View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

. 7 /
' /Juurnal of .
I /Mathematical P
' /

Quaternionic wave packets

Stefano De Leo and Gisele C. Ducati

Citation: J. Math. Phys. 48, 052111 (2007); doi: 10.1063/1.2738362
View online: http://dx.doi.org/10.1063/1.2738362

View Table of Contents: http://jmp.aip.org/resource/1/JMAPAQ/v48/i5
Published by the AIP Publishing LLC.

Additional information on J. Math. Phys.

Journal Homepage: http://jmp.aip.org/

Journal Information: http://jmp.aip.org/about/about_the journal
Top downloads: http://jmp.aip.org/features/most_downloaded
Information for Authors: http://jmp.aip.org/authors

ADVERTISEMENT

i vetation anesoy 1%
Y atoead o
o5 the w
A e

Physics Today article.

Downloaded 28 Aug 2013 to 143.106.1.143. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions


https://core.ac.uk/display/296715858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jmp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1760606161/x01/AIP-PT/JMP_CoverPg_082813/comment_1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Stefano De Leo&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Gisele C. Ducati&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.2738362?ver=pdfcov
http://jmp.aip.org/resource/1/JMAPAQ/v48/i5?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jmp.aip.org/?ver=pdfcov
http://jmp.aip.org/about/about_the_journal?ver=pdfcov
http://jmp.aip.org/features/most_downloaded?ver=pdfcov
http://jmp.aip.org/authors?ver=pdfcov

JOURNAL OF MATHEMATICAL PHYSICS 48, 052111 (2007)

Quaternionic wave packets

Stefano De Leo®
Department of Applied Mathematics, University of Campinas, P.O. Box 6065, Campinas,
Sdo Paulo 13083-970, Brazil

Gisele C. Ducati”
Department of Mathematics, University of Parana, P.O. Box 19081, Curitiba, Parand
81531-970, Brazil

(Received 28 November 2006; accepted 18 April 2007; published online 31 May 2007)

We compare the behavior of a wave packet in the presence of a complex and a
pure quaternionic potential step. This analysis, done for a Gaussian convo-
lution function, sheds new light on the possibility to recognize quaternionic
deviations from standard quantum mechanics. © 2007 American Institute of
Physics. [DOL: 10.1063/1.2738362]

I. INTRODUCTION

This article represents the third work of the authors on the Schrodinger equation in the
presence of a quaternionic potential step. In the first paper,I we have shown that, for such a
potential, it is possible to calculate an analytic plane wave solution. This represents, to the best of
our knowledge, the first case in which an analytic solution has been given for a quaternionic
quantum mechanical potential problem (previous plane wave studies, regarding the barrier” * and
well® potentials, required numerical calculations). The possibility to work with an analytic plane
wave solution allowed, in our second paper,6 a detailed discussion of the quaternionic diffusion
through the stationary phase method. The motivation to write a third paper on this topic is mainly
due to the old wish of the authors to find qualitative differences between complex and quaternionic
formulations of quantum mechanics which could be useful in identifying the evidence of quater-
nionic potentials in the case in which such potentials really exist. In this spirit, the quaternionic
diffusion, at the moment discussed from a general point of view by using the stationary phase
method, should be investigated by directly analyzing the motion of the incident, reflected, and
transmitted wave packets in a potential step problem. The numerical results of this study can then
be interpreted by looking for analytical approximations of the incident, reflected, and transmitted
wave packets in the case of Gaussian convolution functions. The comparison between the complex
and pure quaternionic case for the potential step seems to be the best starting point to analyze the
qualitative differences between quaternionic and complex quantum mechanics. Indeed, more com-
plicated potentials can often be seen as successive potential steps. For example, a potential barrier
can be successfully studied as a two-step problem.7’8 The investigation proposed in this paper
could also give a final answer to the old question concerning the possibility to fit a pure quater-
nionic potential by a complex one and consequently, to never recognize quaternionic deviations
from standard quantum mechanics.

Il. PLANE WAVE ANALYSIS

Before we give the explicit plane wave solution for a pure quaternionic potential step, let us
show how, by a simple rephasing of the wave function, we can transform, without lost of gener-
alization, the (j,k) part of the quaternionic potential,

“Electronic mail: deleo@ime.unicamp.br
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iVi+jVo+kVs,
into a pure j part, i.e.,
iVi+j\VVs+ V3.

