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We study the bilayer quantum Hall system at total filling factor νT = 1 within a bosonization formalism
which allows us to approximately treat the magnetic exciton as a boson. We show that in the region where the
distance between the two layers is comparable to the magnetic length, the ground state of the system can be
seen as a finite-momentum condensate of magnetic excitons provided that the excitation spectrum is gapped.
We analyze the stability of such a phase within the Bogoliubov approximation first assuming that only one
momentum Q is macroscopically occupied and later we consider the same situation for two modes ±Q. We
find strong evidences that a first-order quantum phase transition at small interlayer separation takes place from a
zero-momentum condensate phase, which corresponds to Halperin 111 state, to a finite-momentum condensate
of magnetic excitons.
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I. INTRODUCTION

A bilayer quantum Hall system (QHS) consists of two
two-dimensional electron gases (layers) separated by a small
distance d under a uniform magnetic field B perpendicular
to the layers. Among the several possible configurations,
we consider the one where each layer has filling factor
ν = nφ0/B = 1/2, such that the total filling factor νT =
1/2 + 1/2 = 1. Here, n is the electronic density of each layer
and φ0 = hc/e the magnetic flux quantum.1,2

The system is characterized by two parameters: the ra-
tios d/� and �SAS/Ec. Here, � = √

h̄c/eB is the magnetic
length, the characteristic length scale of QHSs, �SAS is the
electron interlayer tunneling energy, and Ec = e2/ε� is the
characteristic Coulomb energy with ε being the dielectric
constant of the host semiconductor. Although �SAS and the
distance d are fixed for a given sample, the ratio d/� can be
modified by changing the magnetic field B and then adjusting
the electronic density in each layer in such a way that the
configuration νT = 1/2 + 1/2 = 1 is restored. Interestingly, a
series of measurements3–5 have shown that for d < dc ≈ 1.8 �,
the bilayer QHS behaves as a single-layer QHS at ν = 1, while
for d > dc, as two independent two-dimensional electron gases
at ν = 1/2. In spite of the fact that the experimental data
indicate a continuous transition between these two situations,
the so-called incompressible-compressible quantum phase
transition, from the theoretical point of view it is not clear
whether the system undergoes a second-order quantum phase
transition6 or a first-order one smeared out by disorder.7,8

The ground state of the bilayer QHS at νT = 1 is well
understood in two limiting cases: for small d/�, it can
be described by the (incompressible) Halperin 111 wave
function,9 while in the very large d/� region, by two inde-
pendent (compressible) composite fermion Fermi liquids.10,11

Interestingly, the Halperin 111 state can be seen as a Bose-
Einstein condensate (BEC) of magnetic excitons, where the
electron and the hole are in different layers.12 This analogy
motivated us to employ the bosonization scheme13 to study the
bilayer QHS at νT = 1. Our main finding in this first study14

was that a zero-momentum BEC of magnetic excitons is stable

only for d � 0.4 � (zero interlayer tunneling case). Such a
result is in quite good agreement with the exact diagonalization
calculations on finite-size systems, which show that the overlap
between the exact ground state and the 111 state is close to
unit only for d � 0.5 �.15,16

Although much theoretical work6,8,15–22 has been devoted
to the intermediate region d ∼ �, so far there is no con-
sensus about the nature of the ground state. For instance,
a (pseudospin) density wave,8 mixed Fermi-Bose trial wave
functions,15 and a (pseudospin) spiral state21 have been
proposed as possible candidates. A proper description of the
ground state in the intermediate d/� region is important since
it will help us to determine the nature of the incompressible-
compressible phase transition.

In this paper, we revisit the bilayer QHS within the
bosonization formalism13,14 focusing on the intermediate d/�

region. We propose that within this bosonic scheme, the ground
state of the system can be seen as a finite-momentum BEC of
magnetic excitons. We show that this is indeed a possible
phase of the effective boson model that we have derived in
Ref. 14, provided that the (neutral) quasiparticle excitation
spectrum is gapped. Our results also indicate that the instability
of the zero-momentum BEC of magnetic excitons at d = 0.4 �

reported in Ref. 14 indeed corresponds to a first-order quantum
phase transition from a zero-momentum BEC of magnetic
excitons to a finite-momentum one.

Our paper is organized as follows: In Sec. II, we introduce
an interacting fermion model to describe the bilayer QHS, sum-
marize the bosonization method,13 and recall the main steps to
derive the effective boson model from the original fermionic
one. We also comment on the motivation for considering a
finite-momentum BEC of magnetic excitons as the ground
state of the bilayer. Section III is devoted to the analysis of the
effective boson model within the Bogoliubov approximation
assuming that the ground state is given by a finite-momentum
BEC of magnetic excitons where the momentum Q = Qx̂

is macroscopically occupied. The ground-state energy and
the (neutral) quasiparticle excitation spectrum are calculated.
Here, evidences that a first-order quantum phase transition
takes place at small d/� are found. In Sec. IV, we perform
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FIG. 1. (Color online) Schematic representations: (a) Bilayer QHS. B is the magnetic field and d the distance between the two layers.
(b) Zero-momentum BEC of magnetic excitons and (c) finite-momentum BEC of magnetic excitons with |�Q| = 1. Only the lowest Landau
levels corresponding to the ↑ and ↓ layers are shown. m is the guiding center quantum number which labels the degeneracy of each Landau level.

a similar analysis but now considering that two modes, ±Q
with Q = Qx̂ �= 0, are macroscopically occupied. We show
that |�Q0|, the magnitude of the momentum associated with
the lowest-energy configuration, increases with d/�. Some
additional features of a BEC of magnetic excitons are shown
in Sec. V. In Sec. VI, we compare our results with previous
ones and comment on their consequences for the bilayer QHS
at νT = 1. A short summary with the main results closes the
paper. The fact that density fluctuations can account for the
definition of boson operators for the bilayer QHS, comparison
with alternative bosonic schemes used to describe the bilayer,
and some details of the calculations can be found in the
Appendixes.

II. MODEL

Let us consider a two-layer system composed of N electrons
moving in the (x,y,z = 0) plane and N in the (x,y,z = d)
plane under an external magnetic field B = Bẑ [Fig. 1(a)] at
zero temperature. We introduce a pseudospin index α =↑ ,

↓ in order to label each layer. We also assume that the
B field is strong enough such that the electrons are fully
spin polarized (frozen electronic spin degree of freedom)
and that the Hilbert space of each layer is restricted to
the corresponding lowest Landau level. The configuration
νT = ν↑ + ν↓ = 1/2 + 1/2 = 1 is realized by setting the
degeneracy of each Landau level N� = 2N .

The Hamiltonian of the system has only two terms (since all
electrons are restricted to the lowest Landau level, the kinetic
energy is a constant and can be neglected):

H = HT + HI . (1)

Here, HT describes the electron tunneling between the two
layers

HT = −1

2
�SAS

∑
m

c
†
m↑cm ↓ + H.c., (2)

and HI is the Coulomb interaction term (we set the system
area A = 1)

HI = 1

2

∑
k �=0

∑
αβ=↑,↓

vαβ(k)ρα(k)ρβ(−k) (3)

with k = |k|. �SAS is the electron interlayer tunneling energy,
c
†
mα creates an electron with guiding center m in the lowest

Landau level of the α layer [Fig. 1(b)], and ρα(k) is the Fourier
transform of the α-electron density operator projected into the

lowest Landau level, i.e.,13

ρα(k) = e−(�k)2/4
∑
m,m′

Gm,m′ (�k)c†mαcm′α. (4)

The function Gm,m′ (x) is defined in the Appendix A of Ref. 13.
Finally,

v↑↑(k) = v↓↓(k) = vA(k) = 2πe2

εk
e−(�k)2/2,

(5)

v↑↓(k) = v↓↑(k) = vE(k) = 2πe2

εk
e−(�k)2/2e−kd

are, respectively, the Fourier transforms of the intralayer
vA(r) = e2/εr and interlayer vE(r) = e2/ε

√
r2 + d2 electron-

electron interaction potentials with r = |r|.
On can show that Eq. (2) can be written in terms of the x

component of the pseudospin density operator, i.e.,

HT = −�SASSx(k = 0), (6)

while Eq. (3), in terms of the total electron density operator
ρ(k) = ρ↑(k) + ρ↓(k) and the z component of the pseudospin
density operator Sz(k) = [ρ↑(k) − ρ↓(k)]/2, namely,

HI = 1

2

∑
k �=0

v0(k)ρ(k)ρ(−k) + 2
∑
k �=0

vz(k)Sz(k)Sz(−k), (7)

with

v0/z(k) = 1

2
[vA(k) ± vE(k)] = πe2

εk
e−(�k)2/2(1 ± e−kd ). (8)

In the following, we focus on the zero tunneling case, i.e., we
set �SAS = 0 which yields H = HI .

A. Bosonization formalism

We study the interacting fermion model (7) within the
bosonization formalism13 that was recently developed by two
of us among others. Although such a scheme was originally
proposed for the single-layer QHS at ν = 1, it is possible to
show that it also holds for the bilayer QHS at νT = 1 (see
Appendix A). We now briefly summarize the bosonization
method and refer the reader to Ref. 13 for more details. In
Appendix B, we briefly comment on some alternative bosonic
descriptions employed to study the bilayer QHS.

