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Abstract. Restarting GMRES, a linear solver frequently used in numerical schemes, is known

to suffer from stagnation. In this paper, a simple strategy is proposed to detect and avoid stagna-

tion, without modifying the standard GMRES code. Numerical tests with the proposed modified

GMRES(m) procedure for solving linear systems and also as part of an inexact Newton procedure,

demonstrate the efficiency of this strategy.
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1 Introduction

The objective of this work is to improve the performance of the restarted GMRES

[25]. A well known difficulty with the restart of GMRES, algorithm for solving

Ax = b, A : n×n is that it can stagnate when the matrix A is not positive definite

[24], in the sense that the residual sequence does not converge to zero within a

reasonable time frame. Simoncini, [27], and Sturler, [31], modified the GMRES

using spectral analysis. In Parks et al., [21], Ritz values are used to improve

the performance of the restart. Morgan, [16], [17], also uses eigenvectors for
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improving convergence of restarted GMRES. He considers some vectors from the

previous subspace, adding them to the new subspace in order to deflate eigenval-

ues. Convergence issues and stagnation are discussed by Simoncini, [29], and

Zavorin, [36]. Van der Vorst and Vuik introduce a strategy to prevent stagnation

in GMRES, by including LSQR steps in some phases of the process [33].

This work aims an early detection of stagnation; once detected stagnation,

the initial residue of the next cycle is steered away from the stagnation zone

by means of a simple hybrid safeguard which mostly involves, in addition, the

current residue. The strategies proposed here have the following objectives:

• avoid stagnation;

• use previous information given by the GMRES, avoiding any modification

in it. At most, the new program should ask for few information besides

that usually provided by GMRES;

• take into account information from the previous cycles performed by the

GMRES.

It is also important to analyze the GMRES as a solver for the linear systems

generated by Inexact-Newton type methods for solving nonlinear systems of

equations. Our interest in choosing these methods relies, basically, on their

popularity among practitioners, and on our research interest in Newton-Krylov

methods, [10, 32]. Since strategies that improve the efficiency of GMRES, are

fundamental in a better performance of these methods, they became one of the

main subjects of our research.

In Section 2 we describe briefly the GMRES and the restarted GMRES algo-

rithms. We also study the effect of the GMRES cycle length on the decrease of

the residual norm. In Section 3 we establish our stagnation criteria and describe

hybrid safeguards which modify the GMRES method, obtaining a version called

here GMRESH. In Section 4 we show that GMRESH is capable to reduce con-

siderably the effect of stagnation at the resolution of some linear systems. We

also compare GMRESH with the GMRESDR method proposed by Morgan, [17].

In Section 5 we discuss the implementation of GMRESH within the Newton-

Krylov method and test its performance on a ray-tracing problem and on a set of

boundary value problems. Some concluding remarks are given in Section 6.
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2 GMRES(m)

The method GMRES was proposed in [25] for solving linear systems As = b,

where A is a nonsingular n×n matrix (not necessarily symmetric) and b ∈ Rn . If

s0 is a initial approximation for the solution and r0 = b−As0 is the corresponding

residual vector, the Krylov subspace after l iterations of the GMRES will be:

Kl =
[
r0 , Ar0 , A2r0 , . . . , Al−1r0

]
. (1)

At each iteration l of GMRES, a value sl ∈ s0 +Kl is computed to minimize

the residual vector, that is: rl = mins ∈ s0+Kl ‖b − As‖2. In what follows we

always mean ‖.‖2 whenever we use ‖.‖.

It is known that, computationally speaking, GMRES is more expensive than

other Krylov subspace methods, such as Bi-CGSTAB, [14], QMR [24] for gen-

eral square matrices, or LSQR [19], [20] for anti-symmetric matrices. Neverthe-

less, it is widely used for solving linear systems derived from the discretization

of partial differential equations, since theoretically the 2-norm of the residual

vector is minimized inside the Krylov subspace at each step.

We can describe GMRES as follows: given the subspace Kl and the initial

approximation s0, compute sl, the approximate solution for As = b, where

sl ∈ s0 +Kl in such a way that rl = b − Asl is orthogonal to AKl .

Since sl ∈ s0 +Kl we can write sl = s0 + δ, δ ∈ Kl; then rl = b − Asl =

r0 − Aδ. We obtain δ in such a way that rl is orthogonal to AKl . Geometrically,

Aδ is the orthogonal projection of r0 in AKl , as shown in Figure 1.

AK
l
 

 r
l
 

 r
0
 

Aδ 

θ 

Figure 1 – Orthogonal projection of r0 in AKl .

The dimension of the Krylov space keeps increasing, so the memory cost and

complexity of the l-th GMRES step increase with l. A modified version called
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GMRES(m) is used in large scale problems. In this version, the GMRES proceeds

in cycles of m iterations, see [14], [25]. Basically, the process begins with some

vector s0, and a fixed number m of iterations are performed. Then, a new cycle

begins with sm as initial approximation and rm = b − Asm as initial residue.