This will greatly simplify our presentation. Let us begin by considering the quaternionic
Schrodinger equation,

ﬁZ
i2—<1>xx(x,t) =iV, + Vo + kV3)D(x,1) = hD,(x,1). (1)
m

This partial differential equation can be reduced by using the well-known separation of variables,

D(x,1) = p(x)exp[— iEt/h],
to the following second order ordinary differential equation,10
2

h
i% @"(x) = (iVy + jVy + kV3) @(x) = - @(x)Ei. (2)

By multiplying (from the left) the previous equation by an unitary complex number ¢® and
rewriting the pure quaternionic part of the potential as

JVa+kVy=j\V3+ Ve,
where §=arctan[V3/V,], we find
2

| A . )
e’ i%(p"(x) =iV +jv V% + V%e"”)@(x) =—e"p(x)Ei. (3)

By observing that ¢/®j=je™'% we can rewrite the previous equation as follows:

R . 5. _ .
i5 Lefe)]" —ivileeln) ] - jy V3 + Vile " e(x)] = - [¢“o(x) JEi. (4)
Consequently, the choice a=-6/2 conduces to
ﬁZ
i () = iV + JVV3 + V) ilx) = — Y(x)Ei, (5)

where

Yo = e ")
It is important to observe that constant phases play no role in the stationary phase method and,
thus, such a rephasing has no physical effect on the motion of the incident, reflected, and trans-
mitted wave packets. For the diffusion problem, E>V,,, we shall compare the complex case, V,
=V, (V,=V3=0), with the pure quaternionic case, Vo=1V5+V3 (V,=0).
A. Complex potential step
By setting V=V, and V,=V3=0 in Eq. (5), we find the standard Schrédinger equation,
ﬁ2
o ¥/(x) = iVoih(x) = = ¢ (X)Ei, (6)

whose analytic plane wave solution is given byll
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Y.1(e.x) =expliex] + r.(e)exp[—iex] [(I) free region (x <0)],

Y. u(e.x) =t(e)expliox] [(II) potential region (x > 0)], (7)
where
€=\2mElh, o=\2m(E-Vy)lh,
and

rde)=(e—o)l(e+0), t.(e)=2€l(e+0).

B. Pure quaternionic potential step
By setting in Eq. (5) V,=0 and \V3+V3=V,, we obtain

ﬁZ
Ly Wy (x) = Vo (x) = = (X Ei. (8)

The analytic plane wave solution for the pure quaternionic potential step reads

¥,1(€,x) = expliex] + r (€)exp[—iex] + j7,(e)explex] [(I) free region],

W n(€x) = (1 +jw)t, (e)explipx] + (w + j)7,(€)exp[— px] [(IT) potential region], 9)

where
e=\2mElh, p=\2m\NE*=Vih, w=—iVJ(E+E*=V}),
and

r,(€) = (e— p)exp[i arctan(e/p) /N € + p?,
7 (e)=(1+i)ew/(e+p),
1,(€) = elp,

(€)= € + p*ew exp[— i arctan(p/e) /[ p(e+ p)].
For a detailed derivation of the plane wave solution for a quaternionic potential step, we refer the
reader to the paper cited in Ref. 1
lll. WAVE PACKET ANALYSIS

Until now, we have been concerned only with plane waves. In this section, we are going to
study the time evolution of quaternionic wave packets and deduce from them several important
results. The principle of superposition guarantees that every real linear combination of the plane
waves in region I and region II,

‘I’I,II(X»I) = f deg(e) z,//LH(e,x)exp[— iEt/h] [E= (hf)z/zm],

will satisfy the Schrodinger equation in the presence of a potential step. The reason why the use
of the wave packet formalism is very interesting lies in the fact that the calculations, in the case of
a Gaussian convolution function
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g(e) =expla’(e- e(z))/4]/2 w:,

can be analytically approximated. This will allow us to check and interpret our numerical results.
In Sec. IIT A, we first discuss the wave packets motion in the case of a standard (complex)
potential step and, then, we analyze the special case of a pure quaternionic potential.

A. Complex case

The wave packets in region I and region II are given by

Q. 1(x,0) = f“" d(ae)g(e){expliex] + r.(e)exp[— iex]}exp[— i€ht/2m],

A€min

+00

Q1) = f d(ae)g(e){t.(€)expliox]texp[— iehit/2m],

A€min

where

A€min=aN2mVylh.