Let us consider the single-layer QHS at ν = 1. We restrict
the Hilbert space to the lowest Landau level and explicitly take
into account the electronic spin. The ground state of the system,
the so-called quantum Hall ferromagnet |FM〉, is illustrated in
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FIG. 2. (Color online) Schematic representations: (a) Quantum
Hall ferromagnet |FM〉, the ground state of the single-layer QHS at
ν = 1, and (b) an electron-hole pair excitation (magnetic exciton) with
momentum |�q| = 1 above |FM〉. Only the spin-up and spin-down
lowest Landau levels are shown. Ez is the Zeeman energy and m is
the guiding center quantum number. (c) Semiclassical representation
of an electron-hole pair in the symmetric gauge. Particles move along
cyclotron orbits (solid blue circles), the center of which are at one of
the possible guiding centers (dashed red circles). The vectors Re and
Rh correspond to the guiding center position of the electron (solid
circle) and the hole (open circle), respectively.

Fig. 2(a). It is possible to show that the neutral elementary
excitations above this state, electron-hole pairs also known as
magnetic excitons [Fig. 2(b)], can be approximately treated as
bosons. More precisely, we can define the following bosonic
operators:

bq = N
−1/2
� e−(�q)2/4

∑
m,m′

Gm,m′ (−�q)c†m ↑cm′ ↓,

(9)
b†q = N

−1/2
� e−(�q)2/4

∑
m,m′

Gm,m′ (�q)c†m ↓cm′ ↑,

where c
†
m σ (cm σ ) is a creation (annihilation) operator for an

electron in the lowest Landau level with guiding center m and
spin σ . The boson operators (9) obey the canonical commuta-
tion relations [b†q,b

†
k] = [bq,bk] = 0 and [bq,b

†
k] = δq,k once

some conditions are fulfilled. The state b
†
q|FM〉 corresponds to

a magnetic exciton with momentum q [Fig. 2(b)]. Within this
framework, the electron density operator and the z component
of the spin density operator read as

ρ(k) = δk,0N� + 2i
∑

q

sin(k ∧ q/2)b†k+qbq, (10)

Sz(k) = 1

2
δk,0N� −

∑
q

cos(k ∧ q/2)b†k+qbq (11)

with k ∧ q ≡ �2ẑ · (k × q).

It is easy to see that, in principle, the bosonization scheme
outlined above can be employed to study the bilayer QHS at
νT = 1, once the pseudospin α is identified with the electronic
spin quantum number σ of the single-layer QHS at ν = 1
[compare Figs. 1(b) and 2(a) and recall that we consider that the
electrons are completely spin polarized in the bilayer QHS].
Since the bosons b are defined with respect to a reference
state, the quantum Hall ferromagnet |FM〉, the bilayer QHS
at νT = 1/2 + 1/2 = 1 corresponds to a system with N�/2
bosons, as illustrated in Fig. 1(b).

B. Effective boson model

Let us now follow the lines of Ref. 13 and map the original
interacting fermion model (7) into an effective interacting
boson model. Substituting Eqs. (10) and (11) into Eq. (7) and
normal ordering the result, we arrive at

HB =
∑

q

ωqb
†
qbq +

∑
k �=0,p,q

vk(p,q)b†k+pb
†
q−kbqbp. (12)

Here,23

ωq = e2

ε�

[√
π

2
− �

∫ ∞

0
dk e−kde−(k�)2

J0(kq�2)

]
(13)

is the dispersion relation of the free bosons (see Fig. 3), with
J0(x) denoting the Bessel function of the first kind and

vk(p,q) = 2v0(k) sin(k ∧ p/2) sin(k ∧ q/2)

+ 2vz(k) cos(k ∧ p/2) cos(k ∧ q/2) (14)

is the boson-boson interaction potential. In the following,
instead of HB , we consider

K = HB − μN̂, (15)

which explicitly includes the chemical potential μ. Here, N̂ =∑
q b

†
qbq is the number operator for bosons.
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FIG. 3. (Color online) Dispersion relation of the free bosons (in
units of e2/ε�) [Eq. (13)] for d/� = 0, 0.5, 1, 1.5, and 2 (from bottom
to top at �q = 0).
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C. Finite-momentum BEC of magnetic excitons

In Ref. 14, we analyzed the interacting boson model (12)
assuming that the bosons b condense in their lowest-energy
state, the q = 0 mode, and showed that such a state is stable
only for d � 0.4 �. The good agreement between our results
and exact diagonalization calculations (see the Introduction
section) tells us that not only is this zero-momentum BEC a
good approximation for Halperin 111 state, but also that the
bosonic formalism13 is indeed quite appropriate to describe
the bilayer QHS at νT = 1. Therefore, it might be possible
to describe the decrease of the correlations between the two
layers as d/� increases, i.e., the intermediate d/� region, using
solely the bosonic degrees of freedom. In this case, what should
be the form of the ground state in terms of the bosons b for
d ∼ �?

In order to construct the new ground state, we should
recall some properties of the magnetic excitons. As mentioned
above, the state b

†
q|FM〉 corresponds to a magnetic exciton

with momentum q, which is nothing but a suitable linear
combination of electron-hole pairs above the |FM〉 state
[see Eq. (9)]. The momentum q is canonically conjugate to
the vector R0 = (Re + Rh)/2,13 where the vectors Re and
Rh denote, respectively, the position of the guiding centers
of the electron and the hole as illustrated in Fig. 2(c).
Interestingly, it is also possible to show that [see Eq. (2.16)
in Ref. 24]

〈FM|bq(Re − Rh)b†q|FM〉 = �2q × ẑ, (16)

i.e., the (relative) distance between the guiding centers of the
electron and the hole which constitute the magnetic exciton is
∝ q. Note that this is an unusual relation between momentum
and distance. Therefore, a boson b with q = 0 can be seen as
an electron-hole pair both localized in the same guiding center,
while for a boson b with q �= 0, the electron and the hole are
in different guiding centers.

A zero-momentum BEC of magnetic excitons is then
characterized by a large number of (interlayer) electron-hole
pairs where each electron is very close (in the guiding center
sense) to its partner hole as depicted in Fig. 1(b). Since this is
the smallest distance between the electron and the hole, such
a feature indicates that the two layers are highly correlated,
corroborating the relation between the zero-momentum BEC
and the 111 state. Therefore, in order to decrease the coupling
between the two layers, we should, in principle, consider a state
constituted of a large number of electron-hole pairs where now
each electron is a little bit displaced from its partner hole. This
situation is nothing but a finite-momentum BEC, where the
bosons macroscopically occupy a finite Q mode, for instance,
the one with �Q = |�Q| = 1 [Fig. 1 (c)]. Given such a relation
between the momentum Q and interlayer coupling, we also
expect that the larger �Q, the lower the correlation between
the two layers.

These are the key points which motivated us to propose
a finite-momentum BEC of magnetic excitons as a possible
ground state for the bilayer QHS in the intermediate d/�

region. In the next two sections, we study the stability of this
state at two different levels of approximation.

As a final remark, we should note that although finite-
momentum BECs have been recently discussed in the context

of ultracold Bose gases (see, for instance, Refs. 25 and
26), our motivation to consider such a phase is mainly
due to the properties of the magnetic exciton as explained
above.

III. ONE-MODE APPROXIMATION

In this section, we analyze the effective interacting boson
model (12) within the so-called Bogoliubov approximation27

assuming that the ground state is given by a finite-momentum
BEC with the Q = Qx̂ mode macroscopically occupied. We
hereafter refer to this procedure as the one-mode approx-
imation. Although the Q mode is not the lowest-energy
single-particle boson state (see Fig. 3), we show that such
a BEC is indeed a stable solution for certain values of d/�

provided that the excitation spectrum is gapped. Here, the
boson-boson interaction potential (14) plays an important role
in the stability of this phase. In the following, we consider
0.1 � �Q � 2 and 0.1 � � d � 4 �.

Before continuing, some words about the approximation
scheme are here in order: since the single-particle boson energy
(13) has cylindrical symmetry ωq = ωq , there is no reason to
expect that the bosons will condense in only one particular
momentum Q = Qx̂. In principle, the bosons b could even
condense in more than one mode q as long as q = Q. However,
such an approximation is the simplest one which allows us to
verify whether a finite-momentum BEC of magnetic excitons
is indeed a stable phase via quite accurate and well-controlled
calculations. This is the idea of the procedure adopted in
this section and in the next one. Later, in Sec. VI, we will
discuss which of the features found here could be displayed
by the bilayer QHS and also how the results derived from
these two initial considerations could guide us to propose
a more elaborated approximation scheme to study such a
finite-momentum BEC.

We start by replacing b
†
Q = bQ = 〈b†Q〉 = 〈bQ〉 → √

N0 in
Eq. (15), where N0 is the (macroscopic) number of bosons in
the Q mode. Keeping only terms with two bosonic operators,
one finds after some algebra that

K = K0 + 1

2

∑
q �=0

[
ε+

q b
†
Q+qbQ+q + ε−

q bQ−qb
†
Q−q

+λq
(
b
†
Q+qb

†
Q−q + bQ−qbQ+q

)]
, (17)

where

K0 = (ωQ − μ)N0 − 1

2

∑
q �=0

ε−
q ,

ε±
q = ωQ±q − μ + λq, (18)

λq = 2N0vq(Q,Q).