Note that at each cycle an m-dimensional Krylov subspace is generated from

the initial residue, following the usual GMRES procedure.

Whereas the restarted policy is computationally more feasible, convergence

cannot be guaranteed in general, and stagnation becomes possible [11], [24], [28],

[31] and [36]. A rather expensive remedy would be to monitor the eigenvalues

of the Hessenberg matrices generated during the GMRES, [28]. Other schemes,

such as the one mentioned in [31], store some vectors created at the j-th cycle

and use them at the ( j + 1)-th cycle. We present a different strategy.

3 Stagnation

In this section we present a new strategy to generate an approximation to the new

cycle that bypasses the stagnation of the method. We use the following notation:

r j
0 is the initial residue of the j-th cycle and r j

m is the residual vector at the end

of this cycle.

Stagnation in GMRES(m) is usually described as slowness in the decrease of

the consecutive residual norms, ‖r j
l ‖, l = 1, 2, 3, . . . , m. However, a situa-

tion where r j
m and r1

0 are roughly linearly dependent could also be classified

as stagnant.

To prevent stagnation we need to control the cycles in such a way that it is

possible to make a comparison between the norm of the last residue, ‖r j
m‖, and

the norm of the initial residual vector of this cycle, ‖r j
0 ‖. Moreover, we need

to guarantee that the basis generated for the Krylov subspace in the ( j + 1)-th

cycle is linearly independent with respect to the basis from the last cycles.

Firstly, we need to establish a criterion to detect stagnation, which can be based

on the norm of the residual vectors. However, even in the case of a reasonable

decrease of the norm of residues, if the angle between the initial and final residual

vectors of one cycle j is close to zero, the Krylov subspace of the new cycle,

( j +1), can be similar to the previous one. This is because both subspaces began

with vectors that are almost linearly dependent. It is obvious that in such case

Comp. Appl. Math., Vol. 27, N. 2, 2008
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the progress of the process towards the solution will be very slow.

In Figure 1, we can observe that, given the projection property of GMRES,

if the cosine of the angle between the initial and final residual vectors is close

to 1, then the norm of these residues are very close to each other so that there is

an equivalence between the tests

‖r j
m‖/‖r j

0 ‖ ∼ 1 (2)

and

| cos(θ j )| ∼ 1, (3)

where θ j is the angle between the vectors r j
0 and r j

m .

We must also consider the possibility of linear dependence between rl
0, l =

1, . . . , j − 1 and r j
m , where r j

m is the last residue of the j-th cycle whereas rl
0

is the initial residue of the l-th cycle. Nevertheless we decided to make the

comparison only between r1
0 and r j

m . Our stagnation criterion is based on sim-

plicity and heuristics. Simplicity dictates a small number of angle comparisons;

heuristics is justified as follows: comparison with r1
0 is justified by the fact that,

empirically, the largest descent occurs during the first GMRES cycles. Angle

comparison with r j
0 is based on the heuristic assumption that once stagnation is

present it will always repeat itself; in other words, if the angle between r j+1
0 and

r j−1
0 were small, stagnation would have already been discovered in the previous

cycle.

If a linear dependence between r1
0 and r j

m occurs, the Krylov subspace of the

cycle ( j + 1) would be close to the Krylov subspace generated in the first cycle.

This would lead to the stagnation of the process. If this is the case, there is no

equivalence between the tests (2) and (3), since r1
0 and r j

m belong to different

Krylov subspaces. Thus it is not possible to use the test with the norms of the

residual vectors. Linear dependence can be detected testing the cosine of the

angle between the residues r1
0 and r j

m :

| cos(θ j,1)| ∼ 1. (4)

In the strategies proposed in this work, the analysis will be always done at the

end of each cycle, to reduce a too big computational costs. Stagnation will be

declared when:

| cos(θ j )| ∼ 1 or | cos(θ j,1)| ∼ 1. (5)

Comp. Appl. Math., Vol. 27, N. 2, 2008
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In case of stagnation, another initial approximation must be chosen for the new

cycle. This new approximation is obtained using information generated during

the process. However, it needs to be constructed in such a way to guarantee a

reduction in the norm of the residual vector. The new strategy that is proposed

generates an approximation for the ( j + 1)-th cycle using a hybrid scheme,

based on the strategy proposed by Brezinski and Redivo-Zaglia in 1994, [3].

This hybrid scheme uses the approximations s1
0 and s j

m which, in some sense,

take into account the information generated by GMRES(m). In this way, we are

trying to get out of a sequence which yields little decrease for the residuals.

In what follows, we will briefly describe the scheme proposed in [3] for linear

systems.

Consider the linear system of equations As = b. Once the approximations s̄

and ŝ are known, and the corresponding residues, r̄ = b − As̄ and r̂ = b − Aŝ

are computed, the objective is to construct a new approximation as a linear

combination of s̄ and ŝ, s = αs̄ + β ŝ, with the aim of reducing the residual

norm. As a simplifying tool in obtaining these parameters is to fix β = 1 − α,

and then the corresponding residue r will be given by

r = b − As = αr̄ + (1 − α)r̂ .