We find three wave packets: incident, reflected, and transmitted,

Qe ine(x,0) = f” d(ae)g(e)expli(ex — €ht/2m)],

min

O rerlx.1) = J h d(ae)g(&)r()exp[- i(ex + ehir/2m)],

min

400
Q1) = J d(ae)g(e)r.(e)expli(ox — Eht/2m)].
The choice of a Gaussian convolution function g(e) peaked in €, (€,> €;,) and whose value is

practically zero near to €n;,, i.e., g(€nin) =0, allows us to legitimately approximate the incident
wave packet as follows:

Qe inc(x,1) = fw d(ae)g(e)expli(ex — €fi1/2m)]
exp[— (x/a — aeym)*/(1 +2i7)]
(1+47)" ’

where 7=#t/ma’. In the case in which the variation of 7.(e) can be neglected compared to that of
g(e), the reflected wave has the same form as the incident wave packet,11

=expli(eyx — Cl2€é7'/2) — i arctan(27)/2] (10)

Qc,ref(x’t) = rc(€0)J+OO d(aé)g(f)exp[_ l(E)C + ezﬁt/Zm)] = rc(GO)Qc,inc(_ x’t) . (1 1)

A€min

For the transmitted wave packet, by neglecting the variation of 7.(€) compared to that of g(€) and
by approximating o by its first order Taylor expansion, o+ (e— €) €,/ g, we find

Downloaded 28 Aug 2013 to 143.106.1.143. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jmp.aip.org/about/rights_and_permissions
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Q. 1) = tc(eo)exp[i(a'(z) - 6[2)))6/0'0:|f+oc d(ae)g(e)expli(eeyx/ oy — Eht/2m)]

=t Eo)exp[i(o% - eé)x/o-o]ﬂcyinc(eox/ao,t). (12)

The reflection probability (the ratio between the probabilities of finding the particle in the reflected
packet, at a positive time f,, and in the incident packet, at time —¢,) is given by

—o0 -0

0 0
Pc,refz dx|Qc,ref(x’t0)|2/ dx|Qc,inc(x’_ l0)|2

0

0
= |rc(60)|2 dx|Qc,inc(_ x5t0)|2/ f d'x|Qc,inc(-xv_ t())lz = |rc(€0)|2' (13)

—00

Similarly, the transmission probability is given by

400 0
Pc,tra=f dx|‘Qc,tra(xvtO)|2/ dx|Qc,inc(x7_ t0)|2
0

—00

400 0
= |tc(€0)|2J dx|Qc,inc(GOX/0-0’tO)|2/ dx|Qc,inc(x’_ t0)|2
0

—o0

[of
= |tc(60)|2_0
€ Jo —0

+00 0
Loy
f dx|QL',inc(xst0)|2/ dx|Qc,inc(x7_ t0)|2 = 6_0|tc(60)|2' (14)
0

It is easy to verify that

e-o\’ o 4é
Pc,ref+Pc,lra= c+0 +;(E+0’)2 0=1

B. Pure quaternionic case

The wave packets in region I and region II are given by

Qg (x,0) = f d(ae)g(e){expliex] + r (€)exp[— iex] + j7,(€)exp ex]texp[— ieht/2m],

A€min

Q,ulx,1) = f d(ae)g(e){t,(€)explipx] + wi,(€)exp[- px]texp[—i Ent/2m]

A€min

+jJ d(ae)g(e){wr,(e)explipx] +7,(€)exp[- px]texp[- i€ht/2m].

A€min

For sufficiently large negative ¢, only the (complex) incident wave packet

+

Qp inc(x,1<0) = f d(ae)g(e)expli(ex — Eht/2m)] = Qine(x,1)

€min
exists. For sufficiently large positive ¢, the evanescent wave packets disappear and we find only
one (complex) reflected wave packet,
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Q rei(x,1>0) = f d(ae)g(e)r,(e)exp[—i(ex + Entl2m)] = 7 (€0) Q¢ ine(=x,1),

min

and one (quaternionic) transmitted wave packet,

Q alx,1>0) = fm d(ae)g(e)(1 + jw)t,(€)expli(px — Ent/2m)]

=~ (1 + jwo)t,(&o)expli(py — €)X/ P Qe inc( €0/ p.1).

