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The Electron Spin Resonance (ESR) of diluted Er3þ magnetic ions in Au nanoparticles (NPs) is

reported. The NPs were synthesized by reducing chloro triphenyl-phosphine gold(I) and

erbium(III) trifluoroacetate. The Er3þ g-value along with the observed hyperfine splitting indicate

that the Er3þ impurities are in a local cubic symmetry. Furthermore, the Er3þ ESR spectra show

that the exchange interaction between the 4f and the conduction electrons (ce) is absent or

negligible in Au1–xErx NPs, in contrast to the ESR results in bulk Au1–xErx. Therefore, the nature of

this interaction needs to be reexamined at the nano scale range. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4867126]

I. INTRODUCTION

Gold nanoparticles (Au NPs) have become a subject of

increasing scientific and technological interest in the last two

decades. Properties such as catalytic activity,1 biological

compatibility,2 and unexpected magnetic polarization3 are

some examples of the motivation to study Au NPs. In this

work, we present a chemical route to obtain Au1�xErx NPs

and report T-dependent Electron Spin Resonance (ESR)

experiments in these NPs and in their bulk version. Our

results indicate that the exchange interaction between the

spin of the localized magnetic moments and the spin of the

conduction electrons (ce) is absent in Au1�xErx NPs.

II. EXPERIMENTAL DETAIL

The diluted alloy of Au1�xErx, labelled as bulk, was pre-

pared by arc-melting the appropriated stoichiometric

amounts of elements under inert argon atmosphere.4

The diluted Er3þ gold-nanoparticles were synthesized

by a chemical route adapting the procedure for silver NPs

described by Tang et al.5,6 This route consists in the reduc-

tion of two precursor compounds. Needle type crystals of

Chloro(triphenylphosphine)gold(I) were used as Au-metallic

precursor. The rare-earth precursor, Er(CF3COO)3, was

obtained by a method described by J. E. Roberts.7 The appro-

priated molar proportion of the two precursors were dis-

solved in 20 ml benzyl ether. Oleylamine (5 ml) and oleic

acid (5 ml) were added to act as stabilizers. The solution was

heated up to 100 �C and maintained at this temperature for

30 min with vigorous stirring under argon flow to dehydra-

tion. Thereafter, heating was increased to 200 �C under

reflux, and 2 ml of a 1M tetrahydrofuran (THF) solution of

lithium triethylborohydride reductor was added to the solu-

tion. The temperature was then increased to 250 �C for

30 min under argon flow. Finally, the solution was cooled

down to room-T and centrifuged after adding excess of etha-

nol. The nanoparticles can be easily dispersed in nonpolar

solvents such as toluene.

The size and shape of the sample was analyzed in a

SEM (FEI Inspect F50), and the structure was checked out

by X-ray powder diffraction (XRD) using the Cu-Ka radia-

tion in a Phillips Diffractometer at room-T. The magnetic

properties were characterized by means of magnetization

measurements as a function of temperature between 300 K

and 2 K using a superconducting quantum interference de-

vice (SQUID) magnetometer MPMS-5 (Quantum Design).

The ESR experiments, between 4.2 K and 300 K, were car-

ried out in a Bruker ELEXYS-500 X-Band (9.5 GHz) spec-

trometer with a TE102 resonator coupled to a cool helium gas

flow cryostat and an Oxford T-controller.

III. RESULTS AND DISCUSSION

Figure 1 presents the XRD pattern for the Au1�xErx NPs

which was indexed on the basis of the face-centered-cubic

(fcc) Au XRD data. The inset on the left hand side of Fig. 1

shows the {200} peak. This and the peaks {111} and {220}

were duplicated. The inset on the right hand side of Fig. 1

shows the SEM image of Au1�xErx NPs presenting two dif-

ferent morphological phases: Cubic-like F1 (edges of 66 nm)

and spherical-like F2 (�35 nm in diameter) shapes. This is

probably the reason for duplicated peaks. The line width val-

ues of the pseudo-Voigt adjustments of these peaks and the

Scherrer’s formula8 were used to estimate the average size

of the NPs. The estimated size values were 75(9) nm for F1

and 32(2) nm for F2. These values are in reasonably agree-

ment with the SEM image.

The T-dependence of the magnetic susceptibility for the

Au1�xErx NPs is shown in Fig. 2. The Curie–Weiss behavior

of the susceptibility indicates that the paramagnetic signal is

due to weak-interacting localized magnetic moments. The

inverse of the paramagnetic susceptibility was fitted between

120 K and 270 K by the Curie–Weiss law, assuming that thea)Electronic mail: lesseux@ifi.unicamp.br
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magnetic moment corresponds to that of Er3þ ions. From the

best fit, we obtained a Er3þ concentration of � 1%.

Figure 3 shows the Er3þ X-band ESR spectra at 4.2 K

for both NPs and bulk samples. The difference between the

spectra is noteworthy. The spectrum of the bulk sample

shows a typical Dysonian line-shape (skin depth � particle

size)9 with the expected resolved hyperfine structure for bulk

Au1�xErx alloy with x � 0.07%.10 The g-value of � 6.77 is

almost T-independent between 4.2 K and 25 K (see Fig.

