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Recherche opérationnelle/Opérations Research
(vol. 23, n° 4, 1989, p. 319 à 341)

ON THE NUMERICAL SOLUTION
OF BOUND CONSTRAINED OPTIMIZATION PROBLEMS (*)

by Ana FRIEDLANDER (X) and José Mario MÀRTÎNEZ (*)

Abstract. — This paper considers the problem of maximizing a differentiabîe concave function
subject to bound constraints and a Lipschitz condition on the gradient, using active set stratégies.
We introducé a gênerai model algorithm for this class of problems. The algorithm includes a
procedure for deciding to leave a face of the polytope without having reached a stationary point
relative to that face but guaranteing that return is not possible. We prove a global convergence
resuit. Among the many possible applications, we suggest using our algorithm for optimization of
externat penalization functions on Hnear programming problems. Some numerical experiments
concerning this application are presented.

Keywords : Optimization; bound constrained problems; numerical methods.

Résumé. — Dans ce travail on résout le problème de la maximisation d'une fonction differentiabîe
concave soumise à des restrictions de bornes sur les variables, par une méthode de restrictions
actives. Un modèle d'algorithme général est proposé pour cette classe de problèmes. L'algorithme
proposé contient des critères qui permettent l'abandon des faces du polytope, où unpoint stationnaire
n'est pas nécessairement atteint, tout en garantissant Vimpossibilité d'un retour à cette face. On
démontre un résultat de convergence globale. Parmi les diverses applications possibles, nous
suggérons l'utilisation de cet algorithme pour Voptimisation des fonctions de pénalisation externe
dans des problèmes de programmation linéaire. Quelques résultats numériques concernant cette
application y sont présentés.

Mots clés : Optimisation; restrictions de bornes; méthodes numériques.

1. INTRODUCTION

We wish to consider the problem of maximizing a concave function subject
to bounds on the variables. This problem (or its equivalent one, minimizing
a convex function) anses frequently in applications. For instance, the special
case where the objective function is quadratic is applied to finite différence
discretization of free boundary problems (see [5, 19]), numerical simulation
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3 2 0 A. FRIEDLANDER, J.-M. MARTINEZ

of friction problems in rigid body mechanics (see [17]), image reconstruction
from projections (see [15]), etc.

Most successful algorithms for solving this type of problems are based on
active set stratégies (see [10, 11, 13, 19, 21]). Briefly speaking, an active set
method proceeds generating itérâtes on a face of the polytope until either a
maximum of the objective function on that face or a point on the boundary
of the face is reached. In the second case, the algorithm continues working
in a face of lower dimension, and only in the first case the itérâtes are allowed
to abandon the current face and go on working in a face of higher dimension.
Since function values are strictly increasing, finite convergence is obtained
(see [19, 21]).

However, these finite convergence results are based on the fact that a finite
algorithm is available for finding a stationary point on a given face, when
such a point exists. No algorithm with that property exists for gênerai concave
functions, and, even in the quadratic case, the use of conjugate gradient
algorithms imposes utilization of convergence criteria for inner itérations
different from the very exigent stationary point condition. O'Leary [19]
suggests using empirically determined tolérance parameters ek in order to
déclare convergence of the inner itération, but she does not give a theoretical
justification for this device.

In this paper we propose an active set algorithm for maximization of a
concave function subject to bound constraints with the following characteris-
tics: the criterion for leaving a face going to a higher dimension one does
not assume that the current point is stationary relative to that face, but the
next point is guaranteed to have a higher function value than the maximum
function value on the old face. Therefore, it may be rigorously proved that,
after a finite number of itérations, ail itérâtes lie on a face whose closure
contains an optimum of the problem. Moreover, inside each face, we are
able to use any globally convergent algorithm for unconstrained problems,
so that the ultimate rate of convergence is the one of the unconstrained
algorithm chosen.

Our ideas may be used to modify existing algorithms in a rather obvious
way. However, in this report we preferred to describe a particular implementa-
tion which is able to deal with large scale problems. Namely, the internai
optimization algorithm is a safeguarded version of Fletcher-Reeves method,
whose memory requirements are minima among conjugate gradient proce-
dures (see [9, 13]). We applied this implementation to the resolution of Linear
Programming problems with an External Penalization approach. We show
thatj under nondegeneracy conditions, the optimum of the penalized function
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BOUND CONSTRAINED OPTIMIZATION 321

is obtained in a finite number of steps. We present some numerical experi-
ments.

