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We propose a mathematical model for the movement in absorbing materials of photorefractive holograms un-
der feedback constraints. We use this model to analyze the speed of a fringe-locked running hologram in pho-
torefractive sillenite crystals that usually exhibit a strong absorption effect. Fringe-locked experiments per-
mit us to compute the quantum efficiency for the photogeneration of charge carriers in photorefractive crystals
if the effect of bulk absorption and the effective value of the externally applied field are adequately taken into
consideration. A Bi12TiO20 sample was measured with the 532-nm laser wavelength, and a quantum effi-
ciency of F 5 0.37 was obtained. Disregarding absorption leads to large errors in F. © 2000 Optical Society
of America [S0740-3224(00)00209-5]
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1. INTRODUCTION
Absorption effects are inherent in all photorefractive crys-
tals and introduce serious difficulties in the mathematical
formulation of the movement of holograms under feed-
back constraints. The movement of a hologram depends
on the speed of recording and erasure, which in turn de-
pend on the Maxwell or dielectric relaxation time.1,2 The
relaxation time in these materials depends on the inten-
sity of light at the point where the measurement is car-
ried out and, for absorbing materials, varies with the
thickness of the material. The feedback condition is
based on a macroscopic parameter at the crystal output.
This parameter has a complicated mathematical relation
with the thickness-dependent response time in the crystal
and leads to an experimental difficulty. An experimental
difficulty arises from the fact that whenever an external
electric field is applied to the crystal, as is usually done in
most experiments, its effective value at the point where
measurements are carried out is not well known because
of the photoconductive nature of these materials and be-
cause it is impossible that a truly uniform pattern of light
is projected on the crystal. If there is some spatial varia-
tion in the light intensity along the direction between the
two electrodes, either because the intensity profile of the
incident beam or because of crystal edge shadowing, mul-
tiple interference effects, etc., the (photo)conductivity in-
side the crystal will vary accordingly and the field inside
the crystal will no longer be able to be computed as the
voltage-over-interelectrode distance.

It has already been shown3 that the speed of a photo-
refractive fringe-locked (a particular kind of feedback-
controlled) running hologram depends on the quantum ef-
ficiency of charge-carrier generation (F) as well as on the
mobility–lifetime (mt) product of these carriers. As was
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pointed out above, the presence of bulk absorption intro-
duces additional difficulties into the mathematical analy-
sis of these holograms and makes them dependent on the
effective density of photoactive centers @(ND)eff#. These
photoactive centers can be obtained from steady-state sta-
tionary phase-shift experiments,4 whereas mt can be com-
puted from initial hologram phase-shift experiments.5

Once mt and (ND)eff are known, a fringe-locked running
hologram experiment may provide an excellent means
with which to compute the quantum efficiency, provided
that a mathematical model is available that takes into ac-
count the influence of the bulk light absorption and the
effective value of the applied electric field.

2. THEORY: FRINGE-LOCKED RUNNING
HOLOGRAMS IN ABSORBING
CRYSTALS
A mathematical description of feedback-controlled run-
ning holograms has been published before,3,6 but its for-
mulation in absorbing materials, as discussed above,
needs a more detailed analysis.

A. Fringe-Locked Running Holograms
The interference of two mutually coherent and slightly
detuned beams yields a light pattern that moves along
the direction of the pattern wave vector with a speed that
depends on the extent of detuning. When this pattern is
projected onto a photorefractive material a hologram is
produced that, in steady state, moves synchronously with
the light pattern. The hologram’s strength (diffraction
efficiency) depends on its speed.1,7 It is also possible to
generate a photorefractive running hologram by use of a
feedback-controlled technique: The phase shift w be-
2000 Optical Society of America
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tween the transmitted and the diffracted beams propagat-
ing in the same direction behind the crystal is kept fixed
at an arbitrarily chosen value that is different from the
one that arises from a stationary hologram.3,6 In this
case the steady-state speed of the running hologram (and
of the automatically attached light pattern) is determined
by the degree of phase mismatch, the response time of the
hologram, and the value of other experimental and mate-
rial parameters. The response time of the hologram is
proportional to the Maxwell relaxation time tM , which in
turn is inversely proportional to the average light inten-
sity.