The quadratic Hamiltonian (17) can be diagonalized with the
aid of the canonical Bogoliubov transformation

b
†
Q+q = uqa

†
Q+q − vqaQ−q,

(19)
b
†
Q−q = uqa

†
Q−q − vqaQ+q,
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FIG. 4. (Color online) Ground-state energy per boson (in units of e2/ε�) as a function of d/�: (a) one-mode approximation and (b) two-mode
approximation. �Q = 0.5 (dotted magenta line), 1 (solid red line), 1.5 (dashed blue line), and 2.0 (dotted-dashed green line). Long dashed
black line: Q = 0, one-mode approximation with μ0 = 0 (see text for details). Inset: details of the corresponding main plots focusing on the
large d/� region.

which yields

K = K0 + 1

2

∑
q �=0

(
�+

q a
†
Q+qaQ+q + �−

q aQ−qa
†
Q−q

)

= K̄0 +
∑
q �=Q

�̄q a†
qaq. (20)

Here,

�±
q = ±�q + �q,

�q =
√

ε2
q − λ2

q,
(21)

εq = 1

2
(ε+

q + ε−
q ), �q = 1

2
(ε+

q − ε−
q ),

K̄0 = (ωQ − μ)N0 − 1

2

∑
q �=0

(εq − �q),

the quasiparticle dispersion relation is given by

�̄q ≡ �+
q−Q, (22)

and the Bogoliubov coefficients obey

u2
q = 1

2
+ εq

2�q
, v2

q = −1

2
+ εq

2�q
, uqvq = λq

2�q
. (23)

The chemical potential μ can be obtained from the saddle-
point condition ∂K̄0/∂N0 = 0: since ∂εq/∂N0 = ∂λq/∂N0 =
λq/N0, one can show that

μ = ωQ + 1

N0

∑
q �=0

λqvq(vq − uq) ≡ ωQ + μ0. (24)

N0 follows from the conservation (on average) of the total
number of bosons NB = ∑

q〈b†qbq〉 = N�/2 = 1/4π�2: from
Eqs. (19), one finds that the relative number of bosons in the
condensate is

n0 ≡ N0

NB

= 1 −
∑
q �=0

v2
q. (25)

Finally, the ground-state energy E0(Q,d) = K̄0 + μ〈N̂〉 reads
as

E0(Q,d)

NB

= K̄0

NB

+ ωQ + μ0 = ωQ + μ0(1 − n0) − I01 (26)

with I01 = 1
2NB

∑
q �=0(εq − �q). Once μ and n0 are known

for fixed Q and d/�, the quasiparticle spectrum �̄q and the
ground-state energy (26) are completely determined.

A. Zero-momentum BEC

Before proceeding, we would like to briefly recall the
results from our first analysis of the effective boson model
(12) reported in Ref. 14.

By setting Q = 0 and μ0 = 0 in the above equations, we
recover Eqs. (8) and (9) of Ref. 14. The choice μ0 = 0, based
on the one-loop approximation,28 yields a gapless excitation
spectrum for the zero-momentum BEC phase [see Fig. 2(a)
from Ref. 14], in agreement with the Goldstone theorem.

We also find that the ground-state energy (26) increases
with d/� [Fig. 4 (long dashed black line)], and that the
relative number of bosons in the condensate n0 [Eq. (25)]
decreases rather fast as d/� increases [Fig. 5(a)]. Indeed,
such a behavior of n0 led us to include into the description
the quartic terms in boson operators of the Hamiltonian (12)
neglected in the Bogoliubov approximation.14 Considering
these quartic terms in the so-called Popov approximation,29

we showed that the self-consistent equations admit solutions
only for d � dc0 = 0.4 �. Here, we revisited the problem and
perform more accurate numerical calculations. We find that
dc0 = 0.56 �, which is even closer to the exact diagonalization
estimates15,16 mentioned in the Introduction.

B. Finite-momentum BEC

Let us now consider �Q �= 0 and discuss numerical so-
lutions of Eqs. (24) and (25). It is possible to solve the
self-consistent problem for all values of �Q in the considered
range as long as a finite (self-consistently calculated) μ0 is
allowed and d is larger than a minimum value dmin. This feature
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FIG. 5. (Color online) Relative number of bosons in the conden-
sate n0 [Eqs. (25) and (42)] as a function of d/�: (a) zero-momentum
BEC with μ0 = 0 (see text for details) and finite-momentum BEC
with �Q = 1.0 (solid red line), 1.5 (dashed blue line), and 2.0
(dotted-dashed green line) within the (b) one-mode approximation
and (c) two-mode approximation.

is exemplified in Fig. 4(a), where we show the ground-state
energy (26) as a function of d/� for �Q = 0.5, 1.0, 1.5,
and 2.0. One can see that dmin = 0.1, 0.3, 0.8, and 1.9 �,
respectively, for d = 0.5, 1.0, 1.5, and 2.0 �. Note that the
four configurations lie quite close in energy as d/� increases,
but the ground-state energy curves never cross each other. This
behavior is also observed for all intermediate �Q values (not
shown here), i.e., E0(Q,d) increases with �Q for a fixed d/�.
It is clear that a finite-momentum BEC is lower in energy
than the zero-momentum BEC discussed in the previous
section for d � 1.0 �. Interestingly, the E0(Q = 0,d) and
E0(Q �= 0,d) curves cross at a (small) critical layer separation
dc1, indicating that a first-order quantum phase transition
from a zero-momentum BEC to a finite-momentum one takes
place at this critical value. Note that for configurations with
0.5 � �Q � 1.0, dc1 is within the range 0.45 �–0.7 �, which
includes the (updated) dc0 previously determined within the
Popov approximation in Ref. 14.

One important consequence of a finite μ0 is that the
dispersion relation of the (neutral) quasiparticles is now
gapped. For instance, in Fig. 6, we show the excitation
spectrum (22) along some particular momentum directions for
the configuration with �Q = 1 at d = 1.2 �. The minimum gap
� is at a momentum q� = −q�x̂, i.e., the angle between q�

and Q is equal to π . For a fixed �Q, q� continuously increases
with d/�. We also find that, for a given �Q, the gap increases
with d/� as shown in Fig. 7 (dashed lines). The fact that a
gap opens up at dc1 provides further support for a first-order
quantum phase transition at this critical layer separation.
Finally, note that �̄q has no longer cylindrical symmetry
�̄q �= �̄q , which differs from the excitation spectrum of the
zero-momentum BEC [Fig. 2(a), Ref. 14]. This aspect and
the peak in �̄q at q = Q are artifacts of the oversimplified
one-mode approximation.

In order to understand the behavior of the excitation
spectrum at small momentum q, we should look at the nature
of the elementary excitations. Recall that a boson b has an
internal structure since it corresponds to an electron-hole pair.

0 1 2 3 4 5
|lq|

0.3

0.4

0.5

0.6

0.7

0.8

Ω
(lq

,θ
)

 θ = 0
 θ = π/4
 θ = π/2
 θ = 3π/4
 θ = π

FIG. 6. (Color online) Dispersion relation of the (neutral) quasi-
particles [Eq. (22)] (in units of e2/ε�) for a finite-momentum BEC
with �Q = 1 at d = 1.2 � along some particular momentum directions
within the one-mode approximation.

An elementary excitation of the magnetic exciton BEC can
be seen as an electron-hole pair with momentum Q which
is taken from the condensate, broken and recombined again
in a electron-hole pair, but now with a momentum q �= Q.
Apart from the corrections due to the boson-boson interaction
potential [Eq. (14)], the excitation energy �̄q is related to the
difference �Eb between the binding energies of the pairs with
momentum Q and q, namely,

�̄q ∼ �Eb = ωQ − ωq,

where ωq is the dispersion relation of the free bosons
[Eq. (13)]. Let us first consider the zero-momentum BEC. In
this case, the bosons are condensed in the lowest single-particle
energy mode Q = 0, and therefore limq→0(ωQ − ωq) = 0
which yields a gapless excitation spectrum, i.e., the system
displays a Goldstone mode. On the other hand, in a finite-
momentum BEC, the bosons are not condensed in the lowest
single-particle energy mode. This is an important feature

0 1 2 3 4

d/l

0

0.1

0.2

0.3

0.4

0.5

Δ

lQ = 1.0
lQ = 1.5
lQ = 2.0
lQ = 1.0
lQ = 1.5
lQ = 2.0

FIG. 7. (Color online) Minimum gap energy � (in units of e2/ε�)
of the (neutral) quasiparticle excitations as a function of d/� for a
finite-momentum BEC with �Q = 1, 1.5, and 2. Dashed lines: one-
mode approximation; solid lines: two-mode approximation.
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which implies that limq→0(ωQ − ωq) �= 0, i.e., the Goldstone
mode disappears. In other words, the internal structure of
the boson b combined with a macroscopic occupation of a
higher-energy single-particle mode leads to the disappearance
of the Goldstone mode. Such a behavior reminds us of the
excitation spectrum of a BCS superconductor.30 We will return
to this issue in Sec. VI A.

Finally, we find that the relative number of bosons in
the condensate n0 [Eq. (25)] is roughly independent of d/�

and close to one. Such an aspect, illustrated in Fig. 5(b),
is related to the existence of a finite excitation gap, which
reduces quantum fluctuation effects compared with a gapless
case (the zero-momentum BEC). The fact that n0 ≈ 1 tells us
that the Bogoliubov approximation is indeed quite reasonable
to study a finite-momentum BEC phase, in contrast with
the zero-momentum BEC, which requires a more involved
approximation.