Therefore our problem is reduced to find α ∈ R, the least square solution for:

minα ‖r‖ = minα ‖(r̄ − r̂)α + r̂‖,

for which the optimal α is given by:

α = −(r̄ − r̂)T r̂/(r̄ − r̂)T (r̄ − r̂). (6)

The new approximation will be s = αs̄+(1−α)ŝ, and the corresponding residue

is r = αr̄ + (1 − α) r̂ .

Let us go back to the solution for As = b by the GMRES(m). Let s1
0 and

s j
m denote the initial approximation of the whole process, and the last approx-

imation obtained after performing the m GMRES iterations of the j−th cycle,

respectively. The following safeguards are tested and the computation of the

new approximation is done using the hybrid scheme, where s̄ corresponds to s1
0

and ŝ to s j
m .

Comp. Appl. Math., Vol. 27, N. 2, 2008
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Strategy H:

if j 6= 1:

Safeguard 1: test the angle θ j between r j
0 and r j

m :

if | cos(θ j )| ∼ 1, compute s j+1
0 = αs1

0 + (1 − α)s j
m , with α given by (6).

Otherwise,

Safeguard 2: test the angle θ j,1 between r1
0 and r j

m :

if | cos(θ j,1)| ∼ 1, then compute s j+1
0 = αs1

0 + (1 − α)s j
m , with α given by (6).

if j = 1:

Test the angle θ1 between r1
m and r1

0 :

if | cos(θ1)| ∼ 1, compute sa as a random vector and s2
0 = αsa + (1 − α)s1

m ,

with α given by (6).

In the case j = 1, due to the orthogonality and minimization properties of

GMRES, the vector calculated from s1
0 is the same as the one encountered by the

hybrid process. Thus, s1
0 should be modified. We add that the corresponding

residual vector ra , related to sa , is normalized so as to guarantee the monotone

decrease of the residues.

In Figure 2 we depict the situation tested by Safeguard 2, when the decrease

in the residual norm is sufficient, so that Safeguard 1 is not triggered. Thus, r j
m

is necessarily much smaller than r1
0 . If indeed the angle between them is small,

or close to π, the residue formed by them will show a pronounced decrease in

norm.

θ r
0
1  

r
m
j  

r
0
j+1 

Figure 2 – Safeguard 2: angle between r1
0 and r j

m , and residue obtained by the hybrid

scheme.

The hybrid scheme also presents the advantage of maintaining the minimization

of the 2-norm of r , as is the purpose ofGMRES(m). The important difference here

is that the GMRES(m) solves this problem in the Krylov subspace generated in

the last cycle of GMRES(m). In the hybrid scheme the minimization is carried out

Comp. Appl. Math., Vol. 27, N. 2, 2008
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in the plane generated by vectors belonging to two different Krylov subspaces:

the first Krylov subspace (K1) and the last Krylov subspace (K j ). Therefore

our scheme keeps some information about these two subspaces.

The hybrid vectors are used quite often. This idea is similar to the residual

smoothing used in [26], but in that case, it is used as a stopping criterion for

the Conjugate Gradient method; in [34] the authors compared the behavior of

the smooth residue and the usual residue for the MRS, QMR and BCG methods.

Hybrid preconditioners are used in [23] and [33]. We do not use the term “hybrid

GMRES” since in the literature it is sometimes used in other contexts, such as in

[18], [30]. So we are calling it GMRESH.

4 Numerical experiments with GMRES and GMRESH

We present two examples comparing GMRES and GMRESH for 3 × 3 matrices.

Our procedure in this paper is the following: a hybrid restart is triggered in

the first 5 occurrences of cos(θ j ) > 0.8 or cos(θ j,1) > 0.8 and in the next 5

occurrences of cos(θ j ) > 0.9 or cos(θ j,1) > 0.9. In all other next iterations,

the usual GMRES(m) is used. The point is that if GMRESH(m) shows persistent

stagnation then further progress is not likely to occur.

Example 1. Zavorin [35] brings the linear system Ax = b:

A =




3.64347104554523 −1.30562625697964 2.12276233724947
3.81895186997748 −0.33626408416579 8.43952325416869
0.12754105943518 0.13002776444227 2.98820549610000



 (7)

and

b =




−0.22385545043433
−0.30471918583417
0.92576182418211



.

For this example, the null vector was taken as the initial approximation. GMRES

was applied with restarts at each two iterations and it was allowed 100 cycles.

The sequence of GMRES(2) residues is constant and equal to 1, showing the

stagnation of this method. For the GMRESH(2), the safeguards were triggered

and the process converged in 19 iterations with precision 10−4.

Comp. Appl. Math., Vol. 27, N. 2, 2008
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We also tested GMRES(2) and GMRESH(2) on 64 problems, which were created

as follows: consider the systems As = bi jl where bi jl = b + vi jl , vi jl being a

vector in R3 with entries in [−0.1, 0.1]. We used 4 points in each interval.

