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The common reflecting element (CRE) method revisited

J. C. R. Cruz∗, Peter Hubral‡, Martin Tygel∗∗, Jörg Schleicher∗∗,
and German Höcht‡

ABSTRACT

The common reflecting element (CRE) method is an
interesting alternative to the familiar methods of com-
mon midpoint (CMP) stack or migration to zero offset
(MZO). Like these two methods, the CRE method aims
at constructing a stacked zero-offset section from a set
of constant-offset sections. However, it requires no more
knowledge about the generally laterally inhomogeneous
subsurface model than the near-surface values of the ve-
locity field. In addition to being a tool to construct a
stacked zero-offset section, the CRE method simultane-
ously obtains information about the laterally inhomoge-
neous macrovelocity model. An important feature of the
CRE method is that it does not suffer from pulse stretch.
Moreover, it gives an alternative solution for conflicting
dip problems. In the 1-D case, CRE is closely related to
the optical stack. For the price of having to search for
two data-derived parameters instead of one, the CRE
method provides important advantages over the con-
ventional CMP stack. Its results are similar to those of
the MZO process, which is commonly implemented as
an NMO correction followed by a dip moveout (DMO)
correction applied to the original constant-offset section.
The CRE method is based on 2-D kinematic considera-
tions only and is not an amplitude-preserving process.

INTRODUCTION

The ultimate goal of all seismic reflection imaging methods
consists of providing a best possible depth image of the sub-
surface reflectors and possibly deriving their seismic attributes
from the signals distributed along the reflector images. It is well
accepted that the success with which this task can be achieved
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highly depends on the accuracy of the velocity model. Different
imaging techniques, including the common midpoint (CMP)
stack (Yilmaz, 1987), migration to zero offset (MZO) (Dietrich
and Cohen, 1993; Tygel et al., 1998), poststack migration (Stolt,
1978; Schneider, 1978), and prestack true-amplitude migration
(Bleistein, 1987; Schleicher et al., 1993) require different de-
grees of accuracy of the macrovelocity model to construct the
respective image in either the time or depth domains. There-
fore, two key issues to be addressed in seismic reflection imag-
ing are to identify the best imaging technique for an insuffi-
ciently known macrovelocity model and to determine how the
original estimate of the macrovelocity model can be refined as
part of the imaging procedure. To contribute to an answer to
this question, we revisit Gelchinsky’s (1988) common reflecting
element (CRE) method.

Given a set of constant-offset sections, the CRE method is
designed to construct a stacked zero-offset section for a 2-D
isotropic inhomogeneous earth model starting from a near-
surface velocity, assumed constant in the vicinity of each CMP,
as the only a priori information. In other words, the CRE
method has the same goal as MZO or NMO/dip moveout
(DMO). The principal and probably most useful advantage
of the CRE method in comparison to CMP and MZO stacks
is that it provides, in addition to the stacked section, impor-
tant parameters for the construction of a macrovelocity model
that may even be laterally inhomogeneous. These parameters
are given in the form of two specific wavefront attributes that
can be assigned to each obtained primary zero-offset reflec-
tion event: the radius of curvature RNIP and the emergence
angle βo of a fictitious wavefront 6o emerging at the earth’s
surface (Figure 1, Table 1). The corresponding fictitious wave
is assumed to originate at the so-called normal incidence point
(NIP) (point Co in Figure 1), on the target reflector6D . This fic-
titious wave is referred to as the NIP wave (Hubral, 1983), and
its path of propagation CoXo is the normal ray. Both the radius
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of curvature and the emergence angle of the emerging NIP
wave, once assigned to each primary reflection in the stacked
section, define what Berkovitch and Gelchinsky (1989; see also
Berkovitch et al., 1991; Keydar et al., 1995) call the radiusgram
and anglegram sections. In addition to the constructed stacked
section, these two auxiliary sections can be used as an input
to either generalized Dix-type formulas or more general trav-
eltime or tomographic inversion schemes (Dix, 1955; Hubral
and Krey, 1980; Goldin, 1986; Keydar et al., 1995) to generate
an accurate macrovelocity model.

The fact that the CRE method needs as an input parameter
the near-surface velocity provides no principal difficulty be-
cause this is usually available prior to a full velocity analysis. In
a marine environment, the water velocity can be used readily.
In land seismics, usually some preprocessing such as redatum-
ing (assumed to be done already when the CRE method is to
be applied) also needs a near-surface velocity field. If the near-
surface velocity is unknown, it can be determined as a result
of the CRE method in a more general form of the inversion
procedure (Cruz, 1997; Cruz and Martins, 1998).

The CRE method has been studied considerably over the
past decade, especially for constructing a stacked section

FIG. 1. Sketch of the constant-offset reflection ray SCoG and
the ZO reflection (or two-way normal) ray XoCoXo in a 2-D
isotropic inhomogeneous model (solid lines). The (hypothet-
ical) NIP wavefront 6o originates at the reflection point Co
and follows the one-way normal ray to the central point Xo,
where it emerges under the angle βo and with a radius of cur-
vature RNIP. All primary reflections from the common reflec-
tion point Co on 6D are found at the points P(xs, xg, τ ) in the
different constant-offset sections. They are aligned along the
traveltime curve of the NIP wave, which thus defines the opti-
mal CRE gather and the optimal CRE stacking curve for point
Co. This traveltime curve is estimated from constructing the
corresponding situation for the point Ĉo in the auxiliary model
with constant velocity and the auxiliary wavefront 6̂o (dashed
lines).

(Rabbel et al., 1991; Steentoft et al., 1992; Steentoft, 1993;
Steentoft and Rabbel, 1992a, 1992b, 1994; Gelchinsky et al.,
1993a,b; Keydar, 1994; Cruz, 1994) and for estimating a lat-
erally inhomogeneous macrovelocity model (Berkovitch and
Gelchinsky, 1989; Berkovitch et al., 1991; Steentoft, 1993;
Keydar et al., 1995). The works of Steentoft et al. (1992),

Table 1. List of symbols.

Co = Reflection point in the true subsurface
model

Ĉo = Center of curvature of the NIP
wavefront at Xo

P(xm, h) = Selected point of the volume of seismic
data

Po(xo, τo) = Selected point of the simulated
zero-offset section

(Rmin, Rmax) = Search interval for the radius of
curvature of the NIP wavefront

RNIP = Radius of curvature of the NIP
wavefront at the central point Xo

(S,G) = Source and geophone points in the
seismic line

U(xm, h, τ ) = Observed seismic trace in the volume of
data

U(xo, h = 0, τo) = Simulated seismic trace in the
zero-offset section

Vrms = Root-mean-square velocity
V̄(xm, τo) =Mean medium velocity used in the CMP

stack
vo = Near-surface constant velocity of the

true model, and the velocity of the
auxiliary model used in the
CRE analysis

Xo = Selected central point in the seismic line
(xm, h) =Midpoint and half-offset coordinate
(xo, z = 0) = Coordinate of the central point Xo
(xs, xg) = Source and geophone coordinate
Y = Parameter used in Gelchinsky’s formula

for determining the CRE gather
(αmin, αmax) = Search interval for the asymmetry

parameter
αo =Asymmetry parameter used to define

the CRE gather
βo = Emergence angle of the NIP wavefront

at the central point Xo
1τ = True CRE moveout
1τ̂ =Auxiliary (approximated) CRE

moveout
(1τs,1τg) = Two true partial CRE moveouts

assigned to the source and geophone
(1τ̂s,1τ̂g) = Two auxiliary (approximated) partial

CRE moveouts assigned to the
source and geophone

6D = Reflecting element in the true
subsurface model

6̂D = Image of the reflecting element in the
auxiliary model

6o = Normal incidence point (NIP)
wavefront starting at the reflection
point in the true subsurface model

6̂o = Circular approximation of the NIP
wavefront at the central point Xo

τ = Traveltime of one primary reflection with
arbitrary offset

τo = Traveltime of one normal ray primary
zero-offset reflection

τ̂ =Auxiliary (approximated) reflection
traveltime
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Steentoft and Rabbel (1994), and Olalde (1996) provide a vari-
ety of synthetic and field data examples. Steentoft (1993) com-
pares stacked sections generated by CRE and CMP methods
applied to the Marmousi data set with impressive results.