IV. TWO-MODE APPROXIMATION

So far, we have considered that the bosons b condense in just
one particular single-particle mode q = Qx̂. As mentioned in
the previous section, since the single-particle boson dispersion
relation (13) has cylindrical symmetry, ωq = ωq , the bosons
b could, in principle, condense in more than one mode q
provided that q = Q. In this section, we discuss such a
possibility, in particular, we assume that the BEC is split into
two pieces: both q = ±Q modes, with Q = Qx̂ and �Q �= 0,
are now macroscopically occupied. Again, the Bogoliubov
approximation is employed to analyze the effective boson
model (12). We hereafter denote such a scheme two-mode
approximation.

Here, we basically follow the lines of Sec. III and start by
performing the substitutions

b
†
Q = bQ = 〈b†Q〉 = 〈bQ〉 →

√
N0,

(27)
b
†
−Q = b−Q = 〈b†−Q〉 = 〈b−Q〉 →

√
N̄0

in Eq. (15). The equivalent of Eq. (17) is now given by Eq. (C1)
(see Appendix C). In order to diagonalize the Hamiltonian
(C1), it is useful to introduce the four-component vector

�†
q = (b†Q+q b

†
−Q+q b−Q−q bQ−q). (28)

Equation (C1) can then be expressed in matrix form

K = K0 + 1

4

∑
q

�†
qĤq�q, (29)

where the 4 × 4 matrix Ĥq reads as

Ĥq =
(

Âq B̂q

B̂q Âq

)
(30)

with the 2 × 2 matrices Âq and B̂q given by

Âq =
(

εq + �q γq
γq εq − �q

)
and B̂q =

(
ξq λq
λq ξq

)
.

Here, we assume that both condensates have the same number
of bosons and set N̄0 = N0. The coefficients εq and �q
are defined in Eq. (21), while γq, ξq, and λq are shown in
Appendix C [see Eqs. (C2) and (C3)].

The diagonalization of the 4 × 4 problem (29) is more
involved than the 2 × 2 one corresponding to Eq. (17).
Therefore, it is more convenient here to use the procedure
described in Ref. 31: Since we are dealing with a bosonic
system, instead of Ĥq, one should diagonalize

ÎBĤq with ÎB =
(

Î 0
0 −Î

)
. (31)

The (positive) eigenvalues of the matrix (31) are

�±
q = √

Cq ± 2Dq, (32)

where

Cq = ε2
q + �2

q + γ 2
q − λ2

q − ξ 2
q ,

(33)
Dq = [

�2
q

(
ε2

q − λ2
q

) + (γqεq − λqξq)2
]1/2

.

Equation (29) then acquires the form

K = K0 + 1

4

∑
q

�†
qĤ

′
q�q, (34)

where the 4 × 4 matrix Ĥ ′
q reads as

Ĥ ′
q =

(
ĥq 0
0 ĥq

)
with ĥq =

(
�+

q 0
0 �−

q

)
(35)

and the new four-component vector �
†
q is given by

�†
q = (a†

Q+q a
†
−Q+q a−Q−q aQ−q). (36)

The relation between the two sets of bosonic operators a±Q±q
and b±Q±q is

�q = M̂q�q, where M̂q =
(

Ûq V̂q

V̂q Ûq

)
(37)

with Ûq and V̂q being 2 × 2 matrices

Ûq =
(

u1(q) u3(q)
u2(q) u4(q)

)
, V̂q =

(
v1(q) v3(q)
v2(q) v4(q)

)
,

the elements of which are the Bogoliubov coefficients. The
complete expressions of the Bogoliubov coefficients ui(q) and
vi(q) are quite long and they can be found in Appendix C.

Equation (34) can be rewritten as

K = K̄0 +
∑

q �=±Q

�̄q a†
qaq, (38)

where the quasiparticle energy �̄q reads as

�̄q = 1
4 (�+

Q+q + �+
−Q+q + �−

Q+q + �−
−Q+q) (39)

and

K̄0 = 2N2
0 v2Q(Q,Q) + 2N0(ωQ − μ)

+ 1

4

∑
q

(�+
q + �−

q − ε+
q − ε−

q ). (40)

Again, from the saddle-point condition ∂K̄0/∂N0 = 0, the
chemical potential μ can be calculated: since from Eqs. (C2)
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with N̄0 = N0 we have

∂ε±
q /∂N0 = ∂λq/∂N0 = λq/N0, ∂�q/∂N0 = 0,

∂γq/∂N0 = γq/N0, ∂ξq/∂N0 = ξq/N0,

after some algebra, we find that

μ = ωQ + μ0 + 2N0v2Q(Q,Q) ≡ ωQ + μ0 + μ1. (41)

The quantity μ0 [see Eq. (C4)] is different from the one-mode
approximation expression (24). From the conservation (on
average) of the total number of bosons NB = ∑

q〈b†qbq〉 =
2N0 + ∑

q �=±Q〈b†qbq〉, it follows that the relative number of
bosons in the condensate n0 is given by

n0 ≡ N0

NB

= 1

2
− 1

4

4∑
i=1

∑
q

v2
i (q). (42)

Finally, it is easy to see that the ground-state energy E0(Q,d) =
K̄0 + μ〈N̂〉 reads as

E0(Q,d)

NB

= K̄0

NB

+ ωQ + μ0 + μ1

= ωQ + μ0(1 − 2n0) + μ1(1 − n0) − I02 (43)

with I02 = 1
4NB

∑
q(ε+

q + ε−
q − �+

q − �−
q ). Similarly to the

one-mode approximation, Sec. III, we numerically solve the
self-consistent equations (41) and (42) and determine n0 and
μ for fixed �Q and d/�.

In Fig. 4(b), we plot the ground-state energy (43) as a
function of d/� for three different configurations, those with
�Q = 1.0, 1.5, and 2.0. Likewise the one-mode approximation,
the self-consistent equations can be solved only for d larger
than a minimum value dmin. However, we now have dmin = 0.6,

0.6, and 0.7�, respectively, for �Q = 1.0, 1.5, and 2.0, which
differ from the one-mode approximation results. Comparing
the ground-state energies obtained with both one- and two-
mode approximations for a given �Q, we clearly see that the
latter is lower than the former: since ωq = ωq , macroscopic
occupation of both ±Q modes are equally likely. The system
then profits from this fact by splitting the condensate into
n = 2 equal pieces, binding them and lowering the total energy.
Again, a finite-momentum BEC is more favorable than a zero-
momentum one for d � 1.0 � and the E0(Q �= 0,d) and the
E0(Q = 0,d) (one-mode approximation with μ0 = 0) curves
cross at small d. In particular, E0(�Q = 1,d) and E0(Q =
0,d) cross at dc1 ≈ 0.68 �, in good agreement with the result
derived in the previous section. Therefore, both one- and two-
mode approximations indicate that a first-order quantum phase
transition may occur at small d/�.

Concerning the large d region, we again find that the
configurations with �Q �= 0 are quite close in energy but
now, differently from the one-mode approximation, the dif-
ferent E0(Q �= 0,d) curves cross each other. For instance,
E0(�Q = 1,d) and E0(�Q = 1.5,d) cross at d ≈ 3.1 � [see
inset Fig. 4(b)]. Indeed, we find several crossings between the
different ground-state energy curves for 1.0 � �Q � 2.0 and
0.7 � � d � 4 �. In particular, the magnitude of the momentum
|�Q0| corresponding to the lowest-energy configuration for a
given d/� is shown in Fig. 8. The fact that �Q0 increases
with d/� corroborates the scenario proposed in Sec. II C
that the larger �Q, the lower the correlation between the two

0 1 2 3 4
d/l

0

0.2

0.4

0.6

0.8

1

1.2

|lQ
0|

FIG. 8. Magnitude of the momentum �Q0 corresponding to the
lowest-energy configuration for a fixed d/�, two-mode approxima-
tion. Dashed line is a guide to the eyes.

layers. Note that the one-mode approximation is not enough to
capture such a behavior. Moreover, the results also indicate that
another first-order quantum phase transition may take place at
larger d, from one finite-momentum BEC with small �Q0 to
another one with a larger �Q0. In particular, the transition
�Q0 = 1.0 → �Q0 = 1.1 occurs at dc2 = 1.6 �, which is very
close to the critical layer separation where the incompressible-
compressible phase transition is experimentally observed.3

Finally, we should mention that solutions for the �Q = 0.8
and 0.9 configurations are also possible but, since they are very
close in energy to the �Q = 1.0 configuration, we decided to
neglect them in the above discussion.