Figure 3 shows the logarithmic relative error ‖rend‖/‖r1
0‖ for each problem,

where rend is the last residue of the whole process. Although both methods

stagnated in some cases, GMRESH(2) shows a clear improvement.

0 10 20 30 40 50 60 70
-7

-6

-5

-4

-3

-2

-1

0
Relative residual

problems

res
G

res
H

Figure 3 – Logarithm of relative residual norms for the matrix (7). resG and resH

represent relative residues obtained by GMRES(2) and GMRESH(2), respectively.

Example 2. Embree [8] gives the linear system Ax = b:

A =






1 1 1

0 1 3

0 0 1




 b =






2

−4

1




 (8)

as an example where GMRES(1) converges in three iterations but for GMRES(2)

the relative residue stagnates near 0.3. We considered 1681 linear systems,
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As = bνμ, where

r1
0 = bνμ := (ν, μ, 1)T , ν, μ ∈ [−10, 10]

and 10−6 was taken as precision. Figure 4 shows the logarithm of the relative

residual norms, (‖rend‖/‖r1
0‖), ranging from 0 (white) to −8 (black). Actually,

some of the GMRESH relative residues calculated were less than 10−16. We can

see that the GMRESH(2) relative residue is much smaller than the GMRES(2) rel-

ative residue in the vast majority of cases. Observing the size of the white region

in both graphics, it is easy to conclude the better performance of GMRESH(2).

We applied the deflated GMRESDR method proposed by Morgan in [17] at the

resolution of the linear systems (7) and (8). The results were obtained using the

program GMRESDR.m, kindly sent to us by R. Morgan (Baylor University). The

deflation of small eigenvalues can greatly improve the convergence of restarted

GMRES. This method is denoted by GMRESDR(m,k), where m represents the

maximum dimension of the subspace and k be the number of approximate ein-

genvectors (harmonic Ritz values) retained at a restart.

We observe that the matrices A of these systems are not ill-conditioned. At

the resolution of system (7), GMRESDR(2,1) performed 69 inner iterations and

obtained relative residual of 5.8544e-005. Meanwhile, GMRESH(2) performed

19 inner iterations as seen before. Considering the 1681 problems of type (8), we

had difficulties in running GMRESDR(2,1) due to the ill conditioning introduced

by the change of the eigenvalue done by this method.

In conclusion, GMRESH(2) did a better job in avoiding stagnation in these

problems.

5 Numerical experiments

Here we apply the GMRES and GMRESH procedures, as linear solvers for the

inexact Newton method with a nonmonotone line search, [1], for solving a non-

linear system

F(x) = 0, F : Rn → Rn.

In the inexact Newton methods, [5], the sequence xk (called sequence of outer

iterations) is generated by

xk+1 = xk + sk;

Comp. Appl. Math., Vol. 27, N. 2, 2008
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Figure 4 – Logarithm of relative residual norms about matrix (8).
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sk solves approximately the linear system J (xk)s = −F(xk), using this stop-

ping criterion:

‖J (xk)s + F(xk)‖ ≤ ηk‖F(xk)‖, (9)

where J (.) is the Jacobian matrix, ηk ∈ (0, 1] is the tolerance which is called

the forcing term, [7].

In the line search procedure, it is needed the following parameters: σ ∈

(0 , 1), %min and %max such that 0 < %min < %max < 1 and the sequence {μk}

such that μk > 0 for all k = 0, 1, 2, . . . and
∑∞

k=0 μk = μ < ∞.

Now we present the inexact Newton algorithm with the nonmonotone line

search procedure. Let x0 ∈ Rn be an arbitrary initial approximation to the

solution for F(x) = 0. Given xk ∈ Rn , and the tolerance ε > 0, the steps to

obtain a new iteration xk+1 are the following:

Algorithm 1. (Inexact Newton method with nonmonotone line search):

While ‖F(xk)‖ > ε, perform steps 1 to 4:

Step 1: Choose ηk .

Step 2: Find sk such that ‖F(xk) + J (xk)sk‖ ≤ ηk‖F(xk)‖;

Step 3: Take ξ = 1, compute xaux = xk + sk and F(xaux).

While

‖F(xaux)‖ > [1 − ξσ ]‖F(xk)‖ + μk,

perform the steps 3.1 and 3.2:

step 3.1: compute ξnew ∈ [%minξ, %maxξ ];

step 3.2: set ξ = ξnew and compute xaux = xk + ξsk .

Step 4: Take ξk = ξ , compute xk+1 = xk + ξksk and update k.

