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STRONGLY INDEFINITE FUNCTIONALS 
AND MULTIPLE SOLUTIONS OF ELLIPTIC SYSTEMS 

D. G. DE FIGUEIREDO AND Y. H. DING 

ABSTRACT. We study existence and multiplicity of solutions of the elliptic 
system 

-Au = Hu(x, u, v) in Q, 
-Av =-Hv(x,u,v) in Q, u(x) = v(x) = O on OQ, 

where Q C RIN, N > 3, is a smooth bounded domain and H E C1(Q x R2, R). 
We assume that the nonlinear term 

H(x,u,v) , IUl + ulPq + R(x,u,v) with lim R(xu = )0 
I(u,v)I--oo IuiP + lv|q 

where p e (1, 2*), 2* := 2N/(N - 2), and q E (1, oo). So some supercritical 
systems are included. Nontrivial solutions are obtained. When H(x, u,v) 
is even in (u, v), we show that the system possesses a sequence of solutions 
associated with a sequence of positive energies (resp. negative energies) going 
toward infinity (resp. zero) ifp > 2 (resp. p < 2). All results are proved using 
variational methods. Some new critical point theorems for strongly indefinite 
functionals are proved. 

1. INTRODUCTION AND MAIN RESULTS 

Consider the following elliptic system: 
-Au = Hu(x, u, v) in Q, 

(E) -Av ---H(x, u, v) in , 

u(x) = v(x) = 0 on 9Q, 
where C IRN, N > 3, is a smooth bounded domain and H: Q x R2 -R IR is a C1- 
function. Here Hu denotes the partial derivative of H with respect to the variable 
u. Writing z := (u, v), we suppose H(x, 0) 0 and Hz(x, 0) = 0. Then z = 0 is a 
trivial solution of the system. In this paper we discuss the existence of nontrivial 
solutions. Roughly speaking, we are mainly interested in the class of Hamiltonians 
H such that 

H(x, u, v) -up--P+ v + R(x,u, v) with lim R(x, = 0, 
Izl-oo UJP + _Vlq 

where 1 < p < 2* := 2N/(N- 2) and q > 1. The most interesting results obtained 
here refer to the case when q > 2*, which correspond to critical and supercritical 
problems. The case when q < 2* has been studied by Costa and Magalhaes [5], 
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[6] and Benci and Rabinowitz [3]. See also Bartsch and De Figueiredo [2], De 
Figueiredo and Magalhaes [7], De Figueiredo and Felmer [8] and Hulshof and van 
der Vorst [11], where similar systems also leading to strongly indefinite functionals 
have been studied. However, only subcritical systems have been considered in those 
papers. 

Letting 2* = 2*/(2* - 1) = 2N/(N + 2), we assume that H(x,z) satisfies the 
following condition: 

(Ho) there are p E (1, 2*), q E (1, oo) and r E (1, 1 + q/2*) such that, for all 
(x, z), 

IHu(x, u, v)l < 7o(l + lulP-~ + Ivl1) 
and 

IH(x, u, v)l < yo(l + lulp- + lvlq~-). 
In all hypotheses on H(x, z) the 7i's denote positive constants independent of (x, z). 
We note that if q < 2*, then 2* < q/(q - 1), i.e., q - 1 < q/2*. Hence, it is possible 
that q < r < 1 + q/2*. However, if q > 2*, then r < q. Furthermore, we remark 
that r can be very large, if q is sufficiently large. 

In addition, we need distinct conditions on H corresponding to the cases when 
p>2, p< 2 or p = 2. 

First, consider the case when p > 2. In this case, we assume the following three 
conditions: 

(H1) there are , > 2, v > 1 and R1 > 0 such that 
1 1 
-Hu(x, z)u + -H(x, z)v > H(x, z) whenever zl > R1, 
ft V 

with the provision that v = ,u if q > 2; 
(H2) there are 2*(p- 1) < a < p and 2*(r - 1) < such that 

H(x, z) > 'y1 (lula + IvlZ) - y2 for all (x, z), 
and f = q if q > 2*; 

(H3) H(x, 0, v) > 0 and Hu(x, u, O) = o(lul) as u -O 0 uniformly in x. 
We prove the following results. 

Theorem 1.1. Let (Ho) be satisfied with p > 2. If (H1)- (H3) hold, then (E) has 
at least one nontrivial solution. 

In order to provide some more transparent hypotheses under which the above 
result holds, we next present some conditions on H that are sufficient for (Ho), 
(H1) and (H2) to hold: 

(Ho) there are p E (1, 2*) and q E (2, oo) such that, for all (x, z), 

IHu(x, u, v)l < yo(l + luIP-1 + vl q-1) 
and 

IH,(x,u,v)l < 7o(l + IlulP- + lVlq-1); 

(Hi) there are , > 2 and R1 > 0 such that 

Hu(x, z)u + Hv(x, z)v > ,uH(x, z) whenever \zl > R1; 

(H2) for p and q as above, 

H(x, z) > 'Y1 (lulP + Ivlq) - 72 for all (x, z). 
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Theorem 1.1'. Let (Ho) be satisfied with p > 2. If (Hi), (H2), and (H3) hold, 
then (E) has at least one nontrivial solution. 

Theorem 1.2. Let (Ho) be satisfied with p > 2. If H(x,z) is even in z and 
satisfies (H1) and (H2), then (E) has a sequence (zn) of solutions with energies 
I(Zn) f= - ((ljVun2 - Vvl2) - H(x,zn)), going to oo as n -+ oo. 