Differently from the one-mode approximation, here
the inversion symmetry of the excitation spectrum �̄q
[Eq. (39)] is preserved as exemplified in Fig. 9 for the

FIG. 9. (Color online) Contour plot of the quasiparticle dispersion
relation �̄q [Eq. (39)] (in units of e2/ε�) for a finite-momentum BEC
with �Q = 1 at d = 1.5 �, two-mode approximation.
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FIG. 10. (Color online) Quasiparticle dispersion relation �̄q [Eq. (39)] (in units of e2/ε�) along some particular momentum directions for
several values of the ratio d/�. Finite-momentum BEC with �Q = 1.0 (upper row) and �Q = 1.5 (lower row), two-mode approximation (d/�

increases from bottom to top at �q = 0).

finite-momentum BEC with �Q = 1.0 at d = 1.5�. Again,
a finite (self-consistently determined) μ0 leads to a gapped
excitation spectrum. Note that the minimum gap, which is
larger than the corresponding one determined within the
one-mode approximation, increases with d/� for a fixed
�Q [Fig. 7 (solid lines)]. Interestingly, for small d/�, the
minimum gap is located at the origin (q� = 0) but, as d/�

increases, the position of the minimum gap abruptly changes
to q� = q�ŷ (the angle between q� and Q is now π/2, in
contrast with the one-mode-approximation result) and then
�q� continuously increases with d/�. Such a behavior is
exemplified in Fig. 10 for the �Q = 1.0 (upper row) and 1.5
(lower row) configurations. Also, the kinks observed in Fig. 7
(solid lines) are signatures of this abrupt change in q�. Finally,
some words about the singularities of the excitation spectrum
are here in order: we believe that the peaks in �̄q at ±Q (also
found in the one-mode approximation) might be an artifact
of the two-mode approximation and that they may disappear
as we increase the number of components n (even) of the
finite-momentum condensate. We will return to this point in
Sec. VI B.

Concerning the relative number of bosons in the two
condensate pieces 2n0 [Fig. 5(c)], we can see that its behavior
is similar to the one found in the previous section: it is almost
independent of d/� and 2n0 is close to one. The latter indicates
that the Bogoliubov approximation is indeed appropriate to
study the finite-momentum BEC even if the condensate is split
into more than one piece.

As a final remark, we would like to comment on the fact that
the results found in this section seem to contradict Nozières,32

who argued that a fragmentation of the condensate into two
pieces costs a macroscopic extensive exchange energy and
therefore it is not favorable. A careful analysis shows that there

is no contradiction. Let us denote E01 and E02 the ground-state
energy, respectively, obtained within the one-mode [Eq. (26)]
and two-mode [Eq. (43)] approximations. Using the fact that
n0 [one-mode approximation, Eq. (25)] is roughly equal to 2n0

[two-mode approximation, Eq. (42)], we have

E02 − E01 ≈ μ1(1 − n0) − I02 + I01.

Comparing the above equation with Eq. (4) from Ref. 32, we
realize that Nozières considerations only take into account
the first term in the above equation and completely neglect
the other terms which, as we have seen, provide important
corrections. In particular, for the bilayer QHS, symmetry
considerations also indicate that a BEC split into two parts has
lower energy than a single condensate: recall that the excitation
spectrum obtained within the two-mode approximation is
more symmetrical than the one derived in the one-mode
approximation.

V. PROPERTIES OF A BEC OF MAGNETIC EXCITONS

It is easy to see from Eq. (10) that

〈ρ(k)〉 = δk,0N�, (44)

which is valid for both one- and two-mode approximations
regardless the value of �Q. Equation (44) implies that, in
principle, the BEC of magnetic excitons is a homogeneous
phase (see discussion at the end of the section). Concerning
the expectation value of the ẑ component of the pseudospin
density operator (11), one shows (two-mode approximation)

〈Sz(k)〉 =
√

N0N̄0 exp(−|�Q|2/4)(δk,−2Q + δk,2Q). (45)
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Note that (45) vanishes within the one-mode approximation
since N̄0 → 0.

Further insight into a BEC of magnetic excitons can be
obtained by looking at the pair correlation function, which is
defined as33

g(r) − 1 = 1

N

∑
q

e−iq·r[S(q) − 1], (46)

where the static structure factor is given by

S(q) = 1

N
〈ρ(−q)ρ(q)〉 − Nδq,0 (47)

with ρ(q) being the Fourier transform of the electron density
operator. The pair correlation function basically tells us the
probability of finding an electron at the position r given that
there is another one at the origin. The analytical expression
of g(r), both at the one- and two-mode approximations, is
quite lengthy and can be found in Appendix D. Here, we just
comment on its numerical evaluation.

In Fig. 11, we plot the pair correlation function along
one particular r direction for the zero-momentum BEC
(one-mode approximation with μ0 = 0) and for the finite-
momentum BECs with �Q = 1 and 2 at d = 1.0, 1.5, and
2.0 �, calculated in the two-mode approximation. Within the
approximations considered here, g(r) is d/� independent for
the zero-momentum BEC (see dashed line in Fig. 11). In
this case, the pair correlation function vanishes as r → 0,
indicating the existence of a correlation hole around the
electron, and it is constant at large r , the same features
displayed by the single-layer QHS at ν = 1.34 A distinct
behavior is found for the finite-momentum BEC. Note that
now g(0) �= 0, indicating that two electrons (with different
pseudospins quantum numbers) can be very close to each
other, corroborating somehow the schematic picture for a
finite-momentum BEC depicted in Fig. 1(c). Moreover, small
oscillations at large r/� are observed, which are characteristic
of a composite fermion Fermi liquid.34 These findings support
the proposal that the ground state of the bilayer QHS in
the intermediate d/� region can be described by a finite-
momentum BEC of bosons b.

As a final remark, we would like to mention that in Ref. 35
it is shown that an exciton condensate has diagonal long-range
order. Interestingly, the average value of the density operator
is constant and only the density-density correlation function
has Fourier components of the type exp[−iK · (r1 − r2)].
Therefore, based only on Eq. (44), we would expect that the
finite-momentum BEC of magnetic excitons corresponds to
an inhomogeneous phase. However, since the pair correlation
function (46), which is related to the density-density correla-
tion function (47), displays a behavior characteristic of a liquid,
we then conclude that the finite-momentum BEC of magnetic
excitons is indeed a homogeneous phase. The disagreement
between our results and the general analysis of Ref. 35 might
be related to the fact that here the electrons are restricted to
the lowest Landau level. Recall that such a restriction, e.g.,
modifies the commutation relations between the electron and
pseudospin density operators.36

VI. DISCUSSION

A. Relation to previous work

In this section, we briefly summarize some previous results
about the bilayer QHS and compare them with the ones derived
here using the one- and two-mode approximations.

Park21 proposed that the bilayer QHS at νT = 1 develops a
pseudospin spiral long-range order at intermediate d/� values.
In this case, the main interlayer correlations are established be-
tween electrons and holes localized in different guiding centers
[see Eq. (8), Ref. 21]. Interestingly, the excitation spectrum is
gapped. It is argued that there is no fundamental reason for a
Goldstone mode in this case (see note 14 in Ref. 21). These
two aspects above discussed suggest that the pseudospin spiral
state bears some similarities with the finite-momentum BEC
of bosons b. Moreover, it is also conjectured21 that the ground
state is indeed given by a bound state between two pseudospin
spirals with opposite winding direction. Recall that by splitting
the finite-momentum condensate into two equal pieces, the
total energy of the system decreases (see Fig. 4).

The ground-state energy of finite-size systems was cal-
culated within the exact diagonalization technique.20 It is
shown that, regardless the size of the system, the ground-state
energy is almost constant for large d, a signature of the
decoupling between the two layers. As we can see in Fig. 4,
the ground-state energy of a finite-momentum BEC slowly
varies for larger d/�. Moreover, the variation decreases when
the condensate is separated into two equal pieces.

Nomura and Yoshioka also consider finite-size systems
and calculate the pair correlation function (46) via exact
diagonalization.19 It is found that for d = 0.3 �, both g↑↑(r)
and g↑↓(r) vanish as r → 0 but, for a larger d = 0.9 �, while
g↑↑(0) vanishes, g↑↓(0) is now finite. Concerning the large
r region, both g↑ ↑(r) and g↑↓(r) seem to be constant for
d = 0.3 � but, for d = 0.9 �, they show small oscillations.
Note that the pair correlation function (Fig. 11) qualitatively
displays the same features.

Based on a Chern-Simons gauge theory, Bonesteel et al.37

show that by approaching two composite fermion Fermi
seas, there is always an instability towards the formation of
composite fermion Cooper pairs. The theory is valid only in
the large d region. The possibility of interlayer composite
fermion pairing is considered in Ref. 18 where some trial
wave functions are discussed. Assuming a px − ipy pairing
instability, it is shown that the two possible wave functions
correspond to the (3,3,−1) and the so-called “strong” pairing
(SP) states. The former phase displays a gapped (neutral)
excitation spectrum. A qualitative phase diagram is also
proposed and one of the possibilities is that the ground state
changes as d/� increases according to the following sequence:
111–SP–(3,3,−1) state. Unfortunately, it is not clear how to
compare a finite-momentum BEC of magnetic excitons with
the SP and (3,3,−1) states.

Further support for pairing between interlayer composite
fermions is provided in Ref. 16. However, the numerical
results indicate that a px + ipy pairing may occur instead of
the px − ipy considered by Kim et al.18 Mixed Fermi-Bose
trial wave functions were then proposed6 to describe the
intermediate d ∼ � region, where the bosonic part is given
by the 111 state, while the fermionic one is given by a paired
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FIG. 11. (Color online) Pair correlation function (46) along one particular r direction. Dashed black line: zero-momentum BEC, one-mode
approximation with μ0 = 0 [Eq. (D5)]. Finite-momentum BEC with (a) �Q = 1.0 and (b) �Q = 2.0, two-mode approximation. d = 1 (solid
red line), 1.5 (long dashed blue line), and 2 � (dotted-dashed green line). Insets: details of the corresponding main plots showing the behavior
of the pair correlation function in the large r/� region.

composite fermion state. Such an approach indeed follows the
lines of an earlier work by Simon and co-workers,15 where
mixed wave functions are considered, but here the fermionic
piece is given by two composite fermion Fermi seas. It is shown
that6 the mixed wave functions with paired states provided
a better description for the intermediate d ∼ � region than
the ones which do not include pairing. Again, it is difficult
to compare this mixed Fermi-Bose wave functions with the
finite-momentum BEC discussed here. We would like to point
out that the description in terms of a finite-momentum BEC of
magnetic excitons involves only bosonic degrees of freedom.