2. MAIN RESULTS

General hypotheses

We consider the problem of maximizing a continuously differentiable
concave function with bound constrained variables:

Maximize/(x)

s.t.x€Q, (2.1)

Let us assume that g, the gradient of ƒ satisfies a Lipschitz condition in Q:

\\g(x)-g(y)\\£L\\x-y\\ forall xjeQ. (2.2)

(||. || dénotes the 2-norm of vectors or matrices).

(2.2) implies that, for all x, yeQ.

\f(y)-~f(x)-g(x)T(y~x)\^(L/2)\\y-x\\2 (2.3)

(see [8]).

Let us define an open face of Q as a set Fj c= Q such that
ƒ is a (possibly empty) subset of {1,2, . . . , 2 n } such that i and n + i cannot
belong to I simultaneously, i= 1, . . ., n. (2.4)

FI = {xeQ\xi = li if ielyX—Ui if n + ie/ , ^KX^U^otherwise}. (2.5)

Therefore, the set Q is divided into 3" disjoint faces. Let us call Ft the closure
of each open face, and dim(F7) the dimension of the smallest linear manifold
which contains Ft. Of course dim Fj — n — ̂ L

For each x G Q let us define gP (x) a real n-vector such that

gp (x)t = 0 if (xt = k and (df/dxd (x) < 0)

or (x- = ut and (df/dx^ (x) > 0), (2.6)

= (df/dxt) (x) otherwise.

vol. 23, n° 4, 1989



322 A. FRIEDLANDER, J.-M. MARTINEZ

Therefore, a necessary and sufficient condition for x being a global opti-
mum of our problem (see [13]) is:

= 0. (2.7)

For each XGF{ let us define gl (x) as

gl(x). = 0 if tel or n + iel, (2.8)

= (df/dXi) (x) otherwise.

Therefore, gs (x) is the orthogonal projection of g{x) on the smallest linear
manifold which contains Fr We also define, for x e FJ,

, = 0 if i$I and * ,

= 0 if (ieUnd(ôf/ôxi)(x)<0) (2.9)

or (n -f i e ƒ and d//5x;) (x) > 0),

i) (x) otherwise.

The vector g, places a major role in the main results of this paper.

We shall name it the "chopped gradient" associated to Fj.

LEMMA 2.1: Assume thaï xeFj is such thaï

f(x)^f(x) forall xeFj. (2.10)

Then, the two following statements are equivalent:

/(x) £/(x) for ail x e Q. (2.11)

rf(x) = 0. (2.12)

Proof: Let us assume (2.11). If zeJ, then xi = Ji9 and so, by (2.6)-(2.7),
(df/dxi) (x)^0. Analogously, if n + iel, then x—u,. and so, by (2.6)-(2.7),
(df/dxù (x)^0. Therefore, by (2.9), g? (x) = 0.

Now, assume (2.12). We wish to prove that gp(x) — 0. Thus, for each,
i — 1, . . ., n5 let us consider the following three possibilities:

x > / , (2.13)

x > u , (2.14)

kKx^u, (2.15)
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BOUND CONSTRAINED OPTIMIZATION 323

Let us consider first (2.13). We have two alternatives:

iel, (2.16)

i*L (2.17)

If (2.16) holds, we have, since g^ (x)t = 0, and using (2.9), that
(df/dxt) (x)^0. Therefore, by (2.6), gP(x)t = 0.

If i$I, then xt>lt for all xeFv But, by (2.10), / (x)^/(x) for all xeF j 5

thfireföret^/^x£)t^"OrSöTgP (*),• = 0.

The same argument leads to gp(x). = 09 when x—u^

Now, if (2.15) holds, we have, by (2.10), that (df/dx^ W = 0. Thus, the
desired result is proved.

In Lemma 2.1 we proved that a stationary point x for Fj, either is a
global optimum in Q, or has a nonnull gf (x). Thus, g, (x) should be a useful
direction for escaping from a nonoptimal face. The following lemmas state
this assertion more precisely.

LEMMA 2.2: Let

öt = min{i*£ —/,.,/= 1, . . . , n} , (2.18)

and xeFj such that

rf(x)#0. (2.19)

De fine

wI(x)=rf(x)/||rf(x)||. (2.20)

Then,

x-hawj(x)6Q forall ae[0,â]. (2.21)

Proof: It is sufficient to prove that

'^«i (2-22)

for all i = 1, . . ., rc, a e [0, a].

If i$I and n + i$I9 (2.22) is trivial, since vv/(x)i = 0 by définition (2.9).