A recent paper8 has called attention to the asymmetric
relation between the diffraction efficiency and the speed
of the running hologram. Such asymmetry was shown to
arise from the dependence of the Maxwell relaxation time
on the average irradiance and on its variation along the
sample thickness as a result of bulk absorption. One
may wonder whether absorption also affects the feedback-
controlled photorefractive running hologram and whether
the value of the material parameters that can be com-
puted from these experiments is also affected.

The generation of feedback-controlled running holo-
grams has been described in detail elsewhere: One of the
interfering beams is phase modulated with a small ampli-
tude cd ' 0.45 rad and an angular frequency V
5 2p1700 rad/s that is much larger than the frequency
response of the hologram. Because of the nonlinear rela-
tion between phase and amplitude, the intensity of the
beam along each of the two directions behind the crystal
exhibits a harmonic term in V, where the amplitudes of
the first and the second harmonics in V are, respectively,3

IV 5 4J1~ cd!AIR
0 IS

0Ah~1 2 h! sin w, (1)

I2V 5 4J2~ cd!AIR
0 IS

0Ah~1 2 h!cos w. (2)

A factor that accounts for the polarization relation be-
tween the transmitted and the diffracted beams behind
the crystal should have been included in Eqs. (1) and (2).
In our case, however, these beams are roughly parallel po-
larized (see details in Section 3 below), in which case this
factor is approximately 1. These signals are detected
with lock-in amplifiers tuned to V and 2V, respectively,
and the corresponding output signals are amplified in
such a way that

VV 5 AAh~1 2 h! sin w, V2V 5 AAh~1 2 h! cos w,
(3)

where h is the diffraction efficiency and A depends on the
photodetectors, the irradiance of the incident recording
beams, and the polarization, the phase amplitude modu-
lation, and other experimental settings. The phase shift
w between the diffracted and the transmitted beams be-
hind the sample can easily be computed from

tan w 5 VV /V2V (4)

and is formulated in terms of material parameters9 as

sin w 5
1

2

sinh~Gd/4! 2 cosh~Gd/4!

@cosh2~Gd/4! 2 cos2~gd/4!#1/2 sinS gd

2 D , (5)

for IR
0 /IS

0 @ 1, with
G 5 2
2pn3reff

l cos u
I~Eeff!,

g 5 2
2pn3reff

l cos u
R~Eeff!, tan f 5

G

g
, (6)

where n is the average refractive index, reff is the effective
electro-optic coefficient, 2u is the angle between the inci-
dent beams, f is the hologram phase shift, and Eeff is the
so-called effective field, which for the case of a hologram
steadily moving with speed v (detuning frequency Kv)
can be written as7

Eeff

5 2
E 1 iED

1 1 K2lS
2 2 iKlE 2 itMKv~1 1 K 2LD

2 2 iKLE!
,

(7)
with

ED 5 K
kBT

q
, lS

2 5
kBTe«0

q2~ND!eff
, lE 5

e«0E

q~ND!eff
,

LD
2 5 Dt, D 5 mkBT/q, (8)

~ND!eff 5
ND

1~ND 2 ND
1!

ND
, LE 5 mtE,

tM 5
e«0hnd

qmt FIabs
. (9)

Here only the first spatial harmonics of the space-charge
field are taken into account; kB is the Boltzmann con-
stant, q is the charge of the electron, and T is the absolute
temperature. The total density and the density of the
ionized photoactive centers are ND and ND

1, respectively,
e is the dielectric constant, «0 is the vacuum permittivity,
and D and t are the photoelectron’s diffusion constant and
lifetime, respectively. LE is the drift length, m is the pho-
toelectron’s mobility, tM is the Maxwell relaxation time, d
is the crystal thickness, F is the quantum efficiency for
photoelectron generation at wavelength l 5 c/n, and Iabs
is the absorbed irradiance. As for the case of Eqs. (1) and
(2), the factor that accounts for the polarization state of
the interacting beams in the expressions for G and g in
Eq. (6) is also approximately 1. The optical activity in
this material makes this polarization factor in G and g
vary along the crystal thickness,10 but for our thin (2-mm)
sample this variation is estimated to be rather small (less
than 8%) and can be neglected, unlike the effect of absorp-
tion that is analyzed in this paper.