Finally, studying the bilayer QHS within a Ginzburg-
Landau theory, Ye and Jiang8 suggested that the ground state
is given by a pseudospin density wave for dc1 < d < dc2. In
this case, the system undergoes two first-order quantum phase
transitions: from the 111 state to a pseudospin density wave
at dc1, and from the latter to two weakly coupled composite
fermion Fermi liquids at dc2. The pseudospin density wave
phase proposal is based on an earlier random phase approxi-
mation calculation,12 which finds that the (neutral) excitation
spectrum has a minimum (magnetoroton) at finite momentum
�q ∼ 1.0 and that the energy of this mode vanishes at d =
1.2 �. This feature indicates that a phase that spontaneously
breaks translational symmetry may be realized. Such an
inhomogeneous phase is studied, for instance, in Ref. 17 within
the Hartree-Fock approximation. Interestingly, it is shown that
the ground-state energy is almost d/� independent, similar to
Fig. 4. However, we should recall that the finite-momentum
BEC is indeed a homogeneous phase (see Sec. V).

B. Consequences for the bilayer QHS at νT = 1

As discussed in Sec. III, the two approximation schemes
used throughout this paper, the one- and two-mode approx-
imations, impose some strong restrictions on the description
of the finite-momentum BEC of magnetic excitons, but they
allow us to carry out detailed calculations in order to verify
the stability of such a phase. Therefore, they should be seen
as an initial approach to study the finite-momentum BEC. A
more elaborated approximation scheme is needed. Since the

two-mode approximation suggests that the system reduces its
energy by splitting the condensate into two equal pieces, a
better approximation for the ground state should be a finite-
momentum condensate such that all modes ±Qi with Qi = Q

and i = 1, . . . n are (equally) macroscopically occupied (see,
e.g., Ref. 38 for the case n → ∞). In particular, if n → ∞, the
cylindrical symmetry of the quasiparticle dispersion relation
�̄q would be restored. The implementation of such a scheme is
rather involved and it will be deferred to a future publication.

However, the results that we have derived so far allow
us to make the following statements about the bilayer QHS:
(a) There are strong indications that a finite-momentum BEC
phase is the most stable in the intermediate d/� region. Such a
state bears a strong similarity with the pseudospin spiral phase
proposed by Park.21 (b) The instability of the zero-momentum
BEC at d ∼ 0.5 �, which we arrive at in Ref. 14, indeed
corresponds to a first-order quantum phase transition from a
zero-momentum BEC to a finite-momentum one. In principle,
such a transition could be experimentally observed.

It is also worth mentioning that (c) according to the
two-mode approximation, a finite-momentum BEC with �Q =
1 is the lowest-energy configuration only for d < 1.6 �, a
value quite close to the critical dc where the incompressible-
compressible quantum phase transition is experimentally
observed. Curiously, the Fermi momentum kF of a composite
fermion Fermi liquid at ν = 1/2 is �kF = 1.10 The fact
that �Q > �kF for d > 1.6 � could be an indication of the
incompressible-compressible phase transition. However, we
should emphasize that this is just an interesting observation
since, at the moment, it is not possible to identify a com-
posite fermion Fermi-liquid phase within our bosonization
formalism.

C. Open questions and next steps

There are still a couple of open questions that we hope
will be answered once the approximation discussed in the
first paragraph of the previous section is carried out. It
remains to be verified whether (i) the features found within
the one- and two-mode approximations [points (a) and (b)
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above] are robust; (ii) the momentum �Q0 associated with
the lowest-energy configuration for a given d/� (Fig. 8) either
varies continuously with d/� or is quantized �Q0 = 0,1,2, . . . ;
(iii) it is possible to identify a finite-momentum BEC with
�Q > 1 with two composite fermion Fermi liquids and/or with
the pairing states proposed by Möller and co-workers.16 This
would be an important step towards the determination of the
nature of the incompressible-compressible phase transition.

In addition to studying a finite-momentum BEC where all
modes Qi with �Qi = �Q are macroscopically occupied, we
also intend to consider the effects of a (small) finite electron
interlayer tunneling, disorder (hopefully), and the electronic
spin. Concerning the latter, there are some experimental
evidences39–41 that the electron spin degree of freedom might
be relevant for a complete description of the bilayer QHS.
For instance, it was recently reported40 that the critical dc,
where the incompressible-compressible phase transition takes
place, increases and eventually saturates due to an increasing
in-plane magnetic field B‖. In principle, the effects related to
the electronic spin could be included in our analysis with the
help of the generalized bosonization formalism,42 which has
been recently proposed by two of us to study the quantum Hall
effect in graphene at ν = 0 and ±1.

So far, we have focused on the elementary neutral exci-
tations of the bilayer QHS. It remains to be checked how
charged excitations are described within our bosonization
approach. Such excitations are important when disorder effects
are taken into account (see, e.g., Refs. 43 and 44 and the
references therein). Two distinct cases should be considered:
(a) Zero-momentum BEC of magnetic excitons. Such a phase
can also be seen as an XY pseudospin ferromagnet.45 In
this language, charged excitations correspond to topological
(vortex) excitations called merons. There are four types of
merons: with vorticity ±1 and electric charge ±e/2. For the
single-layer QHS at ν = 1, it was shown13 that a topological
excitation (skyrmion) can be described as a boson coherent
state. Due to the similarities between the single-layer and
the bilayer QHSs, we expect that merons could be seen as a
coherent state of bosons as well. (b) Finite-momentum BEC of
magnetic excitons. Here, the mapping into an XY pseudospin
model no longer holds (see note 14 in Ref. 21) and, therefore,
it is not yet clear whether charged excitations could also be
described as a boson coherent state.

Finally, concerning experiments, it would be interesting,
e.g., to calculate the interlayer tunneling current for the
finite-momentum BEC phase. The first theoretical works46

(clean limit) indicated that the bilayer QHS should display
a Josephson-like effect, i.e., a zero-bias infinite tunneling
conductance should be observed. Such a feature is related
to the gapless linearly dispersing (neutral) excitation spectrum
at low energies associated with the Halperin 111 phase (zero-
momentum BEC of magnetic excitons). Instead, an enhanced
finite tunneling conductance at zero-bias voltage was experi-
mentally observed.4,5 In order to account for the experimental
features, disorder effects were then considered. At the moment,
the experimental data have been understood within an XY

pseudospin model with the tunneling term (2) perturbatively
treated and with disorder-induced merons phenomenologically
included in the electron tunneling operator (for a review, see,
e.g., Ref. 44 and the references therein). Interestingly, such a

scheme indicates that by adding a parallel magnetic field B‖ to
the sample, the tunneling conductance versus bias voltage data
could provide a measurement of the gapless linearly dispersing
excitation spectrum. Again, the experimental data of Spielman
et al.,5 who found some evidences for the existence of such
collective excitation, were analyzed within the above XY

pseudospin framework.
In principle, our results are in contradiction with the

experimental data5 since we have found a gapped phase in the
intermediate d/� region, where tunneling experiments were
performed. However, note that according to our results, a
true Josephson-like effect should occur only at very small
d/�, where the zero-momentum BEC phase sets in. This is
somehow in agreement with the experiments. Our next task is
to verify whether the gapped excitation spectrum, Figs. 6 and
10, could account for the observed finite tunneling conductance
at zero-bias voltage. In principle, we can calculate the inter-
layer tunneling current (clean limit) within our bosonization
formalism, treating the tunneling term (2) nonperturbatively.
Disorder effects could be included later, for instance, following
the lines of Ref. 43. In this way, we hope we can provide an
alternative interpretation for the experimental data reported in
Refs. 4 and 5.

VII. SUMMARY

In this paper, we studied the bilayer QHS at νT = 1 within
the bosonization method,13 a formalism which allows us to
properly treat the magnetic exciton as a boson, and we showed
that the ground state of the system in the region d ∼ � (zero
interlayer tunneling case) can be seen as a finite-momentum
BEC of magnetic excitons. Our findings are in agreement
with previous results which suggest that an intermediate phase
may show up between the (incompressible) Halperin 111 state
(ground state for small d/�) and the (compressible) composite
fermion Fermi liquids (ground state for larger d/�).

The stability of the finite-momentum BEC has been
analyzed via two distinct approximation schemes: the one-
mode approximation, where it is assumed that the bosons
macroscopically occupied only one momentum Q = Qx̂ with
�Q �= 0, and the two-mode approximation, where both ±Q
modes with Q = Qx̂ are macroscopically occupied. We have
found that such a phase can be realized as long as the excitation
spectrum is gapped. The comparison between the ground-state
energy curves in terms of the ratio d/� for configurations
with different �Q as well as the analysis of the quasiparticle
excitation spectra provide strong evidences for a first-order
quantum phase transition at small d/�, i.e., a transition from a
zero-momentum BEC, a phase that we had already analyzed
in Ref. 14 and that corresponds to Halperin 111 state, to a
finite-momentum BEC. We hope that such first-order quantum
phase transition can be experimentally observed in the near
future.