In order to describe the other results, let a(-A) denote the set of all eigenvalues 
of (-A, Ho(Q)): A1 < A2 <A 3 < . 

We now consider the case when p < 2. We make the following assumptions: 

(H4) there are p E (1, 2), v > 2 and 73 > 0 (73 = 0, if q > 2*) such that 

1 1 
H(x,u,v) > -HU(x,u,v)u + -H,(x,u,v)v- 73 for all (x, z); 

pI V 

(H5) there are a E (1, 2) and 6 E (0, 1/2) such that H(x, u, v) > 74lul - 6Av2 
for all (x, z); 

(H6) if q > 2*, then Hv(x, z)v > 75ll - 6(Ivl + U2) for all (x, z). 
With these assumptions we have the following three results, for the case when p < 2. 

Theorem 1.3. Suppose that (Ho) holds with p < 2 and q > 2. If H(x,z) also 
satisfies (H4)- (H6), then (E) has at least one nontrivial solution. 

Theorem 1.4. Suppose that H(x, z) is even in z and (Ho) holds with p < 2 and 
q > 2. If H(x, z) also satisfies (H4)-(H6), then (E) has a sequence (zn) of solutions 
with negative energies I(zn) going to 0 as n -- oo. 

Theorem 1.5. Let (Ho), with p,q E (1, 2), and (H5) be satisfied. Then (E) has 
at least one nontrivial solution. If, in addition, H(x, z) is even in z, then (E) has 
a sequence (zn) of solutions with negative energies I(zn) going to 0 as n - oo. 

Finally, we consider the case when p = 2, which presents some sort of resonance. 
Assume 

(H7) there exist bo < 0 < ao such that Ro(x, z) := H(x, z) - (aou2 + bov2) 
o(lzl2) as z -* 0 uniformly in x; 

(H8) there exist a E (1, 2), a,O E [ao, oo)\a(-A), such that Roo(x,z) 
H(x,z)- aoou2 satisfies \9uRoo(x,z)\ < y7(1+1+ul-+ lvl'-1) and Ro(x,z) 
> Y8lvtq - 9s (1 + Iul|). 

The position of the numbers ao, ao,, bo with respect to the spectrum a(-A) plays 
a very essential role in the next result. For that matter, let i, j, k be nonnegative 
integers such that Ai = min{A E a(-A) : A > ao}, Aj = max{A E a(-A) : A < 
-bo}, Ak = max{A E a(-A) : A < a,}, and set 

f( j if aoo ao, 

j + j k-i + 1 if ao > ao. 

Now we can state our last result. 

Theorem 1.6. Let (Ho) be satisfied with p = 2 and r < 1 + q/2. Assume that 
H(x, z) is even in z and satisfies (H7) and (Hs). Then (E) has at least one pair of 
nontrivial solutions if = 1, and infinitely many solutions if ? > 2. 

The cases covered in Theorem 1.6 include some asymptotically linear systems. 
Such systems have been studied in [5], [6] and Silva [13]. However, their results are 
not comparable with the ones obtained here. 
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We organize the paper as follows. In order to establish multiplicity of solutions we 
need some new abstract propositions on critical point theory for strongly indefinite 
functionals, which will be provided in Section 2. These propositions are based on 
certain Galerkin approximations, and we emphasize that the functionals do not 
satisfy the usual Palais-Smale condition. In Section 3 we study systems that are 
superlinear in the variable u, and prove Theorems 1.1 and 1.2. In Section 4 we 
consider systems that are sublinear in the variable u, and prove Theorems 1.3, 1.4 
and 1.5. In both Sections 3 and 4, the variable v can have subcritical growth as well 
as supercritical growth. Finally, in Section 5, we consider a special asymptotically 
linear system and prove existence of multiple solutions. 

2. CRITICAL POINTS FOR STRONGLY INDEFINITE FUNCTIONALS 

Let E be a Banach space with norm 1' II. Suppose that E has a direct sum 
decomposition E = E1 ? E2 with both E1 and E2 being infinite dimensional. Let 
pl denote the projection from E onto E1. Assume (e1) (resp. (e2)) is a basis for 
E1 (resp. E2). Set 

Xn := span{e, ... , e)} E E2, Xm := E1 span{e2, .. , e}, 

and let (Xm)l denote the complement of Xm in E. For a functional I E C1(E, R) 
we set In := Ilxn the restriction of I on Xn. Recall that a sequence (zj) C E is 
said to be a (PS)c sequence if zj E Xn, nj -> oc, I(zj) -* c and I'n(zj) - 0 as 

j - oo. If any (PS)* sequence has a convergent subsequence, then we say that I 
satisfies the (PS)* condition. 

Denote the upper and lower level sets, respectively, by Ia = {z E E: I(z) > 
a}, Ib = {z E : I(z) < b} and Ib = Ia n Ib (denote similarly (In)a, (In)b and 

(In)). We also set = {z E E : I'(z) = 0}, IC = C n Ic, IC = 1 n I and 
/Cb= /Ca n /Cb. 

Proposition 2.1. Let E be as above and let I E C1(E, ) be even with I(0) = 0. 
In addition, suppose that, for each m E N, the conditions below hold: 

(I1) there is Rm > 0 such that I(z) < 0 for all z E Xm with Ilzll > Rm; 
(12) there are rm > 0 and am - oc such that I(z) > am for all z E (Xm-l)I 

with llzll = rm; 
(13) I is bounded from above on bounded sets of Xm; 
(14) if c > O, any (PS) sequence (zn) has a subsequence along which Zn -- z E 

]Cc. 

Then the functional I has a sequence (ck) of critical values, with the property that 
Ck -* 00. 