In the Step 1 we examine the following choices for the forcing term:

Constant (Cte): we chose ηk = 0.1;

EW1: ηk =
‖F(xk) − F(xk−1) − J (xk−1)sk−1‖

‖F(xk−1)‖
(see Eisenstat and Walker [7]);

EW2: ηk = γ

(
‖F(xk+1)‖

‖F(xk)‖

)α

, γ ∈ [0, 1], α ∈ (1, 2] (see Eisenstat and

Walker [7]);

Comp. Appl. Math., Vol. 27, N. 2, 2008
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GLT: ηk = [1/(k + 1)]ρ cos2(φk)
‖F(xk)‖

‖F(xk−1)‖
, ρ > 1 and −π/2 ≤ φk ≤ 0, (see

Gomes-Ruggiero et al. [10]).

The vector sk of the Step 2 is obtained by GMRES(m) and GMRESH(m).

The line search performed at Step 3 by Algorithm 1 follows the one proposed

in [1] which is a nonmonotone strategy similar to the one introduced by Li and

Fukushima, [12]. So, Algorithm 1 has global convergence [10]. Besides that,

with the choicesEW1, EW2 andGLT the convergence rate is superlinear, [7], [10].

5.1 Implementation features

We give now more details about the implementation of the algorithms. The

implementation details can be found in [32], pages 26 and 49. All the tests

were performed in a Centrino Duo 1.6GHz with 1 GB Ram computer, using the

software MatLab 6.1.

• Line search procedure (Step 3 of Algorithm 1):

for the parameter σ , we took 1.d − 04;

if the vector xaux = xk + ξsk does not give an acceptable decrease in the

value of the function, then we compute the new step size as ξnew = 0.5ξ ;

for the sequence μk , we define:

f ti p(0) = ‖F(x0)‖,

f ti p(k) = min{‖F(xk)‖, f ti p(k − 1)}, if k is a multiple of 3 and

f ti p(k) = f ti p(k − 1), otherwise;

then, we set:

μk =
f ti p(k)

(k + 1)1.1
.

• The initial value and safeguards for η:

for all the choices for ηk we set the initial value η0 = 0.1. For the choices

EW1 and EW2 of [7] and for the choice GLT, we take ηk = min{ηk, 0.1}

if k ≤ 3, and ηk = min{ηk, 0.01} if k > 3. We also take ηk = 0.1

when φk > 0. At the final iterations we have adopted the safeguard

introduced in [22] which can be described as: since the linear model is

F(x) ∼ F(xk)+ J (xk)s, at the final iterations, we can have: ‖F(xk+1)‖ ∼

‖F(xk)+ J (xk)sk‖ ≤ ηk‖F(xk)‖. In this case it is important to set ηk such
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that ηk‖F(xk)‖ ∼ ε where ε is the precision required for the nonlinear

system. A safeguard which represents these ideas is: if ηk ≤ 2ε then we

set ηk = (0.8ε)‖F(xk)‖.

• Parameters choice for ηk :

for the choice EW2 it was taken γ = 1 and α = 0.5(1 +
√

5) and for the

choice GLT it was taken ρ = 1.1.

• Stopping criterion:

the process is finished successfully if ‖F(xk)‖ ≤ 10−6 and k < 100.

• Restarts and the maximum number of iterations in GMRES(m):

we fix the restarts at each m iterations, m = 30 or m = 50, allowing

initially a maximum of 100 cycles (100m iterations). This maximum

number is called here by maxit and it is adjusted during the process.

This is the case, if the value of ‖F‖ increases, when F is computed

at the solution obtained after an inner iteration, before doing the line

search. Also, maxit is adjusted when the number of GMRES iterations

have exceeded a certain value. Indeed, maxit is computed according

to: if 1 < ‖F(xnew)‖/‖F(xold)‖ < 100, then maxit is fixed as 50; if

‖F(xnew)‖/‖F(xold)‖ > 100 or if the maximum number of GMRES itera-

tions has been exceeded, then maxit is fixed as 30. We observe that this

procedure is repeated just in two consecutive iterations. After that, the

value of maxit is taken as 100 again.

• Strategy H:

after eachGMRES iteration, a possible stagnation is detected by the tests (3)

and (4). Initially, we use 0.9 as a tolerance for the value of the cosine of θ j

or θ j,1. If the hybrid scheme is triggered 5 times, we change this tolerance

to 0.8. In the case of the hybrid process be triggered at the beginning of

10 cycles, we stop the test as in Section 4.

We present some numerical results obtained from the solution for a ray-tracing

problem [13] and also from a set of boundary value problems.

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 18:51 — page 189 — #15

M.A. GOMES-RUGGIERO, V.L. ROCHA LOPES and J.V. TOLEDO-BENAVIDES 189

5.2 A ray-tracing problem, [2]

We will present here a very simpliflied ray-tracing problem. First of all, let

us represent the earth surface, as if it was two dimensional. Imagine that an

acoustic wave transmiter S and a geophone receiver G, are located in two different

points on the earth surface. Each acoustic wave will cross a certain number

of layers, under the surface, and when coming back, it will be captured by

the geophone. Such layers considered elastic, isotropycs and homogeneous,

compose the structure of the undersurfaces of the earth.

The problem that we are interested in, consists on determining the trajectory

of a ray, when crossing the earth undersurface [13].