A simple calculation shows that

0 0
Pﬂ],ref= f dx|Qq,ref(x’t0)|2/ f dx|Qq,inc(x’_ t0)|2 = |rq(60)|2 (15)

and

+o0 0 3
P

Pq,lra= f dx|‘Qq,tra(x7t0)|2/ f dx|‘Qq,inc(x’_ t0)|2 = ?0(1 + |WO|2)|tq(€0)|2' (16)
0 —o 0

Finally,

(e=p)* 03( 62—132)62}
Pre‘+P ra=|: +—=| 1+ Y =1.
q.ref q,t 62+p2 2/ 2 o

IV. NUMERICAL RESULTS AND INTERPRETATION

The results of our numerical study are plotted in Fig. 1, where the probability densities
|Q,(x,7)|* (complex case) and [Q,(x,7)|* (pure quaternionic case) are drawn as a function of x/a
for different values of 7=#t/ma®. The incident wave packets are centered in Ey=2V,, (diffusion)
and the potential is given by aV%: 10*%. The data show an interesting phenomenon. For the
same potential and the same incident energy, the reflected waves have different amplitudes in the
case of a complex or a pure quaternionic potential step, and the transmitted waves move with
different velocities. The quaternionic transmitted wave packet moves faster than the complex one.
Let us try to understand these results by using the analytic approximations given in Sec. III for the
incident, reflected, and transmitted wave packets and by using the fact that for small times, 7
<1, no spreading effect is present. This allows us to simplify the expressions given in Sec. III for
the complex and quaternionic wave packets. The amplitude of the incident wave is then given by

|‘Q‘q,inc(-x’t)| =~ |Qc,inc(x,t)| = exp[_ (X/d - (,lE()’T)Z].

For the reflected waves, we have
|Qc,ref(xJ)| ~ |r.(€)lexp[— (x/a + ﬂfoT)z]’
|Qq,ref(xJ)| = |”q(60)|eXP[— (x/a + 0607)2]-
This implies

|2 e, 1) [/ Q2 (x, 1) [* = |ro(€))* = 2.94 X 1072,

c,ref’ c,inc

Qe )P (e, D) = |r (€9)]* = 2.58 X 107,

q.ref g,inc
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FIG. 1. Diffusion (E,=2V,) of a wave packet at a complex and pure quaternionic potential step. The complex (V,=V,) and
quaternionic (V0=\5V§+ V3) potentials act for positive x. For negative time (7<0) only the incident packet is present and
it moves toward the step. After a certain time, we find four packets. The reflected packets, |Q ;,(x,1)* and |Q, ;,c(x.0)[,
are returning to the left moving with the same velocity. The transmitted packets, |Q,..,(x,)|* and [, ,(x,?)[?, propagate
toward the right and move with different velocities.

|Qc,ref(x’ t)|2/|Qq,ref(x’t)|2 =~ |rc(€0)|2/|rq(€0)‘2 = 114,

which confirms the numerical results given in Fig. 1 (negative x axis). We can also see that the
reflected waves move with the same velocity,

Ucref = Ugref = _ﬁE()/m- (17)

For the transmitted waves, by observing that
|Qc,tra(x’t)| = |tc(60)|exp[_ (60/0'0)2()(/(1 - 00-07)2]7
|Qq,tra(-x’t)| = |(1 +jW0)lq(fo)|eXP[— (fo/Po)ﬁ(X/a - GPST/fg)Z],
we find that the centers of the complex and quaternionic transmitted wave packets move, respec-

tively, with velocities

Vega =T, 00/m  and v, = hpy/me;. (18)

Consequently,
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xmax (t)

‘Cnf‘r’;(t) |Ey 1a\r2mV0£
a Vo o ma*’
q, tra

(G- ]
Tfr);(l) Vo Vo Ey

and by using

a\2mV, ) ht
E0=2V0, —2107 ']':—27
h ma
we find
anr’; i =10%7,
a
xmax T
mjj( ) ~ 1.14.
clra( )

This agrees with our numerical calculations as shown by the motion of the complex and quater-
nionic transmitted wave packets plotted in Fig. 1 (positive x axis). For example, at time 7=0.15
the maximum of the complex transmitted wave is found at x=15a, whereas the center of the
quaternionic wave packet (which moves faster) reaches at the same time the point x=17.1a.