Remark 2.1. This proposition is more or less known if the condition (14) is replaced 
by the (PS)* condition (cf. [1], [9]), or by the usual Palais-Smale condition, that 
is, any sequence (Zk) C E such that II(zk)l < c and I'(zk) -+ 0 has a convergent 
subsequence (cf. [3]). 

Proposition 2.2. Let E be as above and let I C C1(E, 1) be even. Assume that 
I(0) = 0 and that, for each m E N, the two conditions below hold: 

(15) there are rm > 0 and am > 0 such that I(z) > am for all z E Xm with 
llzI =rm; 

(16) there is bm > 0 with bm - 0 such that I(z) < bm for all z E (Xm-l)1. 
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Moreover, suppose that either I satisfies the (PS)* condition for all c > O, or that 
the condition below holds: 

(17) inf I(IC) = 0, and, for all c > 0, any (PS)c sequence (zn) has a subsequence 
along which zn - z E ICc with z = 0 only if c= 0. 

Then I has a sequence (ck) of positive critical values satisfying ck - 0. 

Proof. Let E be the family of symmetric, closed subsets of E\{0}, and let y : S 
N U {0, oo} denote the Krasnoselski genus map. Set 

Cm := sup inf I(z), 
AEn zEA 

where 

Sm := {A E : A c Xn and 7(A) > n + m}. 
Fix m E N. The Borsuk-Ulam theorem implies that A n (Xm-1)l 8: 0 for each 
A E EM. It follows from (I6) that 

inf I(z) < sup I(z) < bm. 
zEA 

zE(Xm-1)l 

On the other hand, since -y(Br,m nXm) = n+m, one has Sm := aBrm nXm E m, 
and so, by (15), we obtain 

inf I(z) > am. 
zESn 

Therefore, 

(2.1) am < cn < bn. 

A standard deformation argument, using a positive pseudo-gradient flow, yields the 
existence of a sequence (Zm)= 1 with zm C Xn satisfying 

I 1 
I/(zW)-cml <- and IIT/(zM) <-. 

We can assume that I(zM) -- cm as n -- oo. So, (zm) is a (PS)c sequence with 

(2.2) am < cm < bm. 

Now, if we assume that I satisfies the (PS)* condition for c > 0, then the conclusion 
follows. Next, suppose instead that (17) holds. Then, along a subsequence, zm 
Zm as n - oo with I'(zm) = 0 and 0 < I(zm) < cm. Finally, by (2.2), 

I(zm) < bm -4 0, 

and the proof is complete. D 

Proposition 2.3. Let E be as above and let I E C1(E, I) be even with I(0) = 0. 
Suppose, in addition, that the three conditions below hold: 

(Is) there are ?f N and r, a > 0 such that I(z) > a for all z E Xe with Izllz = r; 
(19) there is b > 0 such that sup I(E2) < b; 

(I1o) any (PS)c, c > O, sequence (zn) has a subsequence along which Zn -- z E 
ICc and Plzn -- Plz. 

Then I has at least one pair of nontrivial critical points if ? = 1, and infinitely 
many critical points if ? > 1, with positive critical values. 
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Proof. Let E, 7y, Em and cm be as in the proof of Proposition 2.2. As before, by 
(I8) and (19), we obtain 

a < c< b for all n C N and m = 1, * , , 

and we find sequences zm E Xn such that, going to subsequences if necessary, 
I(zm) -- cm and In(zM) -- 0 as n -- oc with 

b > c l _> 2> * *.. > ce > a. 

Using (I1o), we can assume furthermore that zWm x Zm E KCcm for m= 1,... , , as 
n -+ oo. If f = 1 the proof is complete. 

Consider f > 1. Let F = {z E C: I(z) > 0}. We are going to prove that F 
is an infinite set. Arguing by contradiction, we suppose that F is finite. Choose 
0 < p < a < b < v satisfying 

A/ < inf I(F) < sup I(F) < v. 

Let k E N be so large that 0 0 A := QkF, where Qk : E - Xk denotes the 

projection. Then A is also finite, and y(A) = 1. By the continuity of y, for all 
6 > 0 small, y(N^(A)) = 7(A), where N (A) {z E Xk dist(z,A) < 5}. Set 
C - Nk (A) (Xk)I. Since N^ (A) c C0 and Qk C - Nk (A), it follows from the 

properties of y that y(Cj) = y(N^(A)). We remark that Qk = p1 + (Qk - p1) and 
that the range of Qk - p1 is k-dimensional. So by virtue of (I1o), we conclude that, 
for all c > 0, any (PS)* sequence (zn) has a subsequence along which zn - Z C IC, 
and QkZn - Qkz. Hence there are no E N and a > 0 such that for all n > no, 

In (w)l > a for all w E (In)' \ Cn, 

where C^ = C0 n Xn. By a standard deformation argument, we can then construct 
a sequence of odd homeomorphisms rn : Xn -* Xn such that 

Tin ((In)} \C Cn) C (In)v 

(cf. [12]). For no sufficiently large, we can suppose that 

/ < c' < c-~1 < < cl < v for all n > no. 

Let G E En be such that inf I(G) > (, + c')/2. One then has 

rn (G\Cn) C (In), 

and 
Y7(qn(G\Can)) = 7(G\C,n) > 7(G) - 7(Cn) 

> n+t--(C^) > n+it-1. 