Like conventional NMO, the CRE method is based on a
second-order approximation of traveltimes. The idea is to make
better use of multifold data than CMP sorting can provide.
Whereas the second-order traveltime approximation within a
CMP gather depends on one parameter only (usually chosen
as the NMO velocity), this is not the case in other data subsets.
In particular, within the CRE gather to be defined below, the
traveltime depends on two parameters, one of which is closely
related to the familiar rms velocity. The additional parameter,
however, is not of the fourth order (i.e., the next higher order
in the traveltime expansion as discussed, e.g., by Al-Chalabi
(1973)) but is an additional second-order parameter.

Of course, a more rigorous comparison of stacking methods
must include the NMO quartic approximation, but this is not
the subject of our work. Here, our interest is to reinforce that
the CRE method is certainly more than an exotic pastime for
theoreticians. We firmly believe that it should be seen as a
worthwhile alternative to a conventional CMP stack. Thus, the
main aim of this work is to provide a clear presentation of the
CRE method and to point out its importance in the context of
other seismic imaging methods.

We stress that the CRE method is designed for inhomoge-
neous media. For homogeneous media, French et al. (1985) in-
troduce a similar concept they term common reflection point
(CRP) stacking, based on the traveltime equation of Levin
(1971). They show how to improve CMP stacking to avoid re-
flection point dispersal. Since CRP stacking is closely related to
DMO as well as to the CRE method, the paper of French et al.
(1985) is very useful in understanding the relationship between
both methods. A generalization of their method is presented
by Perroud et al. (1996).

Apart from this introduction and the conclusions, this paper
is composed of six principal sections and one appendix. The
first section provides the fundamental concepts of the CRE
method. In the second section, we present the strategy by which
the CRE method constructs a stacked section. The third sec-
tion describes the three principal implementation steps of the
CRE procedure. In the fourth section, the CRE method is tai-
lored to the 1-D case. There, we observe that the optical stack
proposed by de Bazelaire (1988), which provides a useful al-
ternative to the standard CMP method, can be viewed as a
special case of the CRE method. The fifth section shows why
the reflection events in the CRE stacked section do not suffer
from pulse stretch. In the sixth section, we provide a high-
level view of the main features of the CMP, NMO+DMO,
MZO, and CRE stacks to better understand the place of the
latter in the framework of zero-offset simulation. Finally, the
Appendix provides a brief review of some original CRE for-
mulas that can be compared with the new ones derived in this
paper.

BASIC CRE CONCEPTS

We assume the actual subsurface, although unknown, to be
well described by a 2-D laterally inhomogeneous isotropic lay-
ered earth model. This we call the true subsurface model. We
furthermore assume that the kinematics of body waves in this

model is well described by zero-order ray theory (Červený,
1987; Červený and Ravindra, 1971; Kravtsov and Orlov, 1990).
We next consider a 2-D Cartesian (x, z) system, where the hor-
izontal x-axis is coincident with the seismic line and the vertical
z-axis denotes depth (Figure 1). Of the many (not necessarily
smooth) reflectors in the true subsurface model, we select one
and denote it by 6D . We refer to it as the target reflector (Fig-
ure 1) and suppose it to consist of small, smooth segments or
common reflecting elements.

We further assume that a dense multicoverage experiment
has been carried out along the seismic line. This implies that
each point of the seismic line is surrounded by a set of shot–
receiver pairs (within a certain range of offsets). The discrete-
ness of real-world data may require trace interpolation to sub-
stitute missing traces. Each source–geophone pair (S,G) (see
Figure 1) is specified by the Cartesian trace coordinates (xs, xg)
on the x-axis. The corresponding seismic trace is denoted by
U(xs, xg, t), where t > 0 denotes the traveltime. For simplicity,
all events in the acquired seismic traces other than P-P primary
reflections are considered noise.

Let xm denote the horizontal Cartesian coordinate of the
midpoint Xm between S and G, and let h be the half-offset
(Figure 1). Then, the pair (S,G) can be alternatively described
by the new coordinate pair (xm, h). We assume that each pair
(S,G) uniquely determines a single P-P primary reflection ray
SCoG, where Co is the specular reflection point on6D . The cor-
responding normal ray, i.e., the ray normal to6D at Co, emerges
at the central point Xo with the Cartesian coordinate xo.
Note that, in general, for any given pair (S,G), the points Xm

and Xo are not coincident (see Figure 1), i.e., xm 6= xo.
In multicoverage acquisition geometry, there exists an en-

semble of source–receiver pairs that provide P-P reflec-
tions from the same point Co, theoretically including the pair
So=Go= Xo (Figure 2). The corresponding ensemble of all
seismic traces U(xs, xg, t) to these source-receiver pairs is
called the true CRE gather of Xo. The true CRE gather gener-
ally differs from a CMP gather, coinciding only in cases where
xm= xo for all pairs (S,G) in the gather. The CRE gather is de-
fined by the CRE trajectory, i.e., the line of tangency between
the multicoverage traveltime surface and the stacking surface
of Kirchhoff-type prestack depth migration (preSDM), the so-
called Cheops Pyramid (Figure 2).

Let us now consider a fixed point Co and its zero-offset trav-
eltime τo along the two-way normal ray XoCoXo. For any pair
(S,G) belonging to the true CRE gather of Xo, we can write
the traveltime τ along the reflection ray SCoG in the form

τ = τo +1τ, (1)

with 1τ denoting the true CRE moveout.
Referring again to Figure 1, we consider the hypothetical

normal-incidence-point (NIP) wave that originates at t = 0
from Co on the target reflector 6D (Hubral, 1983). It reaches
the seismic line at point Xo at time t = τo/2. In fact, this is the ex-
ploding reflector concept for one point (NIP) on the reflector.
The wavefront at Xo of the emerging NIP wave is subsequently
denoted by 6o. Let us further denote the emergence angle of
the normal ray at Xo by βo and the radius of curvature of the
NIP wavefront 6o at Xo by RNIP.

Considering the emerging NIP wavefront6o in the true sub-
surface model and a source–receiver pair (S,G) pertaining to
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the true CRE gather, the true CRE moveout 1τ can be sepa-
rated as

1τ = 1τs +1τg, (2)

where 1τs and 1τg are the two true partial CRE moveouts
assigned to points Sand G. Both partial moveouts are given by
the traveltime difference between the raypaths CoS and CoG,
respectively, and the one-way normal ray CoXo. In Figure 1,
1τs is positive while 1τg is negative.

