N

One knows that system (6.31) has a solution for subcritical growth (i.e. for 1
p + 1

q >

1 − 2
N ) (cf. de Figueiredo-Felmer [25] and Hulshof-Van der Vorst [41]), and for

perturbed systems with critical growth (cf. Hulshof-Mitidieri-Van der Vorst [42]).

We consider here such systems for the two-dimensional case.

6.1. A coupled system with critical TM-nonlinearities. The first results for
coupled systems with subcritical of critical Trudinger-Moser growth are the follow-
ing:

Theorem 6.1. (see [27])
Suppose that f has subcritical TM-growth and g has at most critical TM-growth
(in the sense of conditions (5.27) and (5.26)), and that f and g satisfy the other
conditions of Theorem 5.1. Then system (6.31) has a nontrivial solution.

Theorem 6.2. (see [27])
Suppose that both f and g have critical TM-growth with the same exponent α0, and
that they satisfy the other hypotheses of Theorem 5.1. Assume furthermore that

lim
t→∞

f(t) t

eα0t2
>

4

α0d2
, lim

t→∞

g(t) t

eα0t2
>

4

α0d2
, (6.33)

where d is the radius of the largest ball contained in Ω. Then system (6.31) has a
nontrivial solution.

Proof. (Idea) A main difficulty in the search for critical points of the functional
(6.32) is its strong indefiniteness: in fact, it is easily seen that I(u, v) is unbounded
above and below on infinite-dimensional subspaces.

Note that every element (u, v) ∈ H1
0 ×H1

0 =: E can be written in a unique way
as

(u, v) = (y, y) + (v,−v) , y, v ∈ H1
0 (Ω) ;

denoting E+ := {(y, y) ; y ∈ H1
0 (Ω)} and E− := {(v,−v) ; v ∈ H1

0 (Ω)} we get
E = E+ ⊕ E−, and the functional I may be written as

I(y, v) =

∫
Ω

|∇y|2 dx−
∫

Ω

|∇v|2 dx−
∫

Ω

F (y + v) dx−
∫

Ω

G(y − v) dx
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One now proceeds by finite-dimensional approximation: one considers the function-
als

In : E+ × E−n → R ,

where E−n :=
{

(v,−v) ; v ∈ span{e1, . . . , en}
}

, ei = i−th eigenfunction of the
Laplacian. For In the classical Linking Theorem by P. Rabinowitz [51] applies.

In the case of subcritical growth, one obtains easily critical points (un, vn) for
In, n ∈ N, and using compactness one proves that (un, vn)→ (u, v), where (u, v) is
a solution to problem (6.31).

The proof of Theorem 6.2 is more delicate: one starts again by proving the
existence of a sequence of approximate solutions (i.e. critical points un of In). One
then identifies the non-compactness level for the functional I on E, and shows that
all the critical levels In(un) stay uniformly below the non-compactness level (for
this, the conditions (6.33) are used). This allows to show that the weak limit u
of the sequence {un} is not trivial, and hence it is a weak solution of the system
(6.31).

6.2. A critical hyperbola for elliptic systems in two dimensions. As in the
case N ≥ 3, one would like to admit nonlinearities with different growth, possibly
one with higher than critical TM-growth, provided the other nonlinearity has a
suitably lower growth. The following theorem gives a result in this direction:

Theorem 6.3. (see [52])

Suppose that f and g satisfy the hypotheses

lim
s→∞

f(s)

esq
= 0 , lim

s→∞

g(s)

esp
= 0 ,

where
1

p
+

1

q
= 1 .

If f and g satisfy the other hypotheses of Theorem 5.1, then system (6.31) has a
nontrivial solution.

The curve of the exponents (p, q) can be viewed as a critical hyperbola for ex-
ponential growth. The theorem above gives existence for subcritical growth with
respect to this hyperbola.

The existence of solutions for the corresponding critical problem has been solved
for the case p = q = 2 in [27]. The general case remains an open problem.

Proof. (Idea) The proof relies again on the notion of Lorentz space Lp,q(Ω) and
Sobolev-Lorentz space, see section 4.1.

One considers the functional I(u, v), instead on H1
0 (Ω)×H1

0 (Ω), on the space

I(u, v) : W 1
0L

2,p(Ω)×W 1
0L

2,q(Ω)→ R , with
1

p
+

1

q
= 1

The first term is well-defined on this space by Hölder’s inequality (4.12) given

above, while the second and third term are well defined provided F (u) ≤ ce|u|
p′

and G(v) ≤ ce|v|
q′

, with p′ = q and q′ = p, by the Brezis-Wainger theorem which
gives:

u ∈W 1
0L

2,p ⇒
∫

Ω
e|u|

p′

dx <∞

v ∈W 1
0L

2,q ⇒
∫

Ω
e|v|

q′

dx <∞
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Furthermore, one has compactness if F and G are subcritical relative to these
growths, which allows to prove the (PS)-condition. The proof proceeds then similar
to the previous theorem 6.1: one does a finite-dimensional approximation, obtains
a sequence (un, vn) of approximate solutions, and does a limit n→∞.
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[26] D. G. de Figueiredo, J. M. do Ó and B. Ruf, On an inequality by N. Trudinger and J. Moser
and related elliptic equations, Comm. Pure Appl. Math., 55 (2002), 135–152.
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