If iel, we have, since xeFr, that x—l^ Therefore, by (2.9J, either
w/(x)I = 0, or w/(x)f>0. In any case, by (2.20),

i l . (2.23)

vol. 23, n° 4, 1989



3 2 4 A. FRIEDLANDER, J-M. MARTINEZ

Therefore,

Thus, (2.22) is proved, if iel. A similar argument leads to (2.22), if n + iel.
Therefore, the desired result is proved.

LEMMA 2.3: Let oce[O,öt], Dj the diameter of Fj. Assume that Fj does not
contain a global optimum in Q, and that xeFI satisfies (2.10). Let xeFj be
such that gC(x)^0. Then,

||DJ. (2.24)

Proof. — Since fis a concave C^-function, we have:

ƒ (x) Sf(x) + < gl (x), x - x >. (2.25)

But, using the Cauchy-Schwarz inequality,

Thus, by(2.25),

/ ( ï ) - / (x )^ | | & (x ) | |D / . (2.26)

Moreover, by the concavity of ƒ and (2.3), we have, for all yeQ,

In particular, if y = x + a wI (x),

0 ̂  ƒ (x) + a < g (x), w, (x) > - ƒ (x + a w, (x)) S (L/2) a2.

But, by (2.9), (2.20), <^(x), w/(x)> = ||rf(x)||. Therefore,

Thus,

| | | | 2 . (2.27)

Combining (2.26) and (2.27), we obtain (2.24).

Now, we are able to define the main model algorithm of this paper.

Recherche opérationnelle/Opérations Research
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Algorithm 2 . 1

Let <y, M, 0l5 ö2 be given constants such that 0<a<(2/L), 0 < a < M < o o ,
öl5 02 6(0,1). If xk is the /c-th approximation to the optimum of ƒ in Q,
/^x*^u, gj>Oc*)̂ O, the steps for obtaining xk+1 are the following:

Step 1: Let / be such that xkeFr Test the inequality

||rf(x»)||/L*S. (2.28)

If (2.28) holds, go to Step 4.

Step 2: If (l/(2L))||rf(jc*) ||2 —||^/(x*)||X>7^0, go to Step 5. Else, define
| | | |

3: xk+1 = x* + aw/(x*). Stop.

Step 4: If (L/2)â2-||^ /(xk)||£> I^0, go to Step 5. Else, define a = öt. Go to
Step 3.

Step 5. If xk + ag!{xk)$Fj, go to Step 12.

Step 6. Calculate a direction dk such that

(2.29)

(2.30)

| | | k | (2.31)

[Observe that such a direction exists, for instance agj(xk) satisfies (2.29),
(2.30), (2.31).]

Step 7: Obtain X, xk+1 performing steps 8 to 11.

Step 8: X+-1.

Step 9: If

f(xk + ^ dfc) ̂ ƒ(**) -f W32 < gl (xk% dk >, (2.32)

go to step 11.

Step 10: Let ^ [ O . l A,, 0.9 X], X^X^. Go to Step 9.

Step 11: x*+1=x* + A,dk. Stop.

Step 12: Let X=max{A,^0|xfc + ^^(x f c)eQ}. x*+1 = xk + Xg/(x
k). Stop.

Remark: Though this model algorithm assumes a knowledge of the Lips-
chitz constant L in order to calculate a at Step 2, which is impractical, a
modified algorithm where the steplength never dépends on L is given later.

vol. 23, n° 4, 1989



326 A. FRIEDLANDER, J.-M. MARTINEZ

The following lemma is the main "non-returning principle" concerning
Algorithm 2.1.

LEMMA 2,4: Ifxk + 1 is defîned by Step 3 of Algorithm 2.1, then

and

f(xk+1)>f(x) forall xeFj. (2.33)

Proof. First, let us observe that, if xfe+1 is computed at Step 3, we have
gC(xk) ̂ 0 . In f act, if g^ (xk) = 0, then, in Step 2,

and the control should go to Step 5.
If xk+1 is computed by Step 3, one of the two following possibilities holds:

(l/(2i))||«f(x*)||a-|| fc(x fc)||l>J>0, (2.34)

or

| | | J > 0 . (2.35)

Let 3c be the optimum of ƒ over Fj. If a= | | r f (xk) \\/L9 (2. 34) holds.

Thus5by(2.24),

f(xk + a w, (xk)) - ƒ (x) è || rf (x*) ||2/L
H^-iig^x*)!!^

| | | | | | | | J > 0 . (2.36)

If a = â, we may use (2.-24), (2.28) and (2. 35), to obtain:

f(xk + 0LW; (xk)) - ƒ (x) ̂  51| «f (x*) || - (L/2) S2 - 1 | gl (xk) || D ,

| | | a-H f t(x*)| | l> J>0. (2.37)

Therefore, (2. 33) is a conséquence of (2.36) and (2. 37).