Of course, since the subsurface is a priori unknown, so is Co

and thus the true CRE gather and the true CRE moveout. The
CRE method offers the possibility of finding a good approxima-
tion to the above equation with no other information than the
seismic multicoverage data and an estimate of the near-surface
velocity vo at Xo. This velocity is assumed to be constant in the
paraxial vicinity of Xo, which includes all sources and receivers
of traces in the gather but may vary when another central point
is considered. The pair (xo, τo) plays the same role in the CRE
method as it does in a CMP stack, i.e., for each central point
Xo along the seismic line, the stacking must be done for each
time τo. The basic difference between the methods is the stack-
ing line. The CMP stacking line, i.e., the moveout hyperbola,
lies within the CMP gather and is described by one parame-
ter, the stacking velocity. The CRE stacking line, i.e., the CRE

FIG. 2. (a) 3-D multicoverage data space showing the kine-
matic primary reflection response of the dome in form of
CO traveltime curves. Also shown are the CRE trajectory for
point (xo, to), the baseline of the corresponding CRE gather,
and the preSDM surface (Cheops pyramid) for point Co. (b)
Three-layer model with rays for Kirchhoff-type prestack depth
migration (preSDM) of point diffractor Co. The ZO ray to the
reflection point Co and the circular approximation of the NIP
wavefront at Xo are shown in thick black and bold lines, re-
spectively.

trajectory, lies within the CRE gather and is described by two
parameters, being the radius of curvature RNIP and emergence
angle βo of the NIP wave.

AUXILIARY CRE GATHER

One of the key ideas of the CRE method is to assign to
each central point Xo an auxiliary model, in which the constant
velocity coincides with the already estimated velocity vo at Xo.
We stress that this auxiliary model will be used only as a tool to
construct the auxiliary CRE gather around Xo and to compute
the corresponding auxiliary CRE moveout. No assumptions
or restrictions are made on the actual inhomogeneous true
subsurface model.

As will be seen, the CRE method will then provide an ap-
proximation to the true CRE gather, which we call the auxiliary
CRE gather. Within this gather, we have

τ̂ = τo +1τ̂, (3)

where τ̂ is the auxiliary CRE traveltime (with τ̂ ' τ ) and 1τ̂
is the auxiliary CRE moveout (with1τ̂ ' 1τ ). Equation (3) is
used as a stacking line in the auxiliary CRE gather, in the same
way as the NMO traveltime is used for the CMP stack. We will
see that for the case of an arbitrarily curved reflector below a
constant-velocity overburden, the CRE method provides the
exact moveout, i.e., equations (1) and (3) are identical.

Using the auxiliary model, the true NIP wavefront6o can be
approximated in the vicinity of Xo by a circular auxiliary NIP
wavefront 6̂o. This wavefront has the same radius of curvature
RNIP and the same emergence angle βo as the true NIP wave-
front 6o at Xo. Its center of curvature Ĉo has thus the polar
coordinates given by the NIP wavefront attributes RNIP and βo

(see dashed line XoĈo in Figure 1). In other words, the auxil-
iary NIP wavefront can be understood as the front of a wave
propagating in the auxiliary medium from a point source at Ĉo

to Xo.
Let us now see how the auxiliary NIP wavefront can be used

to determine the auxiliary CRE gather and the auxiliary CRE
moveout. The auxiliary CRE gather is defined by the following
fact: for each source-receiver pair (S,G), the two (straight) rays
ĈoS and ĈoG of the auxiliary NIP wavefront must make up a
specular reflection ray SĈoG in the auxiliary model. In other
words, they are required to make the same angle δ with the
normal ray ĈoXo (see Figure 1). These two rays then define
two auxiliary partial CRE moveouts,

1τ̂s =
(

ĈoS

vo
− ĈoXo

vo

)
and 1τ̂g =

(
ĈoG

vo
− ĈoXo

vo

)
,

(4)

the sum of which provides the auxiliary CRE moveout,

1τ̂ = 1τ̂s +1τ̂g. (5)

Considering that the length of the normal ray is given by
ĈoXo= RNIP and using the law of cosines for the triangleŝĈoXoSand ̂ĈoXoG in Figure 1, we obtain

ĈoS= RNIP

√
1− 21 xs sinβo/RNIP + (1 xs)2

/
R2

NIP

(6)
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and

ĈoG = RNIP

√
1− 21xg sinβo/RNIP + (1xg)2

/
R2

NIP,

(7)
where we have introduced the source offset1xs= (xs−xo) and
the receiver offset 1xg= (xg − xo). Moreover, the emergence
angle βo is assumed to be positive when measured counter-
clockwise from the vertical axis where βo= 0 (Figure 1) and
negative when measured clockwise.

Substitution of equations (6) and (7) into equations (4) and
taking their sum yields the auxiliary CRE moveout. Return-
ing to equation (3), we obtain the desired expression of the
auxiliary CRE traveltime

τ̂ = (τo − 2RNIP/vo)

+ RNIP

vo

√
1− 21 xs sinβo/RNIP + (1 xs)2

/
R2

NIP

+ RNIP

vo

√
1− 21xg sinβo/RNIP + (1xg)2

/
R2

NIP,

(8)

in terms of the CRE parameters RNIP and βo as well as the
velocity vo at the central point Xo. Note the explicit dependence
on the source and receiver offsets1xs and1xg, respectively, in
the auxiliary CRE gather, as well as on the chosen traveltime τo.

Asymmetry parameter

The problem to be addressed now is how to find, in a practical
way, all source–receiver pairs of an auxiliary CRE gather with
offsets 1xs and 1xg for a given set of parameters RNIP and βo.

By selecting small positive angles δ as in Figure 1 and using
simple geometrical considerations, we can express the offsets
of the sources and receivers in the auxiliary CRE gather in
short-spread approximation as

1xs = − RNIP sin δ
cos(βo + δ) , 1xg = RNIP sin δ

cos(βo − δ) . (9)

By eliminating δ from equations (9), one can conclude that the
source and receiver offsets must satisfy the equivalent relation-
ships

1xs = 1xg

[
21xg

sinβo

RNIP
− 1

]−1

and (10)

1xg = 1xs

[
21xs

sinβo

RNIP
− 1

]−1

.

We now observe from equations (10) that it is actually the
quantity

αo = sinβo

RNIP
(11)

that controls the relationship between 1xs and 1xg. Thus,
all points Ĉ(R, β) in the auxiliary model with a fixed pa-
rameter value α= sinβ/R have an identical auxiliary CRE
gather. The specification of one search parameter α instead
of two NIP wavefront attributes is therefore sufficient to de-
termine this gather. This fundamental fact was recognized by

Gelchinsky (1988), who termed α the asymmetry parameter
(see also Koren and Gelchinsky, 1989; Rabbel et al., 1991). For
a prior specified search range of possible wavefront curvatures
R, Rmin < R< Rmax, we readily observe (taking into account
that |sinβ| ≤ 1) that the asymmetry parameter remains in the
interval −1/Rm<α< 1/Rm, where Rm= min(|Rmin|, |Rmax|).

Using equations (10), the parameter α may be exactly com-
puted from the source and receiver offsets in the auxiliary CRE
gather by

α = 1xs +1xg

21xs1xg
. (12)

This equation for α differs from the approximate result (A-3)
obtained by Gelchinsky (1988) or Rabbel et al. (1991), which
is valid for small α only.