Thus rln(G\C6n) E Se-1 and v < inf I(rqn(G\Cn)) < c -1. One finally comes to 

v < ce-1 < v, which is a contradiction. D 

From now on we turn to the system (E). We denote by I It the usual Lt(Q) norm 
for all t E [1, oo]. For q > 1 let Vq = Ho (f) if q < 2* and Vq = H (Q) n Lq(), the 

Banach space equipped with the norm Ilvllvq = (lVvl2 + I1) /, if q > 2*. Let Eq 
be the product space Ho (Q) x Vq with elements denoted by z = (u, v). We denote 
the norm in Eq by \z\\q1 = ()VU|2 + 11V 11)1/2. Eq has the direct sum decomposition 

Eq=Eq E+, z=z-+z+ 

where 

Eq {O}x Vq and E+= H(Q) x{0}. 
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For convenience, we will write z+ = u and z- = v. Recall that by (An)neN we 
denote the sequence of eigenvalues of (-A, HI1(Q)). Let en, leni2 = 1, be the 
eigenfunction corresponding to An for each n E N. Clearly, e+ : (en, 0), n E N, is 
a basis for E+, and en = (0, en),n E N, is a basis for Eq. 

Suppose that the assumption (Ho) holds. Then 

(2.3) H(x, z) < c(1 + lu12* + Ivlq) for all (x, z). 
So the functional 

(2.4) I(z) - 2 (IVuI2 - ,Vv2) - H(x, z) 
2 J JQ 

is well defined in Eq. Moreover, I E C (Eq, I), and the critical points of I are the 
solutions of (E). 

Lemma 2.1. If (Ho) holds, then I' is weakly sequentially continuous, that is, 
I'I(n) ' I'(z) provided Zn -. z. 

Proof. If q < 2* this statement is well known. Assume now that q > 2*. Let Zn -' z 
in Eq. Clearly, for all w = (p, ) E Eq, we have 

j (V`UnVa V-VnVV) (VutVp - VvVtP) 

So it remains to show that 

(2.5) Hu(x, Zn)) - I Hu(x, z)>p for all pE Ho(Q) 

and 

(2.6) J Hv(x zn)x, - Hv(x, z) forall E Vq. 

By the Sobolev embedding theorem and using interpolation, we obtain that 
Un -> u in Lt for t E [1, 2*) and vn - v v in Lt for t E [1, q). Noting that 
\Hu(x, u, v) < yo(l + luP-1 + IvT -l) with 2*(r - 1) < q, (2.5) follows easily since 

Un -- u in LP, Vn -- v in L2*(T-1) and o E Ho((Q) C L2'. Next we see that (2.6) 
is clearly true when GE L?. In general, for a ~ E Vq we proceed as follows. Let 
lm E L'? with 4m -- V0 in Lq as m -- oo. So 

|(Hv(x, Zn) 
- 

Hv(x, Z)) = (Hv(x, Zn) 
- 

Hv(x, Z))(m (m - -m)) , 

and using (Ho) we see that this expression is less than the following sum: 

(Hv(x, Zn)-Hv(x, Z)) rm 

+ Cl (I 
- 

m|l + fUnip- 1m - l -P + lVnil m -_ 
q), 

which by its turn is estimated by 

j(Hv(X, Zn)- Hv(x, Z))4m + C2 (m - 
\IP + tm - iq) , 

since (zn) is bounded in Eq and L? is dense in Lq. So (2.6) is proved, and it follows 
that 

I'(zn)w - I'(z)w for all w G Eq. 
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3. THE CASE p > 2 

Throughout this section let (Ho) be satisfied with p > 2, and assume that (H1) 
and (H2) hold. Observe that, by (H2), there exists R > 0 such that H(x,z) > 0 
whenever zli > R. This, jointly with (H1), implies 

(3.1) H(x, z) > cl(lul" + Jvl) - c2 for all (x, z) 

(see [10]). This, together with (2.3) and (H2), shows that 

(3.2) v<q and /3<q. 

Moreover, by virtue of (3.1) and (H2), we may assume, without loss of generality, 
that (since 1 > 2) 

(3.3) a > 2. 

Now we set E1 = Eq, E2 = E+ and e = e, e = e for all n E N. So 

Eq = E1 D E2. Consider the functional defined by (2.4), which has the properties 
stated in Section 2. 

Lemma 3.1. Any (PS)* sequence is bounded. 

Proof. Let Zn E Xn be such that 

I(zn) - c and In(Zn) -0. 

Case 1: q < 2. In this case Eq = (Ho(Q))2. By (H1), for wn = (n, vn), we 
have 

I(Zn) -In(n)wn 

I I ii 2 
-(2 

- -)lVul~n + ( I - )l2vnl2 

(3.4)+ H( (-H! x, Zn)Un + IH (x, Zn)Vn - H(x,n) n - 

> (- - -)|V 2 + (- -) nVv - C2. 
-2 v2 

2- c 

If q < 2, then (3.2) shows that v < 2, and so IIZnlq2 < C3(1 + liZn_lq), which implies 
that (zn) is bounded in Eq. Assume q = 2. Invoking (3.2), we get v < 2, and so 

IVunl2 < c(l + 11znllq) by (3.4). Since H(x,z) > 0 for all Izl large, and 

1 12 f (I] 1 
2 VVnl + H(x, Zn) = -I(Zn) + 2 < c( + l), 
2 J2 z 

one sees that lzn|lq2 < c(l + l|Znllq). Hence, (Zn) is bounded. 
Case 2: q > 2. Note that in this case v = ,L > 2 in (H1). So 

1 /* 1 
I(zn) -I (Zn)Zn = ( Hz (x, XZnn - H(x,Zn)) 

(3.5) 
2 

( - 1)j H(z,zn)-c, 

which, together with (H), yields 
which, together with (H2), yields 

lUnl) + Vnl+ 
3 

< C(l + lZnllq). 
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Using (Ho), we get 

Vun2 = In (z)(un, O) + Hu(x, Zn)Un 
(3.7) JQ 

< CllZnllq + C2 (Kunl + Vnlr--Unl). 