4(a)), and the T-dependence of the Er3þ ESR intensity fol-

lows approximately a Curie–Weiss law (see Fig. 4(c)). These

results confirm that the Er3þ ESR arises from a C7 Kramers

doublet ground state of the cubic crystalline electrical field

(CEF) splitted J-multiplet (J¼ 15/2), in agreement with pre-

vious results for bulk Au1�xErx alloys.4 Nonetheless, the

Er3þ ESR of the NPs (see Fig. 3) presents a Lorentzian

line-shape (skin depth � particle size)9 and resolved hyper-

fine structure corresponding to the 167Er (I¼ 7/2) isotope.

The obtained hyperfine parameter 167A¼ 74(1) Oe is in good

agreement with the value reported for low concentrated

Au1�xErx bulk alloys.10 The almost T-independent g � 6.75

between 4.2 K and 45 K and the Curie–Weiss-like behavior

of the ESR intensity for the NPs (see Figs. 4(a) and 4(c))

lead us to conclude that the Er3þ ions are at the cubic sites in

the Au1�xErx NPs with a C7 Kramers doublet ground state.

Figures 4(a) and 4(b) show the T-dependence of the g-

value and linewidth, DHef f � DH � DH0, after subtracting

the residual linewidth, DH0ðDH0 ¼ DH T ! 0ð Þ), at X-band

(� � 9.5 GHz) for the NPs and bulk Au1�xErx samples. The

T-independent g-value of � 6.75 for the NPs is close to the

C7 g-value reported for Er3þ in the cubic insulating ThO2

host.11 Thus, within the accuracy of our ESR experiments,

the g-value in our Au1�xErx NPs does not show the g-shift

observed for bulk Au1�xErx which is attributed to the

exchange interaction between the Er3þ localized spin S and

ce ones s, Jf sS � s.10 This result suggests that this exchange

interaction is absent or negligible in our Au1� xErx NPs.

The low-T DHef f , in bulk Au1�xErx, follows a linear

behavior, DHef f ¼ bT, known as Korringa-relaxation.12 This

provides a Korringa ratio b¼ 2.5(1) Oe/K. Above T � 7 K,

there is an exponential broadening. Assuming that the latter

broadening is associated to the spin-lattice relaxation via

exchange interaction with the ce involving excited CEF lev-

els, an appropriately fitting13 of DHef f (see Fig. 4(b)) leads to

a value of D¼ 28(3) K for the energy splitting between the

first excited CEF level and the ground state. For the NPs,

DHef f is constant at low-T, i.e., the Korringa-relaxation is

absent, and there is an exponential broadening above T
� 16 K. Therefore, due to the absence of exchange interac-

tion with the ce, the line broadening must be associated with

FIG. 1. X-Ray powder diffraction pattern for Au1�xErx NPs. The inset on

the left hand side shows the pseudo-Voigt function fit for the cubic {200}

peaks. The inset on the right hand side shows the SEM image of Au1�xErx

NPs.

FIG. 2. T-dependence of the magnetic susceptibility (black square) and its

inverse (open dark blue square) between 2 K and 300 K for Au1�xErx NPs.

The solid red line is the fit to the inverse of the Curie–Weiss law.

FIG. 3. Er3þ X-band ESR spectra of Au NPs and bulk at T¼ 4.2 K. The

expected g-values for Er3þ in a C7 Kramers doublet ground state in an insu-

lator (red vertical line) and in gold (green vertical line) are shown. The verti-

cal blue lines indicate the positions of the various hyperfine lines of the
167Er (I¼ 7/2) isotope.
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a spin-lattice relaxation via the two phonon Orbach process

involving excited CEF levels. An appropriate fitting13 of

DHef f (see Fig. 4(b)) leads to a value of D¼ 126(6) K for the

CEF splitting. Thus, these results indicate that, besides the

absence of g-shift and Korringa-relaxation, the effective

strength of the cubic CEF at the Er3þ site was strongly

affected by the finite size of the NPs.

IV. CONCLUSIONS

In summary, our results provide strong experimental

evidences for the existence of finite size effects on some of

the ground state properties of the Er3þ diluted Au NPs. The

local field (absence of g-shift), the spin-lattice relaxation (ab-

sence of Korringa-relaxation), and the strength of the cubic

CEF were dramatically affected. These results suggest that

the effect of the exchange interaction between localized

magnetic moments and the ce, Jf sS � s, was suppressed, and

the intensity of the cubic CEF strongly enhanced in the NPs.

We suggest that the absence of exchange interaction with the

ce may be due to the onset of ce localization in the NPs

(discrete density of state at the Fermi level), i.e., quantum

size effects may start to be observable in our ESR measure-

ments already at NPs size of 30 to 60 nm. The increase of the

cubic CEF splitting may be associated with changes in the

lattice parameters which are related to different morphology

(size and shape) of the Au1�xErx NPs if compared to the

bulk form.14 Besides, a subtle interplay between the bound-

ary conditions and the presence of crystalline defects,

imposed by the finite size of the NPs, may strongly pertur-

bate the ce of the Au host and, in turn, affect the static and

dynamic properties of the localized magnetic moment

ground state in these Au1�xErx NPs.6
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