In the present experiment VV is used as an error signal
in the negative-feedback optoelectronic loop represented
in Fig. 1, so its value is actively fixed to VV 5 0. This
choice leads to a special class of (fringe-locked) hologram
for which w 5 0.3 Under this condition we can use the
relation V2V } Ah(1 2 h) to follow the evolution of h dur-
ing recording. From Eqs. (5) and (6) we find that w 5 0
means that gd/4 } R(Eeff) 5 0, where R(Eeff) can be com-
puted from Eq. (7) as



Frejlich et al. Vol. 17, No. 9 /September 2000 /J. Opt. Soc. Am. B 1519
Fig. 1. Experimental setup: G, glass plate; BTO, Bi12TiO20
crystal; VA , applied voltage; D1, D2, photodetectors; LA-V,
lock-in amplifier tuned to frequency V; INT, integrator; HV,
high-voltage source amplifier driving piezo-electric supported
mirror PZT; OSC, oscillator producing the V-frequency signal
used to modulate the phase of beam IS

0 ; BS, beam splitter; M,
mirror.
R~Eeff! 5 2
E~1 1 K 2ls

2 2 K 2LEvtM! 2 ED@KlE 1 KvtM~1 1 K 2LD
2 !#

~1 1 K 2ls
2 2 K 2LEvtM!2 1 @KlE 1 KvtM~1 1 K 2LD

2 !#2
. (10)
From R(Eeff) 5 0 we deduce an expression for the holo-
gram velocity3:

v 5
1

KtM

EED

E2K 2LD
2 1 ED

2 ~1 1 K 2LD
2 !

. (11)

From Eq. (11) we could compute LD and tM (and related
quantities) if absorption effects could be neglected, but
that is usually not possible.

B. Bulk Absorption Effect
The dependence of tM on the absorbed light in the crystal
volume (Iabs /d) as shown in Eq. (9) is justified only for
when ad ! 1. Otherwise the expression Iabs /d should
be replaced by

2
dI

dz
5 aI0 exp~2az !, (12)

where I0 is the input incident light intensity. The thick-
ness dependence of tM is therefore
tM~z ! 5 tM~0 !exp~az !, (13)

where tM(0) is the dielectric relaxation time at the crys-
tal front. We conclude also that the effective field of Eq.
(7) as well as G and g from Eq. (6), depends on z. It has
already been reported10 and can easily be demonstrated,
at least for the undepleted-pump approximation in our
case, that the expressions Gd and gd found in the deriva-
tion of the intensities and phases of the coupled waves
should be replaced by *0

d G(z)dz and *0
d g (z)dz, respec-

tively. In fact, from the well-known coupled-wave equa-
tions we can deduce the differential expressions for the
intensity (IS) and the phase ( cS) of the complex coupled
light amplitude AIS exp(2cS) (Ref. 11):

]IS~z !

]z
5 G~z !

IR~z !IS~z !

IR~z ! 1 IS~z !
, (14)

]cS~z !

]z
5 2

g ~z !

2

IR~z !

IR~z ! 1 IS~z !
, (15)

where the explicit dependence of the real @g (z)# and the
imaginary @G(z)# parts of the coupling constant on the
crystal thickness (z) are indicated. For the undepleted-
pump approximation (IR @ IS), Eqs. (14) and (15) can be
simplified to

1

IS~z !

]IS~z !

]z
5 G~z !, (16)

]cS~z !

]z
5 2

g ~z !

2
. (17)

From Eqs. (16) and (17) it is evident that the coupling of
amplitude and phase depends on the integrals of G and g,
respectively. That is, the simple products Gz and gz
should be replaced by their respective integrals every-
where. Consequently the condition R(Eeff) 5 0 is to be
replaced by

1

d
E

0

d

R@Eeff~z !#dz 5 0. (18)

Substituting Eqs. (10) and (13) into Eq. (18) and analyti-
cally calculating the integral in the latter equation result
in the following relation:
A4ac 2 b2tM~0 !Kv@exp~ad ! 2 1#

2c 1 2atM
2 ~0 !K 2v2 exp~ad ! 1 btM~0 !Kv@exp~ad ! 1 1#

5 tanXxA4ac 2 b2

2cg 1 xb H ad 2
1

2
lnFatM

2 ~0 !K 2v2 exp~2ad ! 1 btM~0 !Kv exp~ad ! 1 c

atM
2 ~0 !K 2v2 1 btM~0 !Kv 1 c

G J C (19)

for 4ac > b2, (20)
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with the following definitions: a 5 (K2LD
2 x)2 1 (1