The asymmetry parameter α has an interesting geometri-
cal meaning. To understand it, we consider an arbitrary point
Ĉ(R, β) in the auxiliary model (Figure 3). At Ĉ, we draw the
normal to the line XoĈ and extend it until its cuts the x-axis
(dashed line in Figure 3), thus defining point T at a distance dt to
Xo. By considering the rectangular triangle X̂oĈT (right angle
at Ĉ), we observe that R= dt sinβ and thusα= 1/dt . As a conse-
quence, all search points Ĉ which, under the same construction,
lead to the same point T on the x-axis (i.e., to the same value
dt ) give rise to the same auxiliary CRE gather. Conversely, all
points Ĉ pertaining to a fixed CRE gather specified by a given
α fall on the lower half-circle through Xo and T with diame-
ter dt = 1/α. Incidentally, this half-circle is nothing else but the
so-called Thales circle of seismic depth migration in constant-
velocity media presented by Liptow and Hubral (1995) and
mathematically described by Schleicher et al. (1997).

It is operationally more attractive (and for the purpose of
computing a macrovelocity model also more stable) to use mid-
point and half-offset coordinates h= (xs− xg)/2 and xm=
(xs+ xg)/2 instead of source–receiver coordinates xs= xm + h
and xg= xm− h. The asymmetry parameter α as given by equa-
tion (12) then takes the form

α = xm − xo

(xm − xo)2 − h2
. (13)

FIG. 3. Geometrical meaning of the asymmetry parameter α.
Construct for a given search point Ĉ(R, β) in the auxiliary
model the normal to the line XoĈ, and extend it (dashed line)
until it cuts the x-axis at point T . Using the rectangular triangle
XoĈT, we see that α= sinβ/R= 1/dt . It can be shown that all
search points Ĉ that belong to a given fixed value of α fall onto
the lower half-circle through points Xo and T with diameter dt .
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Because we know |xm− xo|< h, we observe from equation (13)
that α always has the opposite sign to xm − xo. Solving equa-
tion (13) for xm and choosing the physically correct solution,
we obtain

xm = xo + 1
2α

(1−
√

1+ 4α2h2). (14)

This allows us to gather directly from the different constant-
offset sections all seismic traces U(xm, h, t) that belong to the
sought-for auxiliary CRE gather for a given value of α.

Up to this point, the CRE method involves no approximation
for a curved target reflector6D below a constant-velocity over-
burden. However, approximating equation (14) for |α|¿ 1/2h
or (xm−xo)2¿ h2, i.e., in short-spread approximation, provides
the parabola

xm = xo − α h2, (15)

which allows us to approximately construct the auxiliary CRE
gather for a fixed α. Formula (15) remains a good approx-
imation (with an error less than about 10%) as long as
|xm− xo|< h/3. This may be used as a practical criterion for
determining the maximum deviation of the midpoint in rela-
tion to the fixed central point coordinate along the seismic line
for each constant-offset section.

From equation (14) or its approximation (15), we note that
xm 6= xo (so that Xm is different from Xo) wheneverα 6= 0. More-
over, xm< xo (xm> xo) whenever α > 0 (α < 0). This confirms
that Sand G are localized on opposite sides with respect to Xo

in an asymmetric way. Only if α= 0, then xm= xo, i.e., sources
and receivers are symmetrically located around Xo.

In Figure 4, the parabola (15) is displayed in the (xm, h)
plane for one fixed xo and constant α. The respective seismic
traces U(xm, h, t) of the auxiliary CRE gather for this value of
α are plotted in vertical direction with their origin (t = 0) on
the parabola.

Using midpoint and half-offset coordinates, the auxiliary
CRE traveltime τ̂ of expression (8) can be recast into the

FIG. 4. Construction of a CRE gather in midpoint/half-offset
coordinates. For each constant-offset gather, i.e., for each
half-offset h, the indicated parabola in the (xm, h) plane, given
by equation (15), defines the midpoint coordinate xm of that
seismic trace U(xm, h, t) that belongs to the CRE record to be
constructed for a given central point Xo. Shown are two parabo-
las for two different values of the asymmetry parameter α with
different signs.

form

τ̂ = (τo − 2RNIP/vo)

+ RNIP

vo

√
1− 2α(xm − xo + h)+ (xm − xo + h)2

/
R2

NIP

+ RNIP

vo

√
1− 2α(xm − xo − h)+ (xm − xo − h)2

/
R2

NIP,

(16)

where xm is given by equation (14) or its approximation (15).
We find it convenient to visualize the auxiliary CRE trav-

eltime curve (16) in the following way. Let us assume we are
given a dense set of 2-D constant-offset sections characterized
by half-offsets h varying over the range hmin≤ h≤ hmax. More-
over, let us assume that constant-offset sections have been ac-
quired for all continuously varying midpoints xm over a fixed
interval xmin≤ xm≤ xmax and for all times t within a certain inter-
val tmin≤ t ≤ tmax. We now consider a 3-D Cartesian coordinate
system (xm, h, t), in which the available data cover a certain 3-D
rectangular volume of points P(xm, h, t) (Figure 2). Each fixed
half-offset h specifies a constant-offset section, which is a pla-
nar cut parallel to the (xm, h= 0, t) plane through this volume.
It consists of all traces located at midpoints xm and determined
by source–receiver pairs at (xs, xg).

For a chosen point Po(xo, τo) we must search for all possi-
ble depth points Ĉ(R, α) in the auxiliary model. For each Ĉ,
we must examine those traces whose coordinates (xm and h)
satisfy expression (14) or its approximation (15). We may thus
visualize the traveltime curve (16) as a 3-D CRE trajectory of
points P(xm(h), h, t = τ̂ (xm(h), h)) parameterized by h and ex-
pression (14) or its approximation (15) as the projection of this
3-D trajectory into the (xm, h) plane, i.e., the baseline of the
CRE gather (Figure 2).

Let us stress once more that in a constant-velocity medium,
expression (14) exactly defines the true CRE gather and equa-
tion (16) then defines the true CRE traveltime. This feature
of the CRE method can be verified analytically by compar-
ing formula (13) and Hale’s expression for the reflection-point
dispersal in one CMP gather with a dipping reflector (Hale,
1991):

(xm − xo)2 − voτo

2 sinβo
(xm − xo)− h2 = 0. (17)

Note that for constant velocity, RNIP= voτo/2. Thus, recalling
definition (11), we find that expressions (13) and (17) are iden-
tical. From Hale’s work we know that the DMO ellipse satis-
fies equation (17). This allows us to conclude that, in the same
way as DMO, the CRE method compensates correctly for the
reflection-point dispersal in a constant-velocity medium.

For a laterally inhomogeneous medium, however, both
curves (13) and (16) are no longer exact. In fact, the larger the
offset h and the more inhomogeneous the medium, the greater
the deviations between the true and auxiliary CRE gathers.
As a consequence, the corresponding deviations between the
true and auxiliary CRE traveltimes become accordingly larger.
A feature of the CRE method is that, for all traces pertain-
ing to the auxiliary CRE gather, the auxiliary CRE traveltime
curve approximates the true reflection traveltime τ within that
gather quite well. Also note that the reflection points for the
source–receiver pairs pertaining to the auxiliary CRE gather
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generally lie closely to but not coincide with the true reflection
point Co in the true subsurface model. In other words, similar
to constant-velocity DMO, the CRE method suffers from some
residual reflection-point dispersal in laterally inhomogeneous
media.