As a final remark, we would like to emphasize that the
bosonization method introduced in Ref. 13 can be used to
study both the single- and double-layer QHSs at ν = 1. In
other words, we can describe both systems using the same
degree of freedom, the magnetic exciton, in the limit where
this object can be treated as a boson.
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APPENDIX A: ABOUT THE BOSONIZATION SCHEME

In Ref. 13, it is shown that a bosonization formalism for
the two-dimensional electron gas under a strong magnetic
field (single-layer QHS at ν = 1) can be developed following
the lines of the bosonization scheme used to describe one-
dimensional electronic systems. It is interesting that this
formalism also gives quite reasonable results for the bilayer
QHS at νT = 1 even though such a system is in a limit very
far from the one considered in Ref. 13. In this section, we
start providing some heuristic arguments, which tell us why
the bosonization scheme13 can also be employed to study the
bilayer QHS at νT = 1, and later, we show a simple calculation
which corroborates such arguments.

The bosonization method for the single-layer QHS at ν =
1 is based on the following points: The ground state of the
(noninteracting) two-dimensional electron gas at ν = 1 is the
quantum Hall ferromagnet |FM〉 [Fig. 2(a)], the reference state.
Elementary (neutral) excitations are electron-hole pairs or spin
flips [Fig. 2(b)], which can be obtained by applying the spin-
density operator S− into |FM〉, i.e., |�〉 ∝ S−|FM〉. Although
the commutation relation between the spin-density operators
S+ and S− (projected into the lowest Landau level),

[S+
q ,S−

k ] = el2qk∗/2ρ↑(q + k) − el2kq∗/2ρ↓(q + k) (A1)

with q = qx + iqy , differs from the canonical commutation
relation between creation and annihilation boson operators,
it is still possible to define boson operators b as in Eq. (9)
if we follow the lines of Tomonaga’s procedure33 for one-
dimensional electron systems. Using the fact that

ρ↑(q) ≈ 〈FM|ρ↑(q)|FM〉 = Nφδq,0,
(A2)

ρ↓(q) ≈ 〈FM|ρ↓(q)|FM〉 = 0,

we realize that Eq. (A1) assumes the form

[S+
q ,S−

k ] ≈ Nφ exp[−(lq)2/2]δq+k,0, (A3)

which now resembles a canonical commutation relation for
boson operators. In other words, as long as we are close to
the |FM〉 state, i.e., the number of bosons in the system is
small, electron-hole excitations (magnetic excitons) can be
approximately treated as bosons.

Turning to the bilayer QHS at νT = 1, we note that such a
system is very far from the limit discussed above because the
configuration νT = ν↑ + ν↓ = 1/2 + 1/2 = 1 corresponds to
a system with Nφ/2 bosons [see Fig. 1(b)]. As we will see
below, this is indeed a very special configuration where density
fluctuations guarantee that the relation (A3) still holds.

Let us consider as a reference state the zero-momentum
BEC of magnetic excitons illustrated in Fig. 1(b) and identify

the electronic spin degree of freedom of the single layer with
the pseudospin one of the bilayer QHS. In this case, we have

ρ↑(q) ≈ 〈ρ↑(q)〉 + δρ↑(q),
(A4)

ρ↓(q) ≈ 〈ρ↓(q)〉 + δρ↓(q).

Since 〈ρ↑(q)〉 = 〈ρ↓(q)〉 = (Nφ/2)δq,0, we note that here the
equivalent of Eq. (A3) vanishes, and therefore the bosons b are
no longer well defined. However, since the total filling factor
is fixed, we have

δρ↑(q) = −δρ↓(q) = δρ(q), (A5)

which indicates that a finite (approximate) commutation
relation can still be obtained if we now consider density
fluctuations in Eq. (A4). Due to the relation between the
magnetic exciton momentum q and the guiding centers
associated with the electron and the hole, we have

δρ(q) = δρlocal(q) + δρnonlocal(q), (A6)

where δρlocal(q) and δρnonlocal(q) correspond to density fluctu-
ations on the same and different guiding centers, respectively.
Moreover, we can also write

δρlocal(q) ≈ ρ0δq,0, (A7)

with ρ0 being a constant, which implies that the relation (A3)
still holds for the bilayer QHS at νT = 1.

In order to see that (A6) and (A7) are indeed quite rea-
sonable assumptions, let us calculate the density fluctuations

δρα(q) =
√〈

ρ2
α(q)

〉 − 〈ρα(q)〉2 (A8)

within the two-mode approximation. It can be seen as a kind
of self-consistent check of the above assumptions.

In the Bogoliubov approximation, the Fourier transform of
the α-electron density operator reads as [see Eqs. (25) and (26)
from Ref. 13]

ρα(q) = δα,↑δq,0N� − αe−(�q)2/4

[
e−iαq∧Q/2

√
N0b

†
Q+q

+ eiαq∧Q/2
√

N̄0b
†
−Q+q

+
∑

k �=0,−2Q

e−iαq∧(Q+k)/2b
†
Q+k+qbQ+k

]
. (A9)

Since

〈b†Q+q〉 = δq,0N
1/2
0 + δq,−2QN̄

1/2
0 ,

〈b†−Q+q〉 = δq,0N̄
1/2
0 + δq,2QN

1/2
0 ,

and

〈b†Q+k+qbQ+k〉 = δq,0〈b†Q+kbQ+k〉 + δq,2Q〈b†3Q+kbQ+k〉
+ δq,−2Q〈b†−Q+kbQ+k〉,

where the expectation value is taken with respect to the ground
state of the bilayer QHS, i.e., the vacuum for the bosons a [see
Eq. (36)], it follows that

〈ρα(q)〉 = δq,0
1
2Nφ − (δq,2Q + δq,−2Q)e−|�Q|2Fα(q). (A10)
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Here,

Fα(q) ≡
√

N0N̄0

+
∑

k �=0,2αQ

eiαq∧k/2 [v1(k)v2(k) + v3(k)v4(k)] ,

with vi(q) being the Bogoliubov coefficients [Eq. (C5)].
Concerning 〈ρ2

α(q)〉, after some algebra, it is possible to show
that

〈ρα(q)ρα(q)〉 = δq,0
[

1
4N2

φ + ρ0
] + [δq,2Q + δq,−2Q]

× e−2|�Q|2 [
F 2

α (q) + ρ1(q)
]
, (A11)

where

ρ0 =
∑

p

[
v2

1(p) + v2
3(p)

]2 + [u1(p)v2(p) + u3(p)v4(p)]2

+ 2 [v1(p)v2(p) + v3(p)v4(p)]2

+ 2 [u1(p)v1(p) + u3(p)v3(p)]2 ,

ρ1(q) =
∑

p

cos(q ∧ p) [v1(p)v2(p) + v3(p)v4(p)]2

+ [u1(p)v2(p) + u3(p)v4(p)]2 .

Therefore, Eqs. (A5), (A8), (A10), and (A11) yield

δρ2(q) = δq,0ρ0 + [δq,2Q + δq,−2Q]e−2|�Q|2ρ1(q). (A12)

Note that the first term of the above equation can be identified
with δρlocal(q) in (A6), while the second one with δρnonlocal(q).
Moreover, one can easily see that ρ0 > e−2|�Q|2ρ1(±Q), which
corroborates the fact that δρnonlocal(q) can be neglected with
respect to δρlocal(q).

In the one-mode approximation, Eqs. (A10) and (A11)
reduce to

〈ρα(q)〉 = δq,0
1

2
Nφ,

〈ρα(q)ρσ (q)〉 = δq,0

⎡
⎣1

4
N2

φ + 1

2

∑
k �=Q

εk(εk − �k)

�2
k

⎤
⎦ .

Although δρnonlocal(q) = 0, the bosonization scheme13 still
holds because the relevant term δρlocal(q) is finite within this
approximation.

APPENDIX B: ALTERNATIVE EFFECTIVE BOSON
MODELS FOR THE BILAYER QHS

In this section, we briefly comment on some different
effective boson models proposed to describe the bilayer QHS.

In Ref. 47, the effects of the electron spin degree of freedom
are taken into account. Here, the original fermion model is
mapped into an effective lattice spin-pseudospin model, which
is then analyzed within a generalized Schwinger boson mean-
field theory. Finite-temperature properties are calculated, for
instance, the temperature dependence of the spin and in-plane
pseudospin magnetizations. A proper comparison between our
results and those of Ref. 47 will be possible only after including
the electronic spin in our formalism (see Sec. VI C). We would
like to recall that our approach is based on a direct mapping of

the interacting fermion model (1) into the boson model (12),
no lattice degrees of freedom are introduced.

Tieleman and co-workers48 derived an effective boson
model for the bilayer QHS also following the ideas of the
bosonization scheme,13 but with some important differences:
The single-particle electron states considered are no longer the
pseudospin-up and -down lowest Landau levels (see Fig. 1),
but symmetric and antisymmetric linear combination of these
states. Instead of defining the boson operators with respect
to the quantum Hall ferromagnet |FM〉 (see Sec. II A), the
reference state is the completely filled symmetric state |SYM〉.
Therefore, the boson operators introduced in Ref. 48, hereafter
called β, differ from the bosons b discussed in Sec. II A.
Most importantly, the ground state corresponds to an almost
filled symmetric state instead of the BEC of magnetic excitons
considered within our formalism. Since the procedure adopted
in Ref. 48 to derive an effective boson model is not fully
consistent with the bosonization scheme,13 in the following
we briefly revisit its derivation.