Next we estimate the integrals in the right side of (3.7). Since 2,(p - 1) < a < p, 
we have that 0 := a/(1 + a - p) < 2*. Using the Holder inequality, the Sobolev 
embedding theorem and (3.6), we obtain 

Pl+(p- 1)/ca 
l Unlp < 1Unp- Un 0 < C1 + C2 IlZn q 

Similarly, since T - 1 < 3/2,, we have 1 < w := 3/(1+ 3 - r) < 2*, and hence 

I vn 
- 

lunl -< Iv- lunl <- cl + c2znll +( -l) 

Therefore, using the estimate in (3.7), we obtain 

(3.8) |Vun| < c(1) + [Z nq- + I l(-)/n). 

Since 

IVvn 2 =-I(zn)(0, v)- Hz(X,Zn)Zn + / HU(x, Zn)un, 

and using (3.5) and the above arguments, we obtain 

(3.9) |Vvn| 
2 

< c(1 + Zn ll -1)/a + lZnl1+(-l)/ 

Recall that, in view of our assumptions, (p- 1)/a < 1/2,, ( - 1)//3 < 1/2*, and 
3 = q if q > 2*. Hence, it follows from (3.6) and (3.8)-(3.9) that (zn) is bounded 
in Eq. D 

Lemma 3.2. Let Zn E Xn be a (PS)* sequence. If q < 2*, then (zn) contains 
a convergent subsequence. If q > 2*, then there is a z e Eq such that, along a 
subsequence, Zn - z and I'(z) = 0 and I(z) > c. 

Proof. By Lemma 3.1, (Zn) is bounded. We can assume that zn - z in Eq, Zn - z 
in (LS(Q))2 for all 1 < s < 2*, and Zn(x) -z z(x) a.e. on Q. It follows from the 
weak sequential continuity of I' (see Lemma 2.1) that I'(z) = 0. Since In(Zn) -> 0, 
we obtain 

(Vun, Vun - VU)L2 = In (zn)(Un -, O) + J Hu(x, Zn)(Un - u) 

= o(1) + Hu(x, Zn)(Un -). 

Using (HO) and the Holder inequality, we obtain the estimate 

Hu(x, Zn)(Un - u) 

< C (Un --U1 +- lUnlpp-1 
- 
ULp + lVn\l1 Un - 

l) = o(l), 

where w is as in the proof of Lemma 3.1. Hence IVunl -1 IVul2, which implies 
Un - u in H (Q). Let Pn : Eq - Xn denote the projection. Observe that Pnz -Z z 
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in Eq for all z E Eq. Moreover, using again (Ho) and the Holder inequality, we 
estimate 

Hv(x, Zn)(v- Pv) 

c (Iv- Pvll + Il Plv - Pnlp + Inl 1v -Pnvlq) 
- 

0. 
On the other hand, 

(Vv, Vv -Vn)L2 = o(1) + I', ()(0, v - Pnv) + / Hv(x, Z)(Vn - Pnv) 

= o(1) + Hv(x, zn)(vn -v) 

= (1) + 
/ Hz(x, Zn)( - Z) - Hu(x, Zn)(n - u) 

= o(l) + j H(x., z,)zn - / Hz(x, zn)z. 

Lebesgue's theorem and the weak sequential continuity of Hz(x, .) (see the proof of 
Lemma 2.1) yield 

|V12 _-limsupV Ivnl2 =liminf( Hz(x, zn)zn- / Hz(x, Zn)Z) > 0, 
n- oo o--+ 00 

i.e., [Vv12 > limsupn,o IVvnl2. This, together with the weak lower semicontinuity 
of norms, implies IVvnl2 - IVvl2. So Vn -+ v in Ho(Q). 

Therefore, if q < 2*, we obtain that, along a subsequence, Zn - z in Eq and 
consequently I(z) = c. Next assume that q > 2*. Observe that 

1 i V 1 
I(z) - I(Z) - (IVul2| un -IVu ) -(|Vvl2 - Vvl)12 2 2 

+ H(x, zn)- jH(x, z); 

hence, 

I(z) - c = o(l) + | H(x, Zn)- H(x, z). 

Lebesgue's theorem then yields 

I(z)-c= liminf H(x, Zn)- H(x, z) > 0, 
n--oo J Q 

that is, I(z) > c. D 

Lemma 3.3. If (H3) also holds, there are r, p > 0 such that inf I(OBrE+) > p. 

Proof. By (Ho) and (H3), for any e > 0, there is c6 > 0 such that 

H(x, u, 0) < EIU12 + c lul2* 

Hence, 
1 ?12 I2* I(u) > 2|Vu|2 -u - Ce l*, 

and the conclusion follows easily. D 

Let e E E+ with IVel2 = 1, and set 

Q = {(se,v) : 0 < s < r, IIIlq < r2}. 
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Lemma 3.4. If (H3) also holds, there are rl, r2 > 0, with r, > r, such that I(z) < 0 
for all z O9Q. 

Proof. By (H3), I(z) < 0 for all z E Eq. By (H2), 

I((se, v))? < - -I2Vv12: cf(se_ CvL)? 
2 2 2 (sJ Q 2 VI)+ 2 

The conclusion follows since a > 2. D 

We are now in a position to prove Theorem 1.1. 