CRE STACK

Equation (8) lets us calculate the auxiliary CRE moveout
for any given point Ĉo in the auxiliary model for known CRE
parameters RNIP and βo. Correspondingly, equation (16) fulfills
the same task given the parameters α and RNIP. The basic idea
of the CRE method is now to use the same formulas for a given
set of search points Ĉ in the auxiliary model specified by a cer-
tain range of search parameters R and β to find that particular
auxiliary NIP wavefront that fits the data best. The process is
completely parallel to searching the best fitting parabola or
hyperbola, as is done in conventional NMO analysis. How-
ever, whereas NMO analysis is carried out on CMP gathers
that are already available by simple sorting, the CRE method
needs auxiliary CRE gathers that are constructed during the
process—with no extra effort. The best fitting CRE traveltime
is then specified using a two-parameter (R, β) coherency anal-
ysis on the data.

Two-dimensional CRE method algorithm

Given a point Po(xo, τo) in the stacked section to be con-
structed and the velocity vo at Xo, which will be the velocity of
the auxiliary model, the implementation of the CRE method
can be subdivided into three steps.

Determination of the auxiliary CRE gather.—First, define the
search region Rmin < R< Rmax and αmin <α<αmax. Next, intro-
duce a selected α into formula (14) to find in each available
constant-offset section, specified by its half-offset h, the mid-
point xm of the source–receiver pair that belongs to the sought-
for auxiliary CRE gather. This CRE gather is completely char-
acterized by α. Of course, if the calculated midpoints xm are not
close enough to actual CMP points covered by the acquisition
geometry, trace interpolation may be required.

Coherency analysis.—For each pair (R, α), perform a co-
herency or semblance analysis (see, e.g., Taner and Koehler,
1969; Neidell and Taner, 1971; Gelchinsky et al., 1985) of the
auxiliary CRE gather for α along the auxiliary CRE travel-
time trajectory (16). Assigning the resulting semblance values
to the related search point Ĉ yields the local semblancegram.
This can be scanned for its maximal value (or maximal values),
automatically or by an interpreter.

CRE stack.—The maximum semblance value in the lo-
cal semblancegram determines the optimal values α=αo

and R= RNIP [and thus also βo= arcsin (RNIPαo)] for point
Po(xo, τo). These in turn define the optimal CRE gather, as
well as the optimal CRE stacking curve (16) along which the
trace amplitudes are stacked. The resulting optimal CRE stack
is then assigned to Po(xo, τo). If there is more than one max-
ima, the corresponding stack outputs are added to produce the
stacked output at Po. As a result of repeating this process for
each point Po(xo, τo), the sought-for stacked section is obtained.

Moreover, two NIP-wavefront parameter sections, the radius-
gram and the anglegram, defined by the optimal values RNIP

and βo assigned to Po(xo, τo), are also obtained as an important
byproduct (or maybe even the main product). These two new
attribute sections can be used along with the stacked section as
input to an inversion procedure based on generalized Dix-type
formulas to estimate the macrovelocity model.

We have summarized the CRE method for the case of a sin-
gle reflection point Co on a single target reflector 6D . Under
this assumption, we expected only Co to provide a significant
CRE stack value at Po(xo, τo). Similar to the classical CMP
method, we need not concentrate on a single target reflector
nor on a single reflection point. The above three steps remain
unchanged if many reflectors exist and whether or not a par-
ticular reflector 6D gives rise to more than one ZO reflection
at Po(xo, τo). If one cannot assign a (sufficiently strong) CRE
stack value to Po(xo, τo), we assume there will be no primary
ZO reflection observed at this point.

Performing a CRE stack by means of the new CRE moveout
formula (16) presents some advantages with respect to the orig-
inal formula introduced by Gelchinsky and co-workers [e.g.,
Koren and Gelchinsky (1989) or Rabbel et al. (1991); see also
equation (A-5)]. The Appendix summarizes Gelchinsky’s orig-
inal formulas and elaborates on the relationship between the
two concepts.

Conflicting dips

For the given point Po(xo, τo) in the stacked section to be
constructed, the two-parameter coherency analysis (e.g., sem-
blance analysis) for pairs (R, β) may possibly find more than
one maximum. This problem is pointed out by Rabbel et al.
(1991) as a possible source of ambiguities of the coherency cri-
terion used in CRE analysis. There are two possible reasons
for multiple semblance maxima: (1) There may be multiple
reflection points Co that contribute to the stack. Each one is
associated with a different auxiliary reflection point Ĉo. This
means that we have more than one auxiliary NIP wave emerg-
ing at Xo. This situation is, in fact, analogous to the so-called
conflicting-dip problem of the CMP stack. In the CRE stack,
this turns out not to be an intractable problem. In fact, each pa-
rameter pair (RNIP, βo) corresponding to each of the obtained
semblance maxima can be used independently to construct a
corresponding auxiliary CRE gather. The stack is then per-
formed over each of these gathers, and the results are added.
In this way, conflicting dips present, in principle, no difficulties
to the CRE method. (2) The second possibility is a situation
where noisy data result in a couple of maxima for different pairs
(R, β), only one of which is correct. In this case, a more sophis-
ticated algorithm (e.g., a genetic algorithm) must be used for a
global optimization process to determine the global maximum.
The optimal values of R and β are the sought-for parameters
RNIP and βo.

The question of how to perform the two-parameter co-
herency analysis in a most efficient way has been addressed
by several groups. Although further investigations must be
carried out, initial results suggest that, at least in two dimen-
sions, the two-parameter search can be realized in a practi-
cally feasible way. In this respect, the classical papers of Taner
and Koehler (1969), Neidell and Taner (1971), and Gelchinsky
et al. (1985) provide worthwhile algorithms. Recent progress
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has been reported by Müller et al. (1998) and Berkovitch et al.
(1998).

THE CRE METHOD AND THE OPTICAL STACK

The CRE method for a horizontally layered medium

A better insight into the CRE method can be gained upon
examining a case of a horizontally layered medium. As an ex-
ample, we take two horizontal homogeneous layers above one
horizontal reflector (see Figure 5). In this case, the CRE and
CMP gathers are coincident (i.e., the asymmetry parameter
vanishes). Because of the symmetry involved, the NIP wave-
front 6o reaches G and S at the same time τ/2= τo/2+1τ/2.
In other words, the true partial CRE moveouts at S and G
are the same, i.e., 1τs=1τg=1τ/2. As indicated earlier, the
factors 1

2 in this and the following equations arise because we
did not follow the convention of using one-way traveltimes or
half-velocities for exploding-reflector considerations. At point
Xo, the NIP wavefront 6o has the radius of curvature RNIP. Its
center of curvature is located at point Ĉo, and the emergence
angle is βo= 0. Setting for simplicity xm= xo= 0, the resulting
CRE traveltime is

τ̂ = (τo − 2RNIP/vo)+ 2RNIP

vo

√
1+ h2

/
R2

NIP. (18)

Following de Bazelaire (1988), we introduce the traveltime dif-
ference

1 = RNIP

vo
− τo/2 (19)

to rewrite equation (18) as

(τ̂ /2+1)2 = (τo/2+1)2 + h2

v2
o

. (20)

FIG. 5. Horizontal two-layer model and horizontal reflector.
The hypothetical NIP wavefront 6o originates at the common
reflection point Co, which corresponds to the auxiliary common
reflection point Ĉo.

Formula (20) represents a hyperbola with its center at
(τ̂ =−1, h= 0). For a homogeneous medium with velocity vo

and a horizontal reflector, we have 1= 0, so that expression
(20) corresponds to the familiar hyperbolic NMO traveltime
curve with its center at (τ̂ = 0, h= 0).