The interfaces between two consecutive layers, are defined as functions of the

horizontal coordinate x . These functions are continuous and smooth – we will

not consider the intersections between two consecutive interfaces. The functions

will be represented by z = fi (x), i = 1, . . . , m, where m corresponds to the

number of interfaces and z denotes the vertical coordinate.

S G 

z = f
1
(x) 

z = f
2
(x) 

z = f
3
(x) 

Figure 5 – A ray-tracing model with two layers and signature a = (2, 1).

The number of times that a ray crosses the layer – downwards or upwards

– in a layer between the interfaces fi and fi+1 will be denoted by (ai ), i =

1, . . . , m − 1. Figure 5 is an example of this, where a1 = 2 and a2 = 1. The
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vector a = (a1, ∙ ∙ ∙ , am−1) is called the signature of the ray. For uniqueness,

we assume that all the downward crossings in a layer occur before those in the

next layer, as in Figure 5.

Under these conditions, the rays must satisfy the Snell law, and so, they

describe a straight line trajectory in each layer. Let the initial point S, the

end point G on the earth surface, and the velocity of the ray in the j-th layer

v j , j − 1 , . . . , m − 1, be given. The problem consists on finding the points

Xk = (xk, fik(xk)), for k = 1 , 2 , . . . , n that satisfy the Snell law in each

reflector ik . We will take X0 = S and Xn+1 = G. The dimension of the problem

is given by

n = 2
m−1∑

j=1

a j + 1.

The tangent vector to the k−th interface at the point Xk, will be called τk, and

is defined by τk = (1 , f ′
ik(xk). The Snell law is given by

1

vik

τk
T (Xk − Xk−1)

‖τk‖ ‖Xk − Xk−1‖
=

1

vik+1

τk
T (Xk+1 − Xk)

‖τk‖ ‖Xk+1 − Xk‖
, (10)

where || . || denotes the Euclidean norm. Thus, using equation (10) for k =

1 , . . . , n we obtain a nonlinear system of equations with n equations and n

unknowns, given by

8(x) = 0, (11)

with 8 : Rn → Rn , 8(x) = (φ1(x), φ2(x), ∙ ∙ ∙ , φn(x))T and the functions

φk : Rn → R (k = 1, ∙ ∙ ∙ , n) defined by

φk(x) = vik+1

(xk − xk−1) + f ′
ik
(xk)

(
fik (xk) − fik−1(xk−1)

)

[
(xk − xk−1)

2 +
(

fik (xk) − fik−1(xk−1)
)2

]1/2

−vik

(xk+1 − xk) + f ′
ik
(xk)

(
fik+1(xk+1) − fik (xk)

)

[
(xk+1 − xk)

2 +
(

fik (xk+1) − fik (xk)
)2

]1/2 .

(12)

For the tests presented in Table 1, we considered a ray-tracing problem with

two horizontal layers and signature a = (500, 500). Each ordered pair represents
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the result of GMRES (left) and GMRESH (right). Column iterex represents the

total number of external iterations that were performed; iterin, the number

of inner iterations, that is, the number of iterations performed by GMRES(m) in

the whole process; the column Feval represents the total number of function

evaluations needed during the whole process; finally, CPU time represents the

CPU time in seconds. The stopping criterion was ‖8‖ ≤ 10−5.

We observe that in this example the second safeguard in Strategy H was never

triggered, while the first safeguard decreased considerably the number of inner

iterations.

ηk iterex iterin Feval CPU time

Cte (6, 4) (7000, 4978) (7, 5) (135, 104)

EW1 (7, 4) (7840, 4054) (8, 5) (151, 84)

EW2 (7, 5) (7924, 4024) (8, 6) (153, 85)

GLT (7, 5) (7986, 4086) (8, 6) (155, 83)

Table 1 – Results for the ray-tracing problem with GMRES(30).

5.3 Boundary value problems

The general formulation of the boundary value problems solved in this work is

finding u : � = [ 0, 1] × [ 0, 1] → R, such that, for λ ∈ R,

−1u + h(λ, u) = f (s, t), in �, u(s, t) = 0 on ∂�. (13)

The real valued function h(λ, u), the different values for the parameter λ and

the function f define the different problems tested. All the problems were dis-

cretized using central differences on a grid with L inner points in each axis. The

discretized system obtained has L2 equations and variables. In these problems

we work with grids of L = 63 and L = 127 inner points. We now make a brief

description of the particular problems that were solved:

• Bratu problem: the function h is given by h(λ, u) = λ exp(u), and the

function f (s, t) is constructed so that u∗(s, t) = 10st (1 − s)(1 − t)es4.5

is the exact solution for the problem. When λ < 0, the problem is consid-

ered relatively easy; not surprisingly, the hybrid strategy has never been

triggered in our tests. The problem is more difficult for λ > 0, [9];
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• a convection-diffusion problem: in this problem, the function h is given

by h(λ, u) = λu(us + ut), where us and ut denote the partial derivatives

of the function u with respect to s and t , and again the function f (s, t)

is defined so that u∗(s, t) = 10st (1 − s)(1 − t)es4.5
is the exact solution

for the problem. This is a problem considered difficult to solve [9], in

particular for values of λ greater than 50;

• a third problem: P3. This problem appears in the book of Briggs, Henson

and McCormick [4], page 105. In this case, h(λ, u) is given by h(λ, u) =

λueu and the function

f (s, t) = ((9π2 + γ e(x2−x3) sin(3πy))(x2 − x3) + 6x − 2) sin(3πy).