Since a^ôt, the fact that xfc + 1 eQ follows from (2.21). Thus xk+1eQ-Fj,
and the proof is complete.

Let us now prove that Step 12 pro vides a way of increasing the function
value, decreasing the dimension of the face which contains the current point.

Recherche opérationnelle/Opérations Research
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LEMMA 2. 5: If xk + 1 is defined by Step 12, then

xk + 1e Fj, where dim (F,) < dim (Fr)9 (2.38)

/(x*+1)>/(x*). (2.39)

Proofi By the définition of gj and X at Step 12, x* + 1 belongs to the
boundary of Fv Therefore, (2.38) is true.

Let us prove (2.39). Since xk + <jgI(x
k)$FI, we have g r(xk)^0, and

Now, by (2. 3), we have:

|ƒ(xk + Xgl(x
k))-f(xk)- X < g(x%gl(xk) > | è(L/2)I2\\gl(x

k) ||2. (2.40)

But

<g ( A gj (xfc) > = <gj (x% gl (xk) H I ft (xk) ||2.

Henceïby(2.40),

Therefore,

\\gl(x
k)\\2. (2.41)

But À,-(L/2)A.2>0 for all A,e(0,2/L), and

Thus, by(2.41),

and the desired result is proved.

As we have seen, both steps 3 and 12 provide ways of leaving the face F,.
On the contrary, when xfc+1 is computed at step 11, it continues belonging
to Fj. As we observed bef ore, there exist directions dk satisfying (2.29),
(2.30), (2.31), since <jgj(xk) clearly satisfies these three conditions. Now,
(2.32) is a sufficient ascent condition of Armijo's rule (see [8,13]), and
therefore is satisfied if X is small enough. Thus, the loop Step 9-Step 10 stops
af ter a finite number of steps, and so, Step 11 is well defined. The f ollowing
lemma guarantees that the algorithm is able to leave any face whose closure
does not contain a global optimum.

vol. 23, n° 4, 1989



3 2 8 A. FRIEDLANDER, J.-1VL MARTINEZ

LEMMA 2.6: Assume that F, does not contain an optimum ofproblem (2.1),
and xkeFj. Then, after a finite number of steps j , xk+J is computed at steps 3
or 12.

Proof: Let us suppose, by contradiction, that xk+i is computed at step 11,
for ail y' = 0, 1, 2, . . . Therefore, {xk+jJ = Q, 1,2, . . . } is an infinité séquence
contained in the compact set Fj. Thus, we may extract a subsequence
{xk+i,jeK1}, whose limit is xeFj.

Suppose that gj(x)#0. Then, there exists e>0, such that

for large e n o u g h j e ^ (say, jeK2).
But gj is continuous on F/5 therefore,

for some b>Q,je K2.
Thus, by (2. 30), (2.41), (2.42),

(2.42)

| | J | | (2.43)

for ail jeK2.
Therefore {dk+j\jeK2} is contained in a compact set of Rn and so, there

exists a nonnull d e ER" and an infinité set of indexes K3 such that:

\im dk+j = d for jeK3. (2 A4)

Let us now consider two possibilities:

lim^fc+; = 0 for jeX3 . (2.45)

There exists y > 0, X4 an infinité subset

of X3, such that K+j^J f°r alljelQ. (2.46)

Of course, (2.46) is exactly the opposite of (2.45). If (2.45) holds, by the
safeguarded choice of XN at Step 10, there exists a séquence hk+p jeK3 such
that %k+j^l0Xk+p and

for all7*eX3. Therefore,

(f(xk+'+lk+jdk+J) -f(xk+J))/%k+j<02 < a (x*+^), dk+]y

Recherche opérationnelle/Opérations Research
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Thus, using the Mean Value Theorem, we may choose ^k+je[0,1], jeK39

such that:

j j j j g l ( x k ^ d k + j } . (2 .47)

Hence, taking limits on both sides of (2.47), for jeK3, we obtain:

<S,(x),rf>^e2<g,(x),<O. (2.48)

Now, by(2.31),

Hm 6,11̂ (̂ )̂11 K ^ e j ^ x ) ! ! ||i||>0. (2.49)

Thus, (2.48) implies that Ö2^l, contrary to assumptions.
Since (2.45) is impossible, let us consider now the possibility (2.46).
In this case, Xk+je[y, 1] for allyeK4. Thus, there exists K5, an infinité

subset of K4 such that:

j Y> 1] for all jeK5.