Formally, the bosonization schemes of Refs. 13 and 48
are identical. Therefore, the bosonic representations of the
electron density and pseudospin density operators are given
by Eqs. (27)–(29) and (31) of Ref. 13 with the replacement
b → β. Substituting these expressions in Eq. (7) of Ref. 48,
we arrive at

H SAS
B = H2 + H4 + H6, (B1)

where H2,4,6 respectively correspond to terms with 2, 4, and 6
boson operators β. In particular,

H2 =
∑

q

ε̃qβ
†
qβq + 1

2
(λ̃qβ

†
qβ

†
−q + λ̄qβ−qβq), (B2)

with

ε̃q = t + λ̃q −
∑

k

e−(�k)2/2vc(k)

+
∑

k

2v0(k)e−(�k)2/2 sin2(k ∧ q/2),

(B3)
λ̃q = Nφe−(�p)2/2vc(q),

λ̄q = λ̃q −
∑

k

vc(k)e−(lk)2/2 cos(k ∧ q).

Here, t and v0/c(k), respectively, correspond to �SAS and
v0/z(k) (see Sec. II). Comparing Eqs. (B1)–(B3) with equations
(19)–(21) of Ref. 48, one can see that the former have
extra terms. This is related to the fact that Tieleman et al.
approximated the bosonic representation of the operator
Sx(k) by linear terms, i.e., Sx(k) ∼ β

†
k + β−k, while here the

complete bosonic representation, which in addition includes
a cubic term in boson operators β, is considered. We should
mention that the presence of such a cubic term in the bosonic
representation of Sx(k) is important because it guarantees that
the bosonic representation of the electron density and spin-
density operators obey the correct commutation relations, the
so-called lowest Landau level algebra (see Sec. II D of Ref. 13
for details). In order to perform a proper map of the original
fermion model into the boson one, we should consider the
complete bosonic expression of the electron density and spin-
density operators. After that, approximations can be employed.
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Therefore, if we define boson operators with respect to the
state |SYM〉 and try to be consistent with the bosonization
formalism,13 we then obtain a non-Hermitian effective boson
model to describe the bilayer QHS. Recall that the proce-
dure adopted in this paper yields a Hermitian boson model
[Eq. (12)].

Although the Hamiltonian (B1) is non-Hermitian, let us
for the moment assume that this is only an artifact of the
bosonization scheme and determine the spectrum of the
elementary excitations �q within the harmonic approximation,
i.e., H SAS

B ≈ H2. It is possible to diagonalize (B2) as done, for
instance, in Ref. 49. One finds

�q =
√

ε̃2
q − λ̃qλ̄q.

However, �q is not well defined for small momenta: it is
easy to see that ε̃2

q − λ̃qλ̄q < 0 for q → 0. One concludes that
the restriction of H SAS

B to the quadratic term (B2) is not a good
approximation. A proper analysis of H SAS

B should take into
account the H4 and H6 terms. Finally, one should mention that
the approach of Ref. 48 is more suitable for larger �SAS values,
while our formalism is for the opposite limit.

Interestingly, apart from the coefficient of the β
†
qβ

†
−q term,

the Hamiltonian (B1) corresponds to the effective boson model
proposed in Ref. 50: Here the energy of the elementary
excitations is given by �q = (ε̃2

q − λ̄2
q)1/2, which agrees with

the diagrammatic calculations of Fertig.12 Recall that, in
this case, the spectrum has a magnetoroton minimum which
vanishes for d ≈ 1.2 � (t = 0 case).

APPENDIX C: DETAILS: TWO-MODE APPROXIMATION

In this Appendix, we provide the full expressions of some
quantities which appear in Sec. IV.

After the substitution (27), Eq. (15) acquires the form

K = K0 + 1

4

∑
q

′
[ε+

q (b†Q+qbQ+q + b−Q−qb
†
−Q−q)

+ ε−
q (bQ−qb

†
Q−q + b

†
−Q+qb−Q+q)

+ γq(b†Q+qb−Q+q + H.c. + b
†
−Q−qbQ−q + H.c.)

+ λq(b†Q+qb
†
Q−q + H.c.) + λ̄q(b†−Q+qb

†
−Q−q + H.c.)

+ ξq(b†−Q+qb
†
Q−q + H.c. + b

†
Q+qb

†
−Q−q + H.c.)].

(C1)

The restriction on the sum over momenta indicates that
the modes that satisfy the condition ±Q ± q �= ±Q are not
included. Here,

K0 = 2N0N̄0v2Q(Q,Q) + (ωQ − μ)(N0 + N̄0) − 1

2

∑
q

εq,

γq = 4
√

N0N̄0[vq(−Q,Q) + v2Q(q,Q)],
(C2)

λq = 4N0vq(Q,Q), λ̄q = 4N̄0vq(Q,Q),

ξq = 4
√

N0N̄0vq(−Q,Q),

and ε±
q are defined in Eq. (18). Setting N̄0 = N0 and using the

fact that n0 = N0/NB = 4π�2N0, we can write

λq = e2

ε�
(2n0)

e−(�q)2/2

�q
[1 − e−(�q)d/� cos(q ∧ Q)],

ξq = e2

ε�
(2n0)

e−(�q)2/2

�q
[cos(q ∧ Q) − e−(�q)d/�], (C3)

γq = ξq + e2

ε�
n0

e−(�q)2/2

�q
[1 − e−2(�q)d/�] cos(q ∧ Q),

which are useful expressions for the numerical calculations.
Concerning the chemical potential Eq. (41), the terms μ0

and μ1 are defined as

μ0 = 1

8N0

∑
q

(
1

�+
q

+ 1

�−
q

) [
λq(εq − λq) + γ 2

q − ξ 2
q

]

− 2λq + 1

Dq

(
1

�+
q

− 1

�−
q

) [
�2

qλq(εq − λq)

(C4)+ (γqεq − γqξq)(γqεq + γqλq − 2λqξq)
]
,

μ1 = 2N0v2Q(Q,Q) = e2

ε�

1

2
n0

e−2(�Q)2

�Q
[1 − e−2(�Q)d/�].

Finally, following the procedure described in Ref. 31 (see
Chap. 3) and after some algebra, it is possible to show that the
Bogoliubov coefficients ui(q) and vi(q), the elements of the
4 × 4 matrix M̂q [Eq. (37)] are given by

u2
i (q),v2

i (q) = 1

4�i
q

(
εq + αi�q ± �i

q

)

− (−1)i

4�i
qDq

[
γq(γqεq − λqξq) − αi�qλ

2
q

+ �qεq
(
αiεq + �q ± αi�

i
q

)]
(C5)

with i = 1, 2, 3, 4, �i
q = �+

q (i = 1,3), �−
q (i = 2,4), and

αi = 1 (i = 1,2), −1 (i = 3,4).

APPENDIX D: PAIR CORRELATION FUNCTION

In this section, we present the full expressions for the pair
correlation function (46), calculated both at the one- and two-
mode approximations. In order to calculate the static structure
factor (47), it is necessary to project the product ρ(−q)ρ(q)
into the lowest Landau level. We have [see Eqs. (4.17) and
(4.18) from Ref. 36]

ρ(−q)ρ(q) = ρ̄(−q)ρ̄(q) + N [1 − exp(−|�q|2/2)], (D1)

and therefore Eq. (47) assumes the form

S(q) = S̄(q) + [1 − exp(−|�q|2/2)] (D2)

with S̄(q) = (1/N )〈ρ̄(−q)ρ̄(q)〉 − Nδq,0 being the projected
static structure factor. From Eq. (10), it follows that (q �= 0)

S̄(q) = 4e−|�q|2/2

Nφ

∑
p,k

sin(q ∧ p/2) sin(q ∧ k/2)

×〈b†k−qbkb
†
p+qbp〉. (D3)
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Here, the exp(−|�q|2/4) factor is restored in the bosonic
representation of the electron density operator [see Eq. (27)
from Ref. 13].

Using Wick’s theorem, the expectation value in the above
equation can be easily calculated. Performing the replacement
b
†
Q,bQ → √

N0 as done in Sec. III and keeping only the terms
with two boson operators b, it is possible to show that in the
one-mode approximation the projected static structure factor
assumes the form

S̄(q) ≈ 2n0e
−|�q|2/2 sin2(q ∧ Q/2)

(
v2

q + u2
q − 2uqvq

)
(D4)

with the Bogoliubov coefficients uq and vq given by Eq. (23).
Note that S̄(q) vanishes if Q = 0 implying that, within this

level of approximation,

g(r) = 1 − exp[−r2/(2�2)] (D5)

regardless the value of d/�. Equation (D5) is nothing else but
the pair correlation function for the single-layer QHS at ν = 1.

The same procedure can be used to calculate g(r) in the
two-mode approximation. After some algebra, we find that

S̄(q) ≈ 2n0e
−|�q|2/2 sin2(q ∧ Q)

× [[u1(q) + v1(q) − u2(q) − v2(q)]2

+ [u3(q) + v3(q) − u4(q) − v4(q)]2], (D6)

where the Bogoliubov coefficients ui(q) and vi(q) are now
given by Eq. (C5).
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