Proof of Theorem 1.1. Lemmas 3.3 and 3.4 say that I has the linking geometry. 
Let Q,, := Q X,, and define 

Cn := inf maxI(-y(Q,)), 
YErn 

wherern := {'y E C(Qn,Xn) : =laQ, id}. Then p < cn < r := sup I(Q). A 
standard deformation argument shows that there is Zn, c X, such that I (IZ) -cn I 
1/n and III(Zn)Hl < 1/n. So we obtain a (PS)* sequence (Zn) with c E [p, r']. 
Lemma 3.2 implies zn -? z with I'(z) = 0 and I(z) > c. The proof is complete. L 

We now consider the multiplicity of solutions using Proposition 2.1. 

Lemma 3.5. I satisfies (II). 

Proof. Using (H2), we obtain 

1(z)< 2V - 2_ CiJ (IuI' ? IVL) + C2. 

Since all norms in span{el, . . - , e,} are equivalent, we obtain 

1(2) -- IVUI, 
c-2 1 2 

11 V2+CIVI 1(Z) <- -(C3Iv 2 -- 1)uI2 - ( 2v + i3~ + C2, 
2 / 2 2 LIl 

for all z = (u, v) E Xm - span{el,... , em} x V1. So (I,) follows easily. L 

Lemma 3.6. I satisfies (12). 

Proof. Since (Xm)I C HO'(Q) and Ho4(Q) embeds compactly in LP(Q), we have 
that rTm > 0 and rim -0 0 as m -* oc, where 

(3.10) rIm := sup UlP 

UE(Xm)I\IO} I JV12 

see Lemma 3.8 in [141. For z = (u, O) E (Xm)I, it follows from (Ho) that 

1(z) = IIVu12 _ H IVU12 I( 
- 

2 , ) CIUlp - C2 

> - Vu- cMriIVuIP - C2. - 
2 

Setting rm = (pCirTp)1/(2-P) and am (p - 2)r2/2p - c2, we come to the desired 
conclusion. LI 

Proof of Theorem 1.2. Since H(x, z) is even in z, I is even. Lemma 3.2 shows 
that I satisfies the assumption (14) of Proposition 2.1. Lemmas 3.5 and 3.6 show 
that (I,) and (12) hold. Clearly (13) is also true. Therefore by Proposition 2.1, 
there is a sequence (zn) C Eq satisfying I'(zn) = 0 and I(zn) -* oc. The proof is 
complete. O 
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4. THE CASE p < 2 

Throughout this section we assume that (Ho) is satisfied with p c (1, 2). We 
also suppose that (H4) - (H6) hold. 

Let Eq = E1 E E2 be as in Section 3. Consider the functional 

J(z) = -I(z) - H(x, ) + 2lI 
- 

2VUl-. 2 2 Vu 2 

Lemma 4.1. Any (PS)* sequence (zn) has a subsequence converging weakly to a 
critical point z of J with J(z) < c, and z = 0 only if Zn - 0 in Eq. 

Proof. The proof is divided into two parts. 
Part I. The sequence (zn) is bounded in Eq. By (H4) it follows that 

1 1 I I I 
J(Zn) - Jn(Zn)(- - n, ) > - - ) |VVn 2 + (-- I) VU -C. 

P v - 2 v 2 2 2 

Hence IVunl < c(1 + lznllq). If v > 2, we also get IVvnl2 < c(1 + llznllq). If v = 2, 
we use (H5) and the fact that IVvl2 > A1lv12 in order to obtain 

2 21 
(2-6) IVvnl < ) |vVvl 2 + H(x, Zn) = J(zn) + 2 Vunl2 

Hence, IVvn2 < c(1 + |lZnllq), and we get 

IVunl + IVvnl < c(1 + IlZnllq). 

Thus, if q < 2*, then (Zn) is bounded in Eq. Assume next that q > 2*. It follows 
from (H6) that 

(4.1) Jn(n)(0, vn) > ClivnIq + |VIVvn - C2 (IVnl + |Un2) . 

Thus IVunl2 + IVvnl2 + Ivnq < c(1 + Ilznllq), which implies that (zn) is bounded 
in Eq also in the case when q > 2*. 

Part II We can now suppose that Zn - z in Eq, Zn -> z in (LS(Q))2 for all 
1 < s < 2*, and z,(x) -- z(x) a.e. in x C Q. It follows that z is a critical point of 
J. As in the proof of Lemma 3.2, using (Ho) and 

Jn(Zn)(Un -U, ) = Hu(X, Zn)(Un -u) - (VUn, V(Un -U))L2, 

we obtain that 

|(Vun, V(Un - U))L2 I 

< o(1) + c(\Un - U|l + lunlp-l un - Ulp + IVnl -lun -- U ) = o(1), 

and so un - u in Ho (Q). Let Pn : Eq - Xn be the projection as in the proof of 
Lemma 3.2. So we obtain 

(Vvn, V(v - vn))L2 = o(1) + (Vvn, V(Pnv - vn))L2 

= o(1) + / Hv(x, Zn)(Vn - Pnv) - Jn (zn)(O, n - Pnv) 

= o(1) + H,(x, Zn)(n - v) + Hv(x, zn)(v- PnV). 

Using (Ho), we have 

J Hv(x, Zn)(V - 
PnV) < c (1 + |Un 2* + IVn q-) 1V- Pnv q 

-- O 
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Consequently, 

(4.2) (Vvn, V(v - ))L2 = / Hv(X, Zn)(Vn -v) + o(1). 

Thus if q < 2*, it follows from (4.2) that IVvnl2 --* Vvl2, which implies vn -- v, 
and so Zn -> z. This proves that J satisfies the (PS)c condition in this case, and 
that J(z) = c. 