As noted by Cruz et al. (1995, 1996), formula (20) is a well-
known result previously derived by de Bazelaire (1988), who
obtained it for layered media with curved (circular) interfaces
from geometrical-optics concepts. As shown in the cited papers,
formula (20) is an alternative to the small-offset hyperbolic
traveltime approximation (the so-called NMO curve) consid-
ered in the standard NMO method,

(τn/2)2 = (τo/2)2 + h2

V2
rms
, (21)

where τn is the NMO traveltime and Vrms=
√

2RNIPvo/τo de-
notes the rms velocity related to RNIP and τo (Hubral and Krey,
1980). The stack result obtained by means of formula (20) is
called the optical stack (de Bazelaire, 1988).

For the considered two-layer model, we have constructed the
CRE stacking line to compare it to the corresponding NMO
curve (which is known to be a good approximation to the true
reflection time in this case). The two hyperbolas given by ex-
pressions (20) and (21), i.e., the CRE and NMO curves, respec-
tively, are displayed in Figure 6 together with the true reflection
traveltime (labeled Fermat curve). In our example, we consid-
ered a homogeneous half-space overlain by two horizontal lay-
ers, the first with a thickness of Ho= 1000 m and the second with
H1= 500 m. The velocities in the layers are vo= 2000 m/s and
v1= 2500 m/s, respectively (see Figure 5). For this model, we
also have Vrms= 2154.73 m/s, RNIP= 1625 m, and1= 112.5 ms.
The NMO curve, hyperbola (20), is centered at the origin of the
(t, h) coordinate system, while the CRE curve, hyperbola (21),
has its center dislocated on the time axis at t =−225 ms. In

I

FIG. 6. Traveltime curves calculated for cases of NMO and
CRE moveout, considering a model of two layers over a
half-space (Figure 5). For the NMO moveout, we used the
rms velocity of Vrms= 2154.73 m/s, while for the CRE move-
out we considered the radius of curvature RNIP= 1625 m, the
near-surface velocity vo= 2000 m/s, and 1= 112.5 ms.
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the usual seismic range of half-offsets h (i.e., between 0 and
1500 m), both curves are almost coincident. They also fall to-
gether with the Fermat curve, i.e., approximations (20) and (21)
are equivalent. This confirms that the CRE stack is a true al-
ternative to the CMP stack, even in the case where the CMP
should perform at its best, i.e., when no reflection-point disper-
sal is present.

At this point, it may be interesting to comment on the accu-
racy of these approximations for larger offsets. Figure 6 shows
that, in this example, the NMO curve is a more accurate ap-
proximation than the CRE curve. This is because in a horizon-
tally layered medium, the deviation of the emerging wavefront
(which gets increasingly flatter) from a circular one becomes
significant. However, de Bazelaire (1988) shows that, for later-
ally inhomogeneous media (e.g., a horizontal reflector below a
circular interface), formula (20) may yield comparable or even
better approximations to the true reflection traveltime than the
conventional NMO hyperbola (21).

Delayed CRE formula

Starting from the CRE stack formula (16), we can derive a
new approximation for the squared CRE traveltime that is very
similar to equation (20). This approximation is useful for the
case of small offsets and arbitrary overburdens. To get this new
squared CRE traveltime approximation, we only need to delay
half the original traveltime of the CRE stack, equation (16), by
de Bazelaire’s (1988) quantity 1 defined in equation (19) and
thereafter square both sides of the resulting equation. For small
offsets 2h, we arrive after some straightforward manipulations
at the following expression for the squared CRE traveltime:

(τ̂ /2+1)2 = (τo/2+1)2+ h2

v2
o

− R2
NIP

2v2
o

(1−
√

1+ 4α2h2).

(22)

By comparing this equation to formula (20), we see that the
only difference is the additional third term on the right-hand
side of equation (22). Moreover, for an asymmetry factor α
equal to zero, i.e., for a vertically emerging NIP wave, equation
(22) reduces to formula (20).

Relationships of the CRE and CMP formulas

Our results show that the CRE formula and the so-called
delayed hyperbola [equation (20)] are identical for a vertical
incident normal ray, i.e., for β0= 0. To get the NMO hyper-
bola [equation (21)] one only has to perform a second-order
Taylor expansion of τ̂ 2 in equation (20) with respect to h. Mov-
ing to the more general case of arbitrarily curved reflectors in
an inhomogeneous medium, Höcht et al. (1999) show that the
CRE formula offers a basis upon which to derive the delayed
hyperbola and the NMO hyperbola in the CMP gather. This
is done by means of CRE trajectories and a hyperbola in the
ZO section, whereby one can construct a moveout surface in
the multicoverage data set that also accounts for the reflector’s
local curvature. Performing different Taylor expansions of this
surface and restricting them to their second-order represen-
tations in the CMP gather yields the hyperbolas in the CMP
gather.

PULSE STRETCH

In this section, we compare the stretching effects of the
CRE method to those of conventional NMO. For the geomet-
rical considerations, we refer to Figure 7. When constructing
a stacked section, the amplitude value of a finite-offset reflec-
tion pulse recorded at time t = τ is assigned to the ZO trav-
eltime t = τo. Correspondingly, the value recorded at τ + δτ is
assigned to τo+ δτo. Since the small intervals δτ and δτo are not
identical, the seismic pulse is stretched by this process. Quanti-
tatively, this stretch can be described by a factorF given by the
ratio between the new length δτo and the old length δτ of the
pulse. For small intervals δτ and δτo, this ratio may be replaced
by the derivative, namely

F = dτo

dτ
=
(

dτ

dτo

)−1

. (23)

Equation (23) for the pulse stretch factor F can be obtained
directly in a less heuristical manner by the ratio between the in-
stantaneous frequencies of the analytical signal calculated be-
fore and after applying the moveout correction (Barnes, 1992).
Let us now compare the pulse stretches resulting from NMO
correction and CRE moveout. To obtain a quantitative result,
we restrict our analysis of the NMO stretch to the 1-D situation
described in the previous section. The CRE stretch is analyzed
for the general 2-D situation.

NMO stretch.—In the 1-D case, the pulse stretch factorFNMO

is obtained by computing the derivative of the NMO correction
formula (21) and taking the inverse of the result. The result is
(see also Vermeer, 1990)

FNMO = τV3
rms(

V3
rmsτo − 4h2V ′rms

) , (24)

where V ′rms= dVrms/dτo. Assuming that V ′rms' 0, i.e., that Vrms is
nearly constant for small changes of τo, equation (24) reduces
to the well-known expression (Yilmaz, 1987)

FNMO= τ

τo
=
√

1+ 4h2

V2
rmsτ

2
o

. (25)

FIG. 7. To construct a primary ZO reflection in the de-
sired stacked section, the primary constant-offset reflection
recorded at a time t = τ must be moved to the traveltime t = τo.
If by this process a small time interval δτ in the original con-
stant-offset section is mapped onto a small time interval δτo
in the constructed stacked section, the corresponding seismic
pulse suffers a stretch of δτo/δτ .
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In fact, after applying the NMO correction to the reflection
data, the frequency content of the primary reflection pulse is
decreased by the factorFNMO, i.e., its length is increased by this
factor.