V. CONCLUSIONS

In the last few years, the Schrodinger equation in the presence of quaternionic potentials with
constant and space-dependent phases has been a matter of study and discussion in the literature.*~°
Some properties of this class of potentials are discussed in detail in the Adler book’ which
represents a milestone in such a field. If quaternionic quantum mechanics represents a possible
way to describe the nature, then it becomes relevant to examine how the predictions of standard
theories may be affected by changing from complex to quaternionic potentials. The first theoretical
analysis of quaternionic potential barriers was developed in Refs. 2 and 3 and showed that in
contrast with the standard complex case where the left and right transmission probabilities are
equal in magnitude and phase, in the quaternionic quantum mechanics only the magnitude are
equal. So, the measurement of a phase shift should be an indicator of quaternionic effects and
space-dependent phase. Nevertheless, as remarked in Ref. 9, experiments to detect a phase shift
are equivalent to detecting time-reversal violation and, consequently, cannot be seen in neutron-
optical experiments.'z_'4 A more complete phenomenology of the quaternionic potential barrier is
given in Ref. 4. With respect to previous works regarding potential barrier diffusion, in this paper,
we have introduced the quaternionic wave packet formalism. This allow us to study new qualita-
tive differences between standard quantum mechanics and theoretical solutions obtained by solv-
ing the Schrodinger equation in the presence of a quaternionic step. For a detailed discussion of
experimental proposals on quaternionic potentials and quantum mechanical systems in which a
Cahrge-Parity (CP) violation is interpreted by potentials with a space-dependent phase, we refer
the reader to Refs. 1 and 4.

In this paper, we have seen that for incoming particles with an energy spectrum centered in
Ey=2V, the complex and quaternionic transmitted wave packets move with different velocities,
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Ugira _ 3\5

v c,tra 2

Due to the fact that the complex and quaternionic incident wave packets coincide for large
negative times (incoming particles), we could try to fit the motion of the quaternionic wave packet
by using a different complex potential step. For example, by choosing a new complex potential

step W, such that
Ey L ( Ey )2 | 3/4 Yy
wo L\ Ey’

we find x', (1) =x7¢,(¢). In the particular case investigated in this paper, Ey=2V), this implies

Wo 4

E—l 3V/§

In this scenario, we have the same incident wave and complex or quaternionic transmitted wave
packets which move with the same velocity (note that the reflected waves, for the same incoming
energy spectrum, always move with the same velocity because they propagate in the free potential
region). Once we have guaranteed the same velocities in the potential region, we have to check the
probability of transmission (or equivalently the probability of reflection). A simple calculation (see
Sec. IIT) shows that

Eq-E,- W, \*
VEg = VEg— Wy )
P.=|—=——F——=| =201 X107,
c,ref ( \"’EO _ \"EO _ W())
J—
N [\‘"EO _ (E(Z) _ V%)IM]Z
Pq,ref~ / 5) >
Ey=NE;=Vy

~2.58 X 1073,

This gives an interesting answer to the old question concerning the possibility to fit a quaternionic
potential by a complex one and, consequently, to never recognize deviations from standard quan-
tum mechanics. The study presented for a very simple potential, i.e., the potential step, shows that
incoming particles with a given energy spectrum behave differently if they are diffused by a
complex or a pure quaternionic potential step. This result, obtained by numerical calculations and
interpreted by our Gaussian analytical approximations, cannot be seen in the plane wave analysis.
In such a limit, we only have reflection and transmission probabilities, and the quaternionic case
can always be interpreted in terms of a complex potential step which appropriately fits the quater-
nionic probabilities. This paper stimulates further investigations; for example, it should be inter-
esting to study within the wave packet formalism, diffusion, and tunneling by complex and pure
quaternionic potential barriers which, surely, represents a more realistic potential to be tested by an
experimental analysis. In the case of the potential barrier, it is of great interest to examine the
tunneling phenomena. In particular, in a forthcoming paper we aim to analyze in detail the
Hartman effect'>'® in the presence of a pure quaternioic potential. The possibility to treat the
potential barrier problem as a two-step problem7’8 gives a more solid interest to this paper. How it
could appear as an academic quantum mechanical exercise plays a fundamental role in under-
standing the behavior of wave packets in the presence of a more complicate potential. The analysis
done in this paper explicitly shows that a qualitative difference exists between complex and
quaternionic quantum mechanics.
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