Consider next q > 2*. The weak sequential continuity of Hv (x, ) (see the proof of 
Lemma 2.1) yields fJ Hv(x, zn)v - fJ H,(x, z)v. By (H6), fn(x) = Hv(x, Zn)vn + 

Y6(lvnl+lu|n2) > 0. Using the fact that Ivn - Ivl and lunl2 - ul2, and applying 
Fatou's lemma to the sequence (fn), we get 

lim inf Hv(x, zn)vn > / Hv(x, z)v. n-*oo Q Q 

Using this estimate in (4.2), we obtain that IVvl2 > limsup2,o |Vvnl2, which 
implies that vn -* v in Ho (Q). In order to conclude that J(z) < c, we use the 
estimate 

J(z) -J(z) - (H(x, Zn) - H(x, z)) + o(l), 

(H4) and Fatou's lemma. Finally, if z = 0, then Zn - 0 in (Ho(Qf))2. By (4.1), 

ivnlq < 
o(1 ) + c (lvnli + n) U 0, 

and so Zn - 0. D 

Remark 4.1. In a similar way, using even simpler arguments, one checks that, if 
(Ho) holds with p, q E (1, 2), J satisfies the (PS)* condition for all c. 

Remark 4.2. Let Jm = Jlxm denote the restriction of J on Xm. As in Lemma 4.1, 
it is not difficult to check that, if the sequence (zm) C Eq, with zm E Xm, satisfies 

J(zm) ~ c and Jm(Zm) - 0 as m - oo, then it possesses a subsequence converging 
weakly to a critical point z of J with J(z) < c, and z = 0 only if z, - 0 in Eq. We 
also have, as in Remark 4.1, that, if (Ho) holds with p, q E (1, 2), then any such 
sequence has a convergent subsequence. 

Lemma 4.2. There is an R > 0 such that J(z) < 0 for all z = (u, O) with llzll > R. 

Proof. By (Ho), we have H(x, u, 0) < c(l + lulP). Hence 

i 1 
J((u, )) H(x,u, ) - 2 Vu2l < c1 + C2ulIp - Vu 

2 i 2 2 

and the lemma follows, since p < 2. 0 

Lemma 4.3. For e > 0 small there is p > 0 such that J((cei,v)) > p for all 
v E Vq, where el is the eigenfunction corresponding to the first eigenvalue A1 of 
(-ZX, Ho(Q)). 

Proof. By (H5), for E > 0 small, H(x, el, v) > y4E?ae - Aiv2; hence, 
1 

VV2 
2 2- a )e- J((&ei, v)) H= (x, Eel,V) ) ? v l2 -A lE (>I411 

- A 1 
T cnu Jn fl2 2 2 ow 
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We are now ready to prove Theorem 1.3. 

Proof of Theorem 1.3. Recall that Xm span{ei, , em} x Vq, and consider the 
restrictions Jm as defined in Remark 4.2. Set DR = BR nE2 = BR n (Ho (Q) x {0}) 
and Dm = DR n Xm, where R > 0 comes from Lemma 4.2. Define 

Cm = inf max J(y(Dm)), 
YErm 

where Fm = {? E C(Dm,Xm) -:(z) = z for all z E ODm}. It is well known 
that y(Dm) nW T 0 for all 7y F r, where W = {(?el,0)} x Vq with E > 0 
small. Invoking Lemma 4.3, we fix an e > 0 so small that there is p > 0 satisfying 
inf J(W) > p. Then we have 

p < Cm < b:= max J(DR). 

The well-known saddle point theorem (cf. [12] or [4], [14]) implies that there is 
Zm E Xm satisfying IJ(zm) - Cm\ < 1/m and |IJ(n(zm)|l < 1/m. Now by virtue of 
Remark 4.2, along a subsequence, Zm - z with J'(z) = 0 and z : 0, ending the 
proof. D 

We now turn to the proof of Theorems 1.4 and 1.5. 

Lemma 4.4. If, in addition, 73 = 0 in (H4), then J satisfies (15). 

Proof. It follows from (H5) that 

1 - j IVV1 V 
J(z) > cllU + - 6)Vv2 

- 
Vl12 

(4.3) 1 
? (C2 - 2 IVu 2-a) I + ( -6) Vv2. 

Since a < 2, the result follows in the case when q < 2*. Next consider q > 2*. 
Suppose (15) does not hold. Then for any r > 0 there is a sequence zj E Xm such 
that llzjll = r and J(zj) -O 0. It follows from (4.3) with z = zj, and for r small, 
that IVuj 2 -+ 0 and IVvjl2 -- 0. All this implies that fJ H(x,zj) - 0. From as- 
sumption (Ho) and the fact that (uj) lies in a finite-dimensional subspace, it follows 
that fJ Hu(x, zj)uj -+ O. Consequently, by (H4) with y3 = 0, f Hv(x, zj)vj - 0. 
This, jointly with (H6), yields 

1q <cl Hv(x, zj)vj + C2(IVj1l + lu ) 0. 

Hence, zj -+ 0 in Eq, which is a contradiction. E 

Lemma 4.5. J satisfies (16). 