Table 2 shows the results of Newton-GMRES and Newton-GMRESH applied

to the above problems, with: L = 63, n = 3969, x0 = (0, 0, . . . , 0)T and

λ = 100. This value for λ was chosen by the occurrence of stagnation. Each

ordered pair should be read as in Table 1 and iterex, iterin, feval and

CPU time have the same meaning as before.

ηk problem iterex iterin Feval CPU time

Bratu (21, 9) (32015, 11206) (22, 10) (161.52, 60.27)

Cte conv–dif (20, 20) (5826, 7987) (75, 71) (70.80, 80.44)

P3 (5, 5) (167, 167) (6, 6) (1.83, 2.22)

Bratu (25, 9) (36793, 8977) (26, 10) (190.69, 47.53)

EW1 conv–dif (21, 21) (8885, 7267) (77, 79) (85.36, 81.36)

P3 (5, 5) (167, 167) (6, 6) (2.17, 2.05)

Bratu (17, 9) (23450, 9605) (18, 10) (121.05, 54.48)

EW2 conv–dif (21, 21) (8884, 7294) (77, 79) (85.69, 78.67)

P3 (4, 4) (173, 173) (5, 5) (2.20, 2.22)

Bratu (19, 9) (27517, 10709) (20, 10) (147.28, 61.70)

GLT conv–dif (20, 21) (7582, 6425) (73, 78) (80.14, 74.60)

P3 (5, 5) (200, 200) (6, 6) (2.25, 2.34)

Table 2 – Results for the boundary value problems with GMRES(30).

For the Bratu problem, GMRESH shows a considerable decrease in the number

of inner iterations, thus effectively mitigating the stagnation problem. The line
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search was not triggered and iterex is slightly reduced. In the convection-

diffusion problem, the number of inner iterations was reduced with GMRES

in most of the cases. For this problem the Jacobian matrices are always ill-

conditioned near the solution. The line search was activated several times, in-

dicating stagnation coupled with insufficient decrease. For all the problems

considered, iterexwas practically the same (or slighly better) using GMRESH.

Problem P3 can be considered an easy problem with no ocurrence of stagnation.

We show in Table 3, the performance of the Algorithm 1 with GLT choice

for the forcing term at the resolution of Bratu problem with λ = 100. Our

purpose is to compare the number of inner iterations performed by GMRES and

GMRESH at each outer iteration. We also show how many times the Strategy H is

triggered. We observe the ocurrence of stagnation at 4-th outer iteration. After

this iteration, the strategy H was triggered with a very good performance since

the number of inner iterations was extremely reduced and the convergence was

accelerated.

We chose the Bratu and convection-diffusion problems to exploit other pa-

rameters, such as the grid size L = 63 and L = 127. With these choices the

dimension of the nonlinear systems solved were 3969 and 16129, respectively.

We also implemented GMRES(m) with m = 30 and m = 50 for L = 63 and

m = 50 and m = 80 for L = 127. Table 4 shows the results for these sys-

tems. Observe that even with a very large dimension there was no difficulty

for the Algorithm 1 to solve the corresponding nonlinear systems, in both cases:

GMRES(m) andGMRESH(m). As before, for the Bratu problem, GMRESH(m)

shows a considerable decrease in the number of inner iterations, thus effectively

mitigating the stagnation problem.

We also tested GMRESDR(30,5) at the resolution of the linear system gener-

ated at the first outer iteration of Algorithm 1. It was slightly better than GM-

RESH(30) in solving Bratu problem but much better when solving convection-

diffusion problem which has a very ill conditioned Jacobian matrix.

5.4 The performance profile of the methods

The performance profile, proposed by Dolan and Moré [6], is a useful tool to

compare a set of algorithms used for solving a set of problems. As comparison

Comp. Appl. Math., Vol. 27, N. 2, 2008



“main” — 2008/6/30 — 18:51 — page 194 — #20

194 A SAFEGUARD APPROACH TO DETECT STAGNATION OF GMRES(m)

iterex iterin strategy H ‖F‖2

0 (2.6964e+03, 2.6964e+03)

1 (23, 23) (0, 0) (1.7464e+03, 1.7464e+03)

2 (20, 20) (0, 0) (2.8962e+02, 2.8962e+02)

3 (474, 316) (0, 5) (1.5226e+01, 1.4708e+01)

4 (3000, 3000) (0, 15) (2.8250e+00, 1.9868e+00)

5 (900, 900) (0, 25) (1.6173e+00, 4.6646e−01)