But, by (2.32),

f{xk+i + K+A^^f^k+j) + ̂ ^2<gI{^^dk+jy (2.50)

for alljeK5.
Taking limits on both sides of (2. 50), we obtain, by (2.49):

f(x + U) ̂  ƒ (x) + £ 02 < gl (x)> d > > ƒ (x).

Therefore,

lim f(xk+3+1)= lim
JeK5 jeK5

But this is impossible, since ƒ (xl) is a strictly increasing séquence and x is
an accumulation point. Thus, we have proved that gj (x) = 0.

Since, by hypothesis, x is not an optimum of (2.1), we have also that
^ 0 . Therefore, by continuity of gI and g£, we have, for large enough

vol. 23, n° 4, 1989
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and

Thus, both tests at Step 2 or Step 4 indicate that xk+j+1 must be calculated
at Step 3. Therefore, by Lemma 2.4, xk+i+1$Fj, contradicting the initial
assumption in the proof.

So far, we proved that, either Algorithm (2.1) stops after a finite number
of itérations k, finding a global solution of (2.1), or it générâtes an infinité
séquence which satisfies the foUowing axioms:

f(xk + 1)>f(xk) forall Jt =0,1,2, . . . (2.51)

Given xk e Ff, one of the three foUowing possibihties hold:

xk+leFj, (2.52a)

xk+1e Fj, where dim Fj < dim F,. (2. 52 b)

f(xk + 1)>f(x) forall JC e F,. (2.52c)

If xk e Fj, but Fj does not contain a global optimum
of (2.1), then there exists l>k such that xl$FT. (2. 53)

Let us prove now that (2.51), (2.52), (2.53) are the essential properties
we need to prove that Algorithm 2.1 identifies the set of active constraints
at a solution of (2.1) in a finite number of itérations.

LEMMA 2.7: If Fj does not contain a global optimum of (2.1), then there
exist kj such that xk$Fl9 for ail k^kr

Proof The proof is by induction on the dimension of Fv If dim Fj = 0,
then Fj is a vertex of Q and FI = FI. Therefore, if xkeFj, we have by (2.53),
that xk + l$FT for some Z>0. Thus, by (2. 51), xk+l+i$Fj, for all7 = 0,1,2, . . .

Assume that the thesis is true for all Fj such that dim F , < s = dim F,.

Therefore, for each J such that Fs does not contain a global optimum of
(2.1), and dim Fj<s, we may define kj by:

xk$Fj forall k^kj. (2.54)

Since there exists a finite number of faces with such characteristics, we
may define k0 as the maximum of kj defined by (2.54).

Assume, by contradiction, that Ft contains an infinité number of itérâtes.
Hence, there exists k1>k0 such that xk^eFj. Let lx>kx be the first index
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such that xll$Fj. lts existence is guaranteed by (2.53). Finally, let k2>l± be
the first index such that x*2 e Fj.

Consider the finite séquence {x / l,x'1 + 1, . . ^ x * 2 " 1 } . Define Jh by
xlleFJt . Since xll~1eFI and there exist k2>ll such that xk2eFj we must
have, by(2.52),

dimi^

Hence, since ki>k0, FJl contains a global optimum of the problem.

Now, if xll + 1eFJl + 1, we necessarily have, since FJl contains a global
optimum, and (2.52), that dimF^ + 1^dimF J l <dimFr Going on with this
reasoning, we find that x*2"1 also belongs to a face Fl2 whose dimension is
less than s, and whose closure contains a global optimum of the problem.
Hence, by (2.52), x*2 should be such that ƒ(x*2) >ƒ(x) for all xeF / 2 , which
is a contradiction.

THEOREM 2.1: The séquence generated by Algorithm 2.1, either stops at an
iterate which is a global optimum of (2.1), or, if infinité, satisfies:

xkeFj for all k^k0, k 0 large enough,

and Fj contains a global optimum of (2.1). (2.55)

Every accumulation point of (x*) is a global optimum of (2.1). (2. 56)

Proofi By Lemma 2.7 and (2.52) there exists kx such that xkeFkl for all
k^ki and Fkl contains a global optimum of the problem. Moreover, if Fk is
the face which contains xfc, fc^/cl5 we have, by (2.52), that (dim Fk) is a
decreasing séquence contained in {0,1,2, . . . }. Therefore, there exists k0

such that dimFfc = dimFk0 for all k^k0. Hence, (2.55) follows from (2.52)
and from the fact that FkQ contains a global optimum of (2.1). Therefore,
for all fc^fc0, xk+1 is computed at Step 11 of Algorithm 2.1. Let x be a
limit point of (x*). The same reasoning used in Lemma 2.6, leads to gj (x) = 0.
Therefore, by the concavity of ƒ

/(x)^/(x) for all xeFr

In particular, /(x)^/(x*), where x*eFj is a global optimum of (2.1).