Proof. By (Ho), H(x,u,0) < c(lul + uIlP), and so, for u E (Xm-1)l, one has 

1 
J((u, 0)) < Cl (lulp + lulp) - lVl 

< (Clulp - lVul2) + (clllp - |Vul2) 

(ci7m 
- 

lVu2)1l 2 + (Cl717 
- 

2IVl12-p)IVUlP 

where Trm was defined by (3.10). Let bm := (clrm)2+(1-p/2)clrP(2pC1lT)p/(2-P). 
Then 0 < bm - 0 and J((u, 0)) < bm for all (u, 0) E (Xm-1)-1. [ 
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Proof of Theorem 1.4. Since H(x,z) is even in z, J is even. If q < 2*, then J 
satisfies the (PS)* condition for all c (see the proof of Lemma 4.1). If q > 2*, then, 
using assumption (H4) applied to a critical point z, we obtain 

1 1 I 1 iVv2+I J(z) = J(z- ) - J()( -V > 0 
/11/ I ( 1 1 ' \ 

This, jointly with Lemma 4.1, shows that (17) is satisfied. It follows from Lemmas 
4.4 and 4.5 that J satisfies (15) and (I6). Therefore, the desired conclusion follows. 

D 

Finally, we prove Theorem 1.5. 

Proof of Theorem 1.5. The proof of the existence of one nontrivial solution is sim- 
ilar to that of Theorem 1.3, using Remark 4.2 and Lemmas 4.2 and 4.3. The 
other conclusion can be obtained along the lines of the proof of Theorem 1.4, using 
Remark 4.1 and Lemmas 4.4 and 4.5. O 

5. THE CASE p = 2 

In this section we always assume that (Ho) holds with p = 2 and r < 1 + q/2. 
We also suppose that (H7) and (H8) are satisfied. We will apply Proposition 2.3 
in order to prove Theorem 1.6. Thus, set 

E2 = , - 
span{e,, * * , X , E' =Eq E2, 

and 

Xe = E1 ? span{e+,. * e, , ,}. 

One may arrange the bases as e = e for n C N and e2 ne+_ for 1 < n < 

f-j, en = e_+ for e-j <n < , e2= e for f < n < +i-1, and e2 = e 

for n > t + i - 1. Consider the functional I given by (2.4). 

Lemma 5.1. I satisfies (I8); that is, there exist r, a > 0 such that I(z) > a for all 
z E Xe with Ilzljq = r. 

Proof. Let z = (u, v) E Xe. Since v E span{el, .- ,ej}, we have v e L??. By (Ho) 
and (H7), for any e > 0, there exists c, > 0 such that 

Ro(x, z) < Elz22 + c,(lu]2* + Ilq). 

Thus 

1 I1 
I(z) = 2 (IVu2 - aolu2) - (IVvl2- bolvl) - Ro(x, z) 

> (1- ) IVul2 + ( -1) IVv12 -1J2 - c, (12 + Iq) 

Now the conclusion follows easily. O 

Lemma 5.2. I satisfies (19); that is, sup I(E2) < oo. 
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Proof. For z E E2 we have, using (H8), that 

I(z) = 2 (|Vu2 - aoo U2) - JVvl - Roo(x, z) 
2 1 

< - 
I( )Iv - 

1)l + -IV + 7 2- % |lV + l79|I 

< 
-(2 ( - ) VUl2 - 

Cl) |Vu - 
(2 |V|J + ysv2 ) + C2, 

which implies that I(z) < 0 for all z E E2 with |1zllq large. O 

Lemma 5.3. Let c > O. Then any (PS)c sequence is bounded. 

Proof. We decompose Ho (Q) as 

Ho(Q) =U- U+, u=u-+u+, 

where U- = span{el,.. ,ek} and U+ is the orthogonal complement of U- in 

Ho(Q). 
Let (zn) be a (PS)* sequence. Using the expression of In: 

In (n) 
= IVUn+W - aIU 12- j 9uRoo(x, Zn)ux+, In(zn>u~+ 2, - aoon 2 n 2 Zn) Un 

plus (H8) and the Holder inequality, we obtain 

(1- 
Xa )Vu C1 V 1 2 +o (l 1+ -un + + vn r) 

where r = q/(l + q - T). By assumption, 1 < r < 2. It then follows from the 
Sobolev embedding theorems that 

(i+- ,lVU 2 < C2(1 + lUna + VUlul )IVu+l2- 

Similarly, we deduce that 

(ao - i) ivU-12 ?c(i+ J 1U + IVnl i) ivu12- 

The two previous inequalities imply the estimate 

(5.1) |vu < C3 (i + lUnl )+ lunl -I ) . 

Using the expression of H given in (H8), and recalling that I(zn) > 0 for large n, 
we obtain 

2 2 22 (5.2) hVl 2 + / Roo(sZ Zn) = gveUn l - 2 |n |t -I(Zn) < 0 2 r laVrgJn2 

Next using (5.2), assumption (Hs) and (5.1), we obtain 

(5.3) |Vvn2 -+ C4|1Vnq < C5 (1 + lUnl + JUn 2( -1) + lVnlq( --1) 

The combination of (5.1) and (5.3) implies 

IVzn| + |Vnlq < c6 (l + unl2 + IVnl(q-) 

Since a < 2 and 2(r - 1) < q, we see that (zn) is bounded. a 

Lemma 5.4. I satisfies (I1o). 
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Proof. Let (Zn) be a (PS) sequence with c > 0. Using Lemma 5.3, an argument 
similar to that of Lemma 3.2 shows that along a subsequence zn - z E KCc, we have 
Un -* u in Ho(Q). Since E1 C Ho(Q), we have Plzn - Plz. D 

Proof of Theorem 1.6. Since H(x, z) is even in z, I is even. By assumption, I(0) - 
0. Lemmas 5.1, 5.2 and 5.4 show that I satisfies (I8) - (I10). Now Proposition 2.3 
applies, and the proof is complete. ] 
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