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Abstract—A novel scheme based on a 2-D finite element method
(2-D-FEM) for the frequency domain, in cylindrical coordinates in
conjunction with the perfectly matched layers (PML), is proposed
and validated here. This scheme permits the analysis and simula-
tion of photonic devices, including discontinuities along the propa-
gation direction. Also, the present approach takes into account the
dispersive nature of metals at optical wavelengths.

Index Terms—Discontinuities, finite element, focusing, lens,
metamaterials, near-field, optical fibers, optics of metals, photonic
devices.

1. INTRODUCTION

AVEGUIDE discontinuities junctions are basic and im-
W portant structures for designing photonic devices and
circuits. The finite element method (FEM) [1]-[4] is one of
the powerful analysis methods for such discontinuity problems.
In [1] and [2], powerful algorithms based on a 2-D finite ele-
ment method (2-D-FEM) in rectangular coordinates without the
need of a mode expansion technique for the analysis of waveg-
uiding structures with open boundaries have been proposed. The
scheme proposed in [1] is based on the use of a sequence of
Padé approximation for modelling open boundaries at the input
or output ports. Though essentially analogous to that 2-D-FEM
scheme of [2], however, does not use PML in the open bound-
aries of the considered domain.

Here, the approach presented in [1] has been modified in con-
junction with the use of port truncation by PML boundary con-
dition [2] and extended to analyze discontinuity junctions with
cylindrical symmetry by solving for the Helmholtz equation in
cylindrical coordinates. Anisotropic perfectly matched layers
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Fig. 1. (a) Schematic of the discontinuities in cylindrical coordinates with
cylindrical symmetries and (b) framework for the 2-FEM analysis, where the
junction or discontinuities is inside the region 2.

(PMLs) are used to avoid reflections from the computational
boundaries and numerical integration is used to compute the fi-
nite element matrices. All the above considerations reduce the
computational effort and computation time.

To show the validity and usefulness of the present approach,
numerical analysis for a fiber bragg gratings, fiber coupling
losses due to an air gap and a metallo-dielectric lens that focus
electromagnetic radiation in a spot smaller than the wavelength
size are presented.

II. FINITE ELEMENT FORMULATION

We considered a general structure with cylindrical symmetry
as shown in Fig. 1(a), where the computational domain can
be considered on the plane » — z due to the symmetry of the
problem, see Fig. 1(b). There is no variation of the field along
the # coordinate (d/df = 0).

The 2-D scalar wave equation in frequency domain governing
the linearly polarized (LP) modes on the plane r — z is written
as [3]

S, O S O 19} s, O 9 _
o (p?"?g) +s:5- <p;$> + kggsp =0 (1)

where kg is the free-space wavenumber, s,., s, and s, are pa-
rameters related to PMLs [1], [2], adapted here for cylindrical
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coordinates, p = 1, ¢ = n?, ¢ = ¢, the scalar field. We con-
sider the incidence plane I', which is normal to the z axis, as
shown in Fig. 1(b), and divide the domain {2 into two subdo-
mains €21, and €25. To remove the singularity at » = 0 in (1), we
multiplied (1) by r and applying the Galerkin procedure [4], we

obtain
£ (98 ()
" s \ 0z 0z

2 (2) (2)-

qsrgbw] Q) = / —“Zrw

dF )

where w represents the weight functions. Following [2], we dis-
cretized the analysis region into quadratic triangular elements
and the field within each element can be approximated as

= [N[{¢}e 3)

where [N] is the shape function vector for the isoparametric tri-
angular element and {¢}. is the nodal ¢ vector for each ele-
ment. Next, considering ¢ = 0 at the outer boundary of PML,
and assembling the complete matrix for €2, by adding the contri-
butions of all different elements, except for the incidence plane,
the boundary integral terms vanish owing to the continuity con-
ditions of electric and magnetic fields, we obtain the following
matrix equation:

Ao} = Z / —r{N}r (% - %) dr (4

where [A] is the resulting matrix, assembled as

[A] = Z / [ 5 a{N} a{é\;}T} drdz
+Z/[ =, 8{N} a{é\i}T] drdz

- Z / [k§qsr{ N}{N}"] drdz 3)

where the components of vector {¢} are the values of ¢ over all
nodes corresponding to €2, the sum is performed over all the
elements in 2, and 3" is performed over the elements related to
T". The field on the regions €2, and (2 are expressed as ¢; and
@2, respectively. { N} are 1-D ring shape functions [3], { N}
is the 2-D shape function vector obtained by the discretization
of the computational domain 2. T denotes the transpose matrix.
The field in €2 is expressed as

(b = (z)zn + (bscat (6)

where ¢;,, is the incident field and ¢q.,¢ is the scattering field.
The continuity condition of electric and magnetic fields on
the incidence plane I' is assumed then (4) is rewritten as

[Al{¢} = Z’/p%’"r{N}r (% - %) dr. (7)
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If incident fields ¢iy,1 and ¢;, 2 can be expressed as a linear
combination of the eigenmodes of the input/output waveguides,
then (7) becomes

[Al{¢} = [Q{¢}r ®

where

Q=3 / pr—{N}{N}Tdy ©)

{MJ}F—QZJﬁm m{fm}F (10)

A, are the modal expansion’s coefficients and f,,,(r) and G,
are the transverse field distribution and the propagation constant
of the m-th mode, respectively, and { f,,, } - is the transverse field
vector on the incidence plane. 2-D numerical integrations [5]
have been used to calculate the fundamental matrixes in order
to open the possibility to treat problems with curved shaped
geometries.