So, x is a global optimum of (2,1).

Remarks: (1) The steplength a at Step 3 of Algorithm 2.1 may be too
small if L is very roughly estimated. However, it is easy to verify that it may
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be replaced by the more practical rule:

where (2.57)

f(xk + a wj (xk)) >f(xk) + \\gl (xfc) || D,.

The theory above guarantees that such an a exists [it is easy to see that
â = a vérifies (2.57), combining (2.27) and (2.34)] and the convergence
proofs depend only on the property (2.52 c), which keeps on holding, if
(2.57) holds.

(2) The only case in which xfc+1 can lie on a face of lower dimension than
the face which contains xh is when it is ealculated at Step 12. This feature is
rather unpractical, since it implies that the boundary of a face may be reached
only if the former current point is very close to it. However, it is easy to see
that the theoretical properties of the algorithm still hold if we allow decreasing
the dimension of the current face (increasing, of course, the current function
value) whenever it is judged to be convenient. In order to incorporate this
possibility, we introducé the following "Step 0":

Step 0. Either compute xk+l as an arbitrary point satisfying xfc+1eFJS

dimF J<dimF / ? and f(xk+1)>f(x% or perform steps 1 to 12.

The remarks above, and the necessity of allowing natural unconstrained
search directions at Step 6 of Algorithm 2.1, lead to the following practical
implementation, which, of course, has the same convergence properties as
Algorithm 2.1.

Algorithm 2 . 2

Let a, M, 01? 02, x
k be as in Algorithm 2.1, xkeFr

Step 1: If \\gcj{xk) Il/L^öc, go to Step 4.

Step 2: If (1/(2L)) ||rf(xk) | |2-| |^(x fc) | | D ^ 0 , go to Step 5.

Step 3: Compute X>0 such that

ƒ(** + Xrf (x*)) > ƒ(**) + \\gI(x
k)\\ D„

and
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Set

xk+1=xk + XgUx% Stop.

Step 4: If (L/2) â2- |k/(**) | |D,£0, go to Step 5. Else, go to Step 3.

Step 5: If xk + agI(x
k)£FI, go to Step 12.

Step 6.0: Choose a direction dk satisfying (2. 30) and (2. 31).

Step 6.1: If xk + dkeQ, go to Step 7.

6.2: Compute

| k Q}. (2.58)

6.3: Replace dk <- £dk.

If dk satisfies (2. 30), go to Step 7. Else, set

6.4: Compute X by (2.58). Replace dk <- %dk.

Steps 7 to 12: The same as in Algorithm 2.1.
It is easy to see that Algorithm 2.2 is a particular case of Algorithm 2.1,

except that, at Step 7, a point xk+1 may be computed belonging to a face of
lower dimension than FP This calculation does not modify the axioms (2.51),
(2.52), (2.53). Nor does the freedom introduced at Step 3, which allpws
taking xk+i as a point satisfying (2.33), which certainly exists, since
xk + <x\Vj(xk) satisfies (2. 33). Therefore, the thesis of Theorem 2.1 is true for
Algorithm 2.2.

3. IMPLEMENTATION AND NUMERICAL EXPERIMENTS

The freedom at Step 6.0 of Algorithm 2.2 allows to choose dk as any
safeguarded direction [in the sense of (2.30), (2.31)] derived from uncons-
trained optimization algorithms (see [8,13]). In fact, we may consider the
problem inside Fj as an unconstrained problem, with the variables
{i | ï: £ I, n + i 41} being independent free variables. Newton and Quasi-Newton
type directions may be considered, giving strong local quadratic or superlinear
convergence results, in addition to the global properties stated in Theorem
2.1. Obviously, a local convergence resuit (without "order") may be obtained
under the sole assumption that FI contains only one global solution of (2.1).

vol. 23, n° 4, 1989



3 3 4 A. FRIEDLANDER, J.-M. MARTINEZ

In our implementation of Algorithm 2.2, we decided to use Fletcher-
Reeves conjugate-gradient formula, since our main interest is large-scale
optimization problems. Therefore, Step 6.0 was decomposed as follows:

Step 6 .0 .1: If xk~1^Fl9 go to Step 6.O.7.

Step 6.0.2: KON<-KON+1. If KON > dim F,; goto Step 6.O.7.