6 (900, 360) (0, 32) (1.0029e+00, 1.4749e−02)

7 (3000, 3000) (0, 42) (1.9558e−01, 1.1036e−03)

8 (900, 90) (0, 44) (1.0517e−01, 7.4272e−06)

9 (900, 3000) (0, 54) (5.6424e−02, 5.0644e−07)

10 (3000, −) (7.0456e−03, −)

11 (900, −) (3.7184e−03, −)

12 (900, −) (1.9620e−03, −)

13 (3000, −) (2.3322e−04, −)

14 (900, −) (1.2304e−04, −)

15 (900, −) (6.4918e−05, −)

16 (3000, −) (7.7044e−06, −)

17 (900, −) ( 4.0649e−06, −)

18 (900, −) ( 2.1446e−06, −)

19 (3000, −) ( 2.5451e−07, −)

Table 3 – Performance of GMRES(30) and GMRESH(30) at the linear systems in Bratu

problem with λ = 100.

measures, we can use, for instance, the number of iterations performed, the

number of function evaluations, the CPU elapsed time, etc.

In this subsection we analyze the performance profile of the Algorithms

Newton-GMRES and Newton-GMRESH when applied to solve the boundary

value problems. A total of 18 problems were tested: Bratu, convection-diffusion

and P3 with the following values for λ := 10, 25, 30, 50, 75 and 100. We

compare the performance of this Algorithms using for ηk only the choices EW2

and GLT, in order to get an understandable figure. We used a grid with L = 63

inner points and m = 30 because with these parameters the average behaviour

of both Algorithms is well represented. In the legends of Figure 6, Algorithm

Newton-GMRESH is indicated by an H, after the name of the choice.
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(L , m) ηk problem iterex iterin Feval CPU time

EW2 Bratu (17, 9) (23450, 9605) (18, 10) (121, 54)

(63, 30) conv–dif (21, 21) (8884, 7294) (77, 79) (86, 79)

GLT Bratu (19, 9) (27517, 10709) (20, 10) (147, 62)

conv–dif (20, 21) (7582, 6425) (73, 78) (80, 75)

EW2 Bratu (9, 7) (17772, 8171) (10, 8) (120, 58)

(63, 50) conv–dif (19, 19) (2730, 2814) (73, 73) (53, 58)

GLT Bratu (9, 7) (17706, 5738) (10, 8) (100, 37)

conv–dif (19, 19) (2505, 2544) (71, 71) (51, 54)

EW2 Bratu (20, 9) (47171, 17991) (21, 10) (1093, 478)

(127, 50) conv–dif (30, 21) (35090, 13730) (107, 79) (2108, 1144)

GLT Bratu (20, 8) (47415, 13746) (21, 9) (1092, 393)

conv–dif (20, 21) (8524, 13793) (72, 80) (1014, 1140)

EW2 Bratu (15, 8) (51705, 21510) (16, 9) (1713, 689)

(127, 80) conv–dif (20, 20) (7256, 8596) (79, 79) (1011, 1084)

GLT Bratu (16, 8) (59862, 19930) (17, 9) (1903, 740)

conv–dif (19, 19) (6303, 7005) (70, 71) (975, 973)

Table 4 – Results for boundary value problems with L = 63, GMRES(30), GMRES(50)

and L = 127, GMRES(50), GMRES(80).

The measures used for comparison were the total numbers of inner and outer

iterations. Note that in Figure 6 a higher curve means better performance. With

respect to both measures, it is evident that the two Newton-GMRESH (NGH) out-

performed the two Newton-GMRES (NG) versions. In particular, the percentage

of problems solved with a small number of inner (resp. outer) iterations was

roughly 43–53% against 30% (resp. 80–95% against 60–70%). It can be ob-

served that NG versions solved some problems with a number of inner iterations

3 and 4 times greater than the minimum required to solve that problem with NGH

versions. Thus the algorithm NG had a worse performance than the new version

NGH. The strategies worked successfully.

6 Conclusions

In this work we presented an inexact Newton-like Algorithm with a nonmono-

tone line search, in which it was introduced an strategy to prevent stagnation of

the linear solver GMRES. This strategy showed as advantages: (i) the simplicity
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Figure 6 – Performance profile using as measures: inner iterations on the top and outer

iterations on the bottom.
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of implementation, since it does not requires interfering in the inner procedure of

the linear solver GMRES; (ii) it can be monitored at each iteration; (iii) from the

numerical results obtained, we can conclude that this strategy is efficient, either

in the test for detecting the stagnation of the inner solver, or with respect to the

safeguards triggered in this case. This conclusion can be seen in the solution of

the ray-tracing problem, showed in Table 1, as well as in the solution of a bunch

of boundary value problems whose performance profile is showed in Figure 6;

(iv) GMRESH(m) is more efficient at the resolution of no ill conditioning stag-

nated systems. Maybe we can use GMRESH(m) together with GMRESDR(m, k)

to obtain a more efficient algorithm.
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