1 K2LD
2 )2, b 5 2x(K2ls

2 2 K2LD
2 ), c 5 (1 1 K2ls

2)2

1 (K2ls
2x)2, g 5 K2LD

2 x2 1 K2LD
2 1 1, x 5 E/ED . Note

that Eq. (11) is actually the limit of Eq. (19) for ad
→ 0. It can easily be verified that the condition in in-
equality (20) always holds. Equation (19) represents an
implicit relation between the detuned frequency Kv and
the normalized applied field x 5 E/ED that can be calcu-
lated numerically. The effective value of the field at the
point where measurements are carried out is accounted
for by substitution of jE for E everywhere in Eq. (19),
where j is the effective field coefficient.5

3. EXPERIMENT
A fringe-locked running hologram experiment was carried
out with the setup schematically illustrated in Fig. 1. A
2.05-mm-thick nominally undoped photorefractive
Bi12TiO20 crystal (labeled BTO) was measured in a typical
transverse (electric field applied roughly transversally to
the laser beam’s direction) configuration, with the pattern
of light (532-nm laser line) projected onto the (110) plane
of the crystal and the wave vector K perpendicular to the
[001] axis. The beam irradiances were IS

0 5 92 mm/cm2

and IR
0 5 3.0 mW/cm2. Their input polarizations were

chosen such that the transmitted and the diffracted light
behind the crystal was approximately parallel
polarized.12 The absorption coefficient was a 5 8.5
cm21, and the hologram wave vector value was K
5 5.51 mm21. VV behind the crystal was used as an er-
ror signal to operate the feedback, whereas the signal
across the small glass plate was used to measure the ho-
logram speed, as already described elsewhere.6

Figure 2 shows the experimental data from the fringe-
locked experiment and the best fit to the theoretical de-
pendence of Kv on E/ED as derived numerically from Eq.
(19). The fit was carried out with the parameters LD
5 0.14 6 0.01 mm and ls 5 0.065 6 0.005 mm, which
were obtained from previous phase-shift experiments
(similar to those reported in Refs. 4 and 5) that are insen-
sitive to bulk absorption. The best fit leads to F 5 0.36
and j 5 0.73. The parameters j and F have rather dif-

Fig. 2. Experimentally measured detuning Kv measured in a
fringe-locked experiment (filled circles) as a function of the ratio
of applied to diffusion fields E/ED . The best fit (continuous
curve) to the implicit relations in Eq. (19) leads to j 5 0.73 and
F 5 0.36 for the parameters LD 5 0.14 mm and ls 5 0.065 mm.
The theoretical fit (dashed curve) to the simplified Eq. (11),
where absorption is not taken into account, leads to F 5 0.15
when all other conditions are unchanged.
ferent effects on the Kv-versus-E curve (the former acts
on the width of the curve, whereas the latter acts on the
height), and that is why it is possible to find accurate fit-
ting values for both parameters simultaneously. If ab-
sorption is not taken into account and the simple formu-
lation in Eq. (11) is used, a different (and erroneous)
F 5 0.15 is obtained. Two other independent fringe-
locked experiments were carried out for the same sample
and wavelength: one for the same value of K and inci-
dent irradiances IR

0 5 5.27 mW/cm2 and IS
0

5 0.17 mW/cm2, and the other for K 5 7.07 mm21 and for
roughly 1-order-of-magnitude lower irradiance IR

0

5 380 mW/cm2 and IS
0 5 22.4 mW/cm2. Both sets of data

were fitted with the already known values for LD and ls ,
and the resultant parameters were j 5 0.75, F 5 0.34
and j 5 0.9, F 5 0.41, respectively. From the three ex-
periments we got an average F 5 0.37 with an approxi-
mate 10% dispersion. The major cause of this dispersion
probably is the difficulty in evaluating the actual irradi-
ance inside the sample because of scattering and multiple
reflections. The uncertainties reported above for LD and
ls were instead shown to have a negligible influence on F.

4. CONCLUSIONS
We have shown that fringe-locked photorefractive run-
ning holograms in absorbing materials can be described
by an analytical formulation that leads to an implicit re-
lation between the hologram speed and the applied elec-
tric field. The quantum efficiency of the charge carriers
in these materials can be computed from fringe-locked
running hologram experiments with the help of the
present formulation, even in the presence of considerable
electric field shielding effects. We have also shown that
not taking absorption into account may lead to large er-
rors in the computed value of the quantum efficiency.
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