CRE stretch.— In contrast, the CRE stretch factor FCRE re-
sulting from performing a CRE moveout is obtained by ap-
plying the derivative with respect to τo to the CRE traveltime
[equation (16)]. At this point, it is crucial to note the funda-
mental difference between the NMO time [equation (21)] and
the CRE time [equation (16)]. Whereas the NMO time is a
given τo-dependent approximation to the correct stacking line,
the optimal CRE stacking line is determined independently for
each value of τo by coherency analysis. Thus, the optimal radius
of curvature RNIP of the NIP wavefront and its optimal angle
of emergence βo will remain the same for each primary finite-
offset reflection. These parameters are thus independent of τo

as long as τo belongs to the same reflection in the stacked sec-
tion to be constructed. This means that as long as we consider
the same reflection event, the CRE moveout curves will remain
parallel. As a consequence, the CRE correction will not stretch
the wavelet. Hence, in mathematical terms, the CRE moveout
1τ̂ is independent of τ̂o, and the stretch factor is therefore
given by

FCRE =
(

d(τo +1τ̂ )
dτo

)−1

=
(

dτo

dτo

)−1

= 1. (26)

This also means that the frequency content before and after
applying the CRE moveout is preserved and no stretch effect
is observed. In practice, of course, because of noisy data, the
coherency analysis will not always lead to identical parame-
ters RNIP and βo for all values of τo within one reflection in
the constructed stacked section. In most situations, however,
the obtained parameters will be sufficiently close together to
keep all stretch effects negligible. However, regions with low
coherency will suffer from additional stretch.

COMPARISON WITH OTHER METHODS

Table 1 displays the main features of four different methods
to construct a stacked section, namely, the CMP, NMO/DMO,
CRE, and MZO stacks. Underlying is the assumption that
all methods are applied to a 2-D laterally inhomogeneous
medium. Concerning the CMP stack, let us recall that the re-

Table 2. Comparison of methods to construct a stacked section from a set of constant-offset sections.

Value NMO NMO + DMO CRE Direct MZO

Parameter(s) needed — V̄(xm, τo) vo v(x, z)
Needs coherency analysis For one parameters No For two parameters No
Needs ray tracing No No No Yes
Standard output Stacked section Prestack ZO sections Stacked section Prestack ZO sections
Parameter(s) estimated Vs(xm, τo) — RNIP(xo, τo), βo(xo, τo) —
Pulse stretch Yes Yes No Yes
Reflection-point dispersal Full Little Residual No
Amplitude preservation No Approximately No Yes
Event selection Yes No No No
Conflicting dips resolved No Approximately Approximately Yes
S/N enhancement Good Good Good Good
Macrovelocity determination V(z) No V(x, z) No

sulting stacking velocities Vs(xm, τo) can only be used to inde-
pendently construct a (1-D) velocity–depth function for each
CMP Xm, thus distorting the lateral inhomogeneities of the ve-
locity model. On the other hand, the wavefront attributes RNIP

and βo obtained by the CRE method allow us to construct a
consistent laterally inhomogeneous macrovelocity model. The
price to be paid for this increase in accuracy is, of course, a
more expensive procedure when searching for two parameters
instead of one.

Let us now briefly comment on direct MZO and NMO/
DMO. A 2-D, direct MZO (e.g., Tygel et al., 1998) needs a
macrovelocity model v(x, z) that should be as accurate as pos-
sible. By ray tracing, the MZO operators are determined for
each constant-offset section; thus, the best possible simulated
ZO section is obtained from each constant-offset section.
These must be stacked to simulate a stacked section that can
be compared with that obtained by a CMP or CRE stack. This
fact is accounted for by the Standard Output row in Table 2.
The 2-D direct MZO is probably the most expensive method.
The cheaper, approximate process consisting of NMO/DMO
is, on the other hand, absolutely equivalent to a direct MZO
in a constant-velocity medium only. However, also in slightly
inhomogeneous media, NMO/DMO has been proven to be a
successful operation. This process needs some given estimate
of a mean medium velocity V̄(xm, τo) (assumed to be constant
for a given CMP Xm) to carry out the NMO correction. The
subsequent DMO correction is, because of the assumption of
a constant medium velocity, velocity independent. The fact
that ray tracing is not needed to design the DMO operators
makes NMO/DMO particularly attractive. As long as the
medium inhomogeneities are small, NMO/DMO remains a
good approximation to a 2-D MZO. Its costs fall somewhere
between CMP and MZO.

It is worthwhile to stress once more the fundamental differ-
ence between the 2-D MZO and NMO/DMO stacks on the
one side and the CMP and CRE stacks on the other. Whereas
both former methods need some velocity assumptions to start
with and yield no further information about the macroveloc-
ity model, the CMP and CRE methods start with little or no
knowledge about the medium and provide a means to construct
a 2-D macrovelocity model afterward.

APPLICATION

We now present an application of the CRE method to a
set of synthetic constant-offset seismic sections. These were
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generated by ray theory for the model in Figure 8. We have
simulated multicoverage reflection data from both interfaces
for half-offsets h= 0 to h= 0.250 km in steps of 1h= 0.01
km and at midpoint intervals 1xm= 0.01 km in the range
0 km< xm< 2.5 km. We have used a Gabor wavelet (Gabor,
1946) as the source signal, with its peak frequency at 80 Hz.
Random noise was added to all 26 synthetic constant-offset
sections to produce an S/N ratio that is similar to that in the
zero-offset section shown in Figure 9.

As results of applying the CRE method, we have (1) the
simulated zero-offset section, i.e., the so-called CRE stack sec-
tion (Figure 10a); (2) the section with the coherency measure,
i.e., the semblancegram (Figure 11a); (3) the section with the
emergence angle, i.e., the anglegram (Figure 12a); and (4) the
section with the radius of curvature, i.e., the radiusgram (Fig-
ure 13a). The good quality of the CRE stack section of Fig-
ure 10a is emphasized. Even in the random noise environment,
the CRE stack images very well the reflection events caused
by the steep flanks of the dome. For comparison, Figure 10b
and 11b show the CMP stacked section obtained from the same
constant-offset sections and the corresponding semblance sec-
tion. The coherency sections of Figure 11 represent a kind of
confidence measure for the corresponding stacked sections of

FIG. 8. The seismic model is represented by a dome structure
below two homogeneous layers, with velocities vo= 2.5 km/s
and v1= 3.0 km/s.
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FIG. 9. Synthetic ZO section with added random noise ob-

tained from the seismic model in Figure 8.

Figure 10. The higher the semblance value, the better the de-
tected coherency of the corresponding reflection event and thus
the more reliable the corresponding simulated zero-offset re-
flection.

The NIP-wave attributes of Figures 12a and 13a, obtained
in connection with the CRE stack, are comparable to the the-
oretical values seen in Figures 12b and 13b, respectively. All
results enable us to claim that the CRE stack is not only a
useful process to simulate ZO sections without knowing the
macrovelocity model, but it also allows us to determine the
NIP-wave attributes (RNIP, βo) that can be used in strategies
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FIG. 10. (a) CRE stack section obtained from the set of con-
stant-offset sections, with S/N ratios equal to the ZO section
shown in Figure 9. (b) The CMP stack section obtained from
the same constant-offset sections as used for the CRE stack.
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to determine the macrovelocity model (Hubral and Krey,
1980).

From the results presented above we can see the CRE stack
allows us to simulate a ZO section even for a heterogeneous
medium and for a rather low S/N ratio. Moreover, as a byprod-
uct of the CRE stack, one obtains the NIP-wave parameters
(radius of curvature and emergence angle) that are useful in
inversion procedures to determine the macrovelocity model.
In contrast, the CMP stack, with or without DMO procedure
included, does not allow the construction of a laterally inho-
mogeneous macrovelocity model. The only result of the CMP
stack is a simulated zero-offset section and a stacking-velocity-
versus-depth function at every CMP.