5^6.0.3: Set ̂ ^/(^-(Ik/^ll/II^Cx^1)!!)^!.
Step 6 .0 .4 : If âk does not satisfy (2. 31), go to step 6.0.7.

Step 6 .0 .5 : Consider the following problem:

Maximize ƒ (xk + X dk)

s. t. xk + XdkeQ, (3.1)

Compute an approximation Â, to the solution of (3.1) (Use, for instance,
GSRCH [20], with small GRHTOL).

Step 6.0.6: dk+-Xdk [Observe that dk authomatically satisfies (2.30)-
(2.31)]. Go to Step 7.

Step 6.0.7: KON <- 0. dk <- gî(x
k). Go to Step 6.0.5.

Steps 6.0.1-6.0.7 produce a direction dk which certainly satisfies (2.29)-
(2. 31). So, Steps 6.1 to 6.4 are not necessary in this case.

The efficiency of this implementation is determined by the accuracy and
economy in the solution of (3.1). A preliminary search based in (3.1) is
needed to guarantee a good behavior of the C—G algorithm. Normally, after
solving (3.1) with a good accuracy, X= 1 is accepted at Step 7 of Algorithm
2.1, specially if a tiny parameter (say 62 = 10~4) is used. The counter KON
guarantees that the gradient direction is considered when the number of inner
itérations reaches the dimension of the face.

Let us now describe the type of problems to which we applied the first
version of our algorithm. Consider the Linear Programming Problem:

Maximize cT x

s.t.Ax = fc, AeHT*", (3.2)
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Assume that B is a nonsingular mxm submatrix of A. Without loss of
generality, A = (B,N), and (3.2) may be written as:

Maximize c£ xB -f c£ xN

s.t. BxB + NxN = b (3.3)

Eliminating variables xB, the problem becomes:

Maximize ( c ^ - c J S " 1 AT) x* _ ^

s.t lN^xN^uN

lBSB-x(b-NxN)^uB. (3.5)

The constraints (3. 5) are the difficult ones, so, we incorporate them to the
objective function using a large real parameter p, so that a solution of (2.62)
may be obtained as a limit, when p -• oo, of solutions of (3.6) (see [13]).

Maximize(cjj-cjB~xN)xN~p £

(3.6)

Problem (3.6) is a particular case of (2.1). The constant L is not difficult
to estimate if B is simple enough, and can be estimated, in any case, using,
for instance LINPACK estimator [6]. The objective f u n c t i o n / ^ ) of (3.6)
is a piecewise quadratic function. So, we can expect finite convergence in a
small number of steps (see f 13]) of the C — G version of Algoeithm 2.2, if ƒ
is defined by only one quadratic in a neighborhood of a solution. The
following theorem states sufficient conditions for that property.

THEOREM 3.1: Assume that (3.2) has a unique nondegenerate solution x*,
and that the Lagrange multipliers associated to the constraints l^x^u are
nonnull Then, there exists p0 > 0 such that, for p ̂  p0, the objective function
f(xN) of (3.6) is defined as a single quadratic function in some neighborhood
o/x*.

Proof. Let us consider the problem in the form (3.4)-(3. 5). So x* =
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Define

Therefore, the optimality conditions for (3.4)-(3.5) are:

cN-(B-1NfcB+ £ Xn-B~1N)Ï+ £ KiB-'N)!
i eKs te KB

(3.7)

where (B'1^ dénotes the î-th column of B~lN and {e1? . . .,en} is the
canonical basis of IR".

Now, let xN(p) be a solution of (3.6), and define:

Let us call

Ri(xN) = m3ix{[Br1(b-NxN)]i-uiJi-[B-i(b-NxN)]ii0J=\9

Hence, the optimality conditions for (3.6) are:

c iV-(B-1A0rcB-2p

-2p £ l ^ W X B - 1 A0,r

(3.8)

Recherche opérationnelle/Opérations Research



BOUND CONSTRAINED OPTIMIZATION 3 3 7

But, since the solution of (3.2) is unique, we have:

lim xN(p) = x&

lim %(p) = x|.

Therefore, there exists po>0 such that, for p ^

R$(p)c=K£, K^(p)czKû, (3.9)

and, if i4K£ U K£, i-\,..., m, then:

/,<x,(p)<uP (3.10)

Hence, for p^p0,

^(p)-{i6{l, . . . ,m}|x l(p)>«,}<=XÎ (3.11)

and

K;(p)~{ie{l,...,m}\xt(p)<ll}c:Kï. (3.12)

Thus, by (3.8), (3.11), (3.12), we have:

ieKê (p)

-2p £ Rj(x
i e KE (pï

+ I §r(p)^+ I 5r(p)(-^)=0. (3.13)
*eK^(p} ï'é£w (p)

Thereföre? by (3,9), (3. ll)-(3.13), the gradient cN-(B~1N)TcB is a linear
combination of vectors

(p) <r Aj), (B*-1 N)f (ieR^ (p) a X

^ ( ï e « ; (p) c KJ), and - ^ ( i e ^ ( p ) <= i^) .