III. NUMERICAL RESULTS

In order to validate the proposed approach, a modulated re-
fractive index fiber bragg grating (FBG), see Fig. 2(a), has been
analyzed [6]. The grating is composed by 20 periods of a si-
nusoidal index change of the refractive index of the fiber core
between 1.50 and 1.55 as shown in Fig. 2(b). The grating pe-
riod is 0.5 pm and it starts at z = 6 pm, the number of pe-
riods was fixed to be 20, the cladding refractive index is fixed to
n. = 1.45 and the core radius,a = 1 pm. The incident field
is the fundamental linearly polarized mode L.P(;, computed at
each wavelength by solving the transcendental equation for LP
modes [6] and placed at the plane of incidence at z = 1 um.
The computational domain was —2 ym < z < 20 pm and
0 < r < 6 pmdivided in 15705 elements (31850 nodes), where
the PMLs are the outer 1 ym and 2 ym in r and z coordinates,
respectively. The reflection coefficient is shown in Fig. 2(c) and
it has been obtained by computing the ratio between the inten-
sity of the field at the output and input ports placed at z = 1 um
and z = 17 um, respectively. An excellent agreement with pre-
viously published results has been found [6].

Next, we have analyzed the effects of the air gap length
between two identical single mode fibers in order to simu-
late a horizontal displacement, d, in an optical fiber junction.
The fiber parameters are: ncore = 1.45, Ncladding = 1.446
and core radius = 4 pm and the material between the
fibers is air (n = 1.0). The computational domain was
—2pm < z < 15 pmand 0 < r < 14 pm divided in 17667
elements (35680 points), where the PMLs are the outer 2 pm.
The plane of incidence is placed at z = 1 pm and the input and
output planes to calculate the reflection and transmission were
placed at z = 1 pm and z = 12 pum, respectively. The air gap
start at z = 6 pym. The incident field is the fundamental linearly
polarized mode LPy;.

We compute the transmission and reflection coefficients for
a range of wavelengths of interest in optical communications
(1.30 pm < A < 1.65 pm) and we considered several gap
lengths (0 pum < d < 1.0 pm). The results can be seen in
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Fig. 2. (a) Schematic illustrating the configuration of the fiber Bragg grating
(FBG). (b) Refractive index change in the core of the fiber and (c) reflected
power as a function of the wavelength.

Fig. 3. Although analytical models [8], [9] predict a very smooth
decaying of the transmission coefficient as a function of the gap
length, they do not show the Fabry-Perot effect due to the cavity
formed by the interface fiber-air-fiber as obtained by the present
approach. By fixing the operation wavelength, and varying the
gap length, we can observe that the reflection (or transmission)
has a periodical variation with a period equal to A /2, then we can
have maximums and minimums for both coefficients depending
on the gap length. They can be explained by the fabry perot
effect due to cavity formed by the two ends of the fiber.

As a third example, we analyze here the focusing of light by
using a nano-slit lens or also called Near-Field Focusing Plate
[12], [13]. At optical frequencies, this structure can be imple-
mented by alternating nanocapacitors and nanoinductors which
can be obtained by using dielectric and plasmonic structures,
respectively [11]. This structure, in its rectangular counterpart
case, has been analyzed in [10] and it focuses the light in the
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Fig. 3. (a) Reflected and (b) transmitted coefficients as a function of the wave-
length and the gap distance between two fibers.
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Fig. 4. Schematic of the near-field structure consisting of nano-slit array with
different nanocapacitors and nanoinductors films using dielectric and plasmonic
structures.

transversal direction because of its 2-D nature. In here, we con-
sider an analog geometry with cylindrical symmetry obtained
by considering the revolution of the upper half of the original
device.

The lens is composed by concentrically disposed rings of
silver and air with the same dimensions as in [10]. Here, we ex-
changed the vertical coordinate (z) for the radial coordinate (r)
as can be seen in the structure’s scheme of Fig. 4. The wave-
length of the incident light is 650 nm and the relative permit-
tivity used for silver at this wavelengthise, = —17.36—70.715.
This geometry will focus the light in the three dimensions.

The computational domain was —0.5 ym < z < 6 pm and
0 < r < 2 pmdivided in 22558 elements (45591 points), where
the PMLs are the outer 0.2 ym and 0.2 ym in r and 2z coordi-
nates, respectively. The incident field is a plane wave and the
plane of incidence is placed at z = 0.1 pym. The field intensity
has been monitored at z = 1.67 pm. The near-field focusing
structure starts at z = 0.25 pym and it has a length of 0.5 ym in
the propagation direction.

From Fig. 5, we can observe the lens behaviour of the ana-
lyzed geometry where the input light focuses at z = 1.67 ym.
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Fig. 5. Field Intensity for the Near-Field Focusing structure of the metallic
nano-slits array. The focus is formed at z = 1.67 pmor 2.57A.
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Fig. 6. Normalized field intensity at z = 1.67 pm.

The normalized field intensity at the focus distance, shown
in Fig. 6, exhibits a full-width at half-maximum (FWHM) of
320 nm or A/2. By designing judiciously the lens’ geometry
a further FWHM’s reduction is possible, due to the presence
of surface plasmon polaritons. Therefore, the present system is
capable to exhibit sub-wavelength resolution.

IV. CONCLUSION

In conclusion, three numerical examples with cylindrical
symmetry have been presented to show the validity and useful-
ness of the proposed approach. We have analyzed the reflection
and transmission characteristics of two discontinuities in optical
fibers: one for a fiber bragg grating (FBG) were the refractive
index contrast is small and another for the air gap between
two fibers where the refractive index contrast is relatively
high in the discontinuity region. Additionally we analyzed the
near-field focusing of a cylindrical lens composed by nano-slits
in a metallo-dielectric device. The obtained results are in good
agreement with the previously published ones.

The nonlinear formulation of the present scheme and other
specific design of Near-field focusing structures applied for cou-
pling light to optical fibers are under analysis and results will be
report in a near future.
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