CONCLUSIONS

In this paper, we have shown that the principal features of
the CRE method consist of (a) the construction of a stacked
zero-offset section from a set of constant-offset sections with
only an estimate of the near-surface velocity and (b) the deter-

FIG. 11. (a) Semblancegram obtained for each selected time in
the ZO section after applying the CRE moveout. Note the high
values in the strips where the primary reflections are located.
(b) The semblancegram with the semblance values obtained at
each time in the ZO section after applying the NMO moveout.

mination of two wavefront attributes (the radius of curvature
RNIP and the emergence angle βo) for each ZO reflection in
the stacked section. Both wavefront attributes can be used
for traveltime inversion techniques (e.g., based on general-
ized Dix-type formulas) to estimate an accurate macrovelocity
model.

We have also suggested an alternative scheme to construct
an optimal CRE gather and its corresponding radiusgram (sec-
tion of RNIP values) and anglegram (section of βo values). The
somewhat complicated expressions found in the original for-
mulation of the CRE method considering source–receiver co-
ordinates (Gelchinsky, 1988) have been replaced by simpler
expressions in terms of midpoint and half-offset coordinates.
We have also shown that the CRE method is closely related to
the optical stack of de Bazelaire (1988).

In summary, the CRE method has the following advantages
over standard CMP stacking.

1) The seismic pulses of the ZO reflections constructed by
the CRE method are not stretched when compared to
true ZO reflections (i.e., the frequency of a pulse is not
altered by constructing a ZO reflection in the final stacked
section from a given constant-offset reflection).

FIG. 12. Emergence angles of normal rays perpendicular to the
reflectors of Figure 8: (a) obtained as a byproduct of the CRE
stack; (b) obtained by forward ray tracing.
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2) The CRE method, in contrast to a CMP stack, suffers
from a small residual reflection-point dispersal only. Like
the CMP stack, the CRE stack selects only specular pri-
mary reflections along optimally specified stacking lines.

3) A CRE gather can be constructed from a set of constant-
offset sections in a parallel way as this is done from a set
of common shot records. All that is needed is to trans-
form the source–receiver coordinates into midpoint–half-
offset coordinates.

4) The CRE method provides a cleaner stacked section with
a better S/N ratio and a higher confidence measure (co-
herency).

5) Additionally to a high-quality stacked section, two (in-
stead of one) medium parameters are obtained that can
be used to estimate the velocity model better.

The main disadvantage of the CRE method in comparison
to the conventional NMO/DMO method is that for each point
in the stacked section a two-parameter search must be per-
formed. Application of the CRE method to more realistic sit-

FIG. 13. Radii of curvature of the NIP waves associated with
the normal rays for the reflectors of Figure 8 (a) obtained as
a byproduct of the CRE stack; (b) obtained by forward ray
tracing.

uations must show whether the benefits justify the higher costs
involved. Ongoing research also includes investigations on the
question of how to optimize the search.

The following implementational remarks try to answer some
questions that naturally arise when applying the CRE method.
In principle, one should always be suspicious of the actual im-
plementation of the two-parameter estimation involved—in
particular, with regard to the stability of the process. However,
the meaningful synthetic and real data examples described in
the literature attest that this is a robust process. The parameter
selection has been carried out successfully in all applications,
i.e., without any sophisticated coherency analysis being devel-
oped. We also remark that the two-parameter CRE moveout
expression is expected, in most situations, to resolve or mini-
mize the so-called conflicting-dip problems. In fact, the emer-
gence angles and wavefront curvature radii are fundamental
physical and geometrical attributes that are certainly better
suited to separate distinct reflection events than, for example,
stacking velocities obtained by a conventional CMP stack. Fi-
nally, we agree that it would be very desirable to quantify the
reduction of the reflection-point dispersal achieved by the CRE
method in terms of the medium inhomogeneity (e.g., values of
velocity gradients). Although this is still an open question, it is
rather clear that the wavefront-based treatment of the reflec-
tions provides a better dispersal reduction than the standard
CMP stack.

Finally, let us remark that the CRE method is only one of var-
ious zero-offset simulation (or stacking) methods that are in-
dependent of a macrovelocity model. All of them are based on
very similar geometrical considerations to the ones presented
in this paper, which therefore might be regarded as an intro-
duction to macromodel independent stacking methods. Other
methods have been discussed in detail at the EAGE/SEG
workshop, “Macro-model independent reflection imaging,” at
Karlsruhe University (February 1999). The proceedings of this
workshop with approximately 10 papers constitute a special
issue of the Journal of Applied Geophysics.
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APPENDIX

GELCHINSKY’S FORMULAS

All previous papers on the CRE method (e.g., Koren and
Gelchinsky, 1989; Rabbel et al., 1991) start from the assumption
that sources and receivers are asymmetrically distributed in a
CRE gather, approximately obeying the binomial distribution
rule (in our notation)

xs = xo − Y(1+ αY), (A-1)

xg = xo + Y(1− αY). (A-2)

This approximation is only valid for small values of α. By elim-
inating Y from equations (A-1) and (A-2), one obtains the
following formula for the asymmetry factor:

α= 2
2xo − xs − xg

(xg − xs)2
. (A-3)

Koren and Gelchinsky (1989) show that, for a given source
position xs, parameter Y can be computed from

Y =
√

1+ 4α(xo − xs)− 1
2α

, (A-4)

which is obtained by solving equation (A-1) for Y. Substituting
this expression into equation (A-2) yields the receiver position
xg, which corresponds to the given source position xs. Note,
however, that computing Y from equation (A-4) may be very
unstable for small parameters α.

The CRE moveout (also called the oblique spherical cor-
rection by Gelchinsky and co-workers) relative to the source–
receiver pair (S,G) in the CRE gather as determined in this
way can then be expressed in terms of the quantity Y as

1τ̂ = 2RNIP

vo

{√
1− Y2

(
α2 − 1

/
R2

NIP

)− 1
}
. (A-5)

This approximate equation for the moveout 1τ̂ differs from
our equations (8) and (16), which are exact for a constant-
velocity medium as long as equations (10) and (14), respec-
tively, are used to determine xg from xs or xm from h. Equation
(A-5) is mathematically equivalent to equation (16) if the ap-
proximate rule (15) is used to compute xm from h. However,
even in this approximation equation (A-5) may be compu-
tationally more problematic because of the use of the para-
meter Y.

From the above, we may draw the following conclusions.
Working with the alternative CRE stacking formula (16),
instead of the original one, equation (A-5) introduced by
Gelchinsky and co-workers (see Koren and Gelchinsky, 1989;
Rabbel et al., 1991) has advantages. First, the parameter Y is
not required to determine the auxiliary CRE gather. This is
important because Y, given by equation (A-4), has as its de-
nominator the asymmetry factor α for which usually |α|¿ 1.
This in turn means that small deviations of the numerator of Y
are amplified, so that Y is an unstable parameter. Because our
strategy does not require the parameter Y, this should make
the CRE method more attractive as an imaging tool and also
with respect to computing more stable radiusgrams and an-
glegrams. As a consequence, one should also obtain more sta-
ble macrovelocity models. Second, auxiliary CRE gathers are
more quickly constructed from a set of constant-offset sections
rather than neighboring shot records. For each point Xo on the
seismic line and for each fixed α, the midpoint coordinate xm in
a constant-offset section with half-offset h is immediately de-
termined by formula (15). Thus, the pair (xm, h) of any seismic
trace in the CRE gather is defined completely.