Now, by the nondegeneracy assumption, and (3.7), we have:

R£(P)=Kit RB(P)^K;, R£(P)=K+, *£(p)-*£. (3.14)
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We claim that, in a neighborhood of

+ I (h-lB-'ib-NxJl)2}, (3.15)

But, by (3.10), if i$K£UK£, i e { l , . . . , m } , we have / ^ x ^ u , - in a
neighborhood of x* (p). Hence,

max {[B-1 (p-NxJl-u* /.-[B"1 (b-Nx^ 0} =0.

and the expression (3.15) for f(xN) follows from (3.6).
We considered the following test problems for our numerical experiments:

Maximize £ x,
(3.16)

s.t. x,. + 2x i + 1 = 10, Ï = 1 , . . . , n - l ,

0 ^ x ^ 2 0 , i= l , . . .,n.

We may verify that the solution x* of (3.16) may be obtained setting:

Problem (3.16) may be put in the form (3.2) introducing slack variables
in the inequality constraints. x° = (0, . . .,0)T is a feasible initial point for
(3.16). Moreover, it is a vertex of the feasible région.

However, the only active constraint at x° which is still active at x*, is
x2 = 0. Therefore, the Simplex method should use at least n—1 itérations for
reaching the optimum, starting from x° (see [13]). Hence, it is interesting to
study the behavior of algorithms like 2.1, 2.2, with the implementation
features described at the beginning of this section, for these problems.

We applied our algorithm to (3.16), with x°=(0, . . . ,0) r , and the follow-
ing algorithmic parameters: p = 10, M= 103, 0A = 10"3, 02 = 10~4,
L = /2 mn, a=l.99/L. The variables xB were chosen as the slack variables,
so that B = L At each itération of the algorithm we tested the inequality

| x f c
2 | ï . . . î | x ^} . (3.17)

Recherche opérationnelle/Opérations Research



BOUND CONSTRAINED OPTIMIZATION 339

Since, at the solution of (3.16), the left hand side of (3.17) is null, and
the right hand side is greater than 0.33, we judge that (3.17) is an indication
that the solution is really the vertex of the polytope which is closest to xfc.
We call Xx the first k which vérifies (3.17).

Now, after a finite number of steps, all the itérâtes verify:

(3.18)

(3.18) represents the set of inéquations which identify the face where the
true solution lies. Therefore, we call K2, the first k which satisfies (3.18).
Table 1 shows the values of Kx and K2 detected in our experiments, for
different n:

TABLE 1. — Performance of the algorithms solving
a penaiized LP-problem.

n

50
100
200
300
400
500

3
14
13
12
11
11

K2
6
6
7
7
6
6

We observe that the performance of the algorithm in terms of number of
itérations is relatively independent of the dimension of the problem, a feature
which makes it recommendable for large scale situations. For gênerai situa-
tions of type (3.2)-(3.6), we recommend to store, at some itérations (say,
when k is multiple of a fixed integer q) the indexes of the n — m variables
which are closest to their bounds. The m remaining variables are natural
candidates to be basic variables at a solution of (3.2). Therefore, a Simplex-
type test for verifying if they really détermine a solution, is performed. Some
heuristic devices are needed in order to avoid répétition of tests and to deal
with possibly degenerate problems. In this way, the application of our bound
constrained algorithms to LP problems may be viewed as an alternative way
of suggesting vertexes which are possible solutions of the problem. According
to this point of view, the Simplex method is the classical way to suggest
vertexes, and Interior Point Methods may also be interpreted as different
ways of suggesting basic solutions (see [12, 16]).
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4. FINAL REMARKS

More ([18], page 6) suggests a procedure for combining gradient projection
techniques [1, 4, 7, 18] with active set stratégies for solving bound constrained
quadratic programming problems. Gradient projection methods are attractive
because they are able to add or delete many constraints at each itération,
and because global convergence may be proved without assumptions on the
concavity of ƒ.

Moré's recommendation consists in making a suitable number of gradient
projection itérations each time a stationary point of the quadratic on the
current face is reached. We think that relations and possible combinations
between Moré's and our approach for bound constrained problems deserve
future research.
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