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Chaos in the parallel sheared plasma flow driven electromagnetic
turbulence in nonuniform magnetoplasmas

Arshad M. Mirza, Tariq Rafiq, and G. Murtaza
Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

P. K. Shukla and R. T. Faria, Jr.?)
Institut fir Theoretische Physik IV, Fakuttéir Physik and Astronomie, Ruhr-UniverditBochum,
D-44780 Bochum, Germany

(Received 13 October 1998; accepted 11 January)1999

By employing the two-fluid model, a system of nonlinear equations for low-frequency
electromagnetic waves in nonuniform collisional magnetoplasmas has been derived. The plasma
contains both the equilibrium density gradient and sheared flows. In the linear limit, a local
dispersion relation has been obtained and analyzed in several interesting limiting cases. It is found
that equilibrium sheared plasma flows cause instabilities of Alyge waves even in the absence

of the density gradient. The numerical results also show a large growth rate of electromagnetic
parallel velocity sheafPVS) mode compared to the electrostatic mode for some ionospheric
parameters. For this case, the temporal nonlinear behavior of the relevant governing mode coupling
equations is governed by six coupled equations, which are a generalization of the Lorenz—Stenflo
equations and which admit chaotic trajectories. The results of this investigation should be useful for
understanding the linear and nonlinear properties of electromagnetic waves that are generated by
sheared plasma flows in magnetized plasmas1999 American Institute of Physics.
[S1070-664X%99)03604-6

I. INTRODUCTION magnetic field-aligned ion flow velocity perturbation and the
ave potential, which lead to an instability. Three-
imensional simulations of this parallel ion velocity shear

instability (PIVS) have been recently carried out by McCar-

9 . .
hibit nearly sonic flow of the ions along the magnetic fielgthy et al” in order to understand the nonlinear m'ode struc-
lines at the edge and also in the scrape off layer of a tokamak!"® gnd the anomalous momentum trand?;rﬁgt in tokamak
device. Strong radial gradients of the parallel flow in the®dges. Furthermore, it has also been sh that the

vicinity of a poloidal shear layer have also been detebted. PIVS can also cause the instability of electrostatic waves in
Similarly, in naturally occurring plasmas, equilibrium Partially ionized collisional magnetoplasmas. Experimental

plasma flow velocities are found to be spatially inhomoge-observations’ verify the theoretical predictions'® of the
neous in a direction perpendicular to the ambient magneti€ollisional parallel velocity sheaiPVS) instability.
field lines of force. Thus, the velocity shear can have both ~However, in most of the laboratory and space plasmas,
parallel and perpendicular components and either of thes®e plasma betag=8mn,T/Bj, wheren, is the plasma
may excite electrostatic waves. For example, when equilibnumber density an&, the strength of the ambient magnetic
rium plasma flows have a gradient perpendicular to the amfield) could exceed the electron to ion mass ratio. Accord-
bient magnetic field, the excited modes are of theingly, it becomes necessary to incorporate the electromag-
Kelvin—Helmholtz-type> On the other hand, when the mag- netic effects on the PIVS modes.
netic field-aligned ion plasma flows are sheared, we have the In this paper, we present an investigation of low-
possibility of exciting shorter scale electrostatic wafes. frequency(in comparison withw;) electromagnetic waves
These results suggest that the PIVS modes could be one of the presence of equilibrium sheared plasma flows in non-
the potential candidates for explaining the salient features afiniform magnetoplasmas. The two-fluid model is used to
anomalous transports that are caused by saturated electiderive a set of nonlinear fluid equations. The latter include
static turbulence in laboratory and space plasmas. the continuity and parallel momentum equations for the elec-
In the past, several auth8r§ have presented a detailed tron and ion fluids, in which the parallel component of the
instability analysis of low-frequenciin comparison with the  drift fluid velocities are inserted. In the linear limit, we ob-
ion gyrofrequencyw,;) electrostatic waves in fully ionized tain a local dispersion relation which admits a new electro-
collisionless magnetoplasmas in the presence of the ion venagnetic instability. On the other hand, the newly derived
locity gradient. The latter produces a phase lag between theonlinear equations can be written as a set of six coupled
mode equations, representing a generalization of Ldfenz
dpermanent address: Instituto désiEa “Gleb Wataghin,” Universidade and Stenflt® equations. The latter admit chaotic trajectories.
Estadual de Campinas, 13083-970, Campinas, SP, Brazil. The manuscript is organized in the following fashion: In

There has been a renewed interest in the study of th
parallel ion velocity sheafPIVS) instability, which has been
observed in some recent laboratory experimenitihat ex-

1070-664X/99/6(4)/1107/6/$15.00 1107 © 1999 American Institute of Physics
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Sec. ll, we present a derivation of the nonlinear mode couview of the low approximation (viz., mg/m;<B<1),
pling equations. Section Ill contains local linear dispersionwherem, is the electron mass. For simplicity, the ions are
relations which predict electromagnetic instability both inassumed to be cold.
collision-dominated and collisionless regimes. The chaotic  Substituting for the-component of the electric field into
behavior of nonlinearly interacting finite amplitude electro-the parallel component of the electron momentum equation
magnetic waves is discussed in Sec. IV. A brief summanand using(1), we obtain
and conclusions are presented in Sec. V.

(L{+Vpeo' V— ﬂer)Az

Il. DERIVATION OF NONLINEAR PVS MODE cTuo
EQUATIONS +C(0,+ S5y V) p— i L,Ng; =0, (4)
0

We consider the nonlinear propagation of low-frequency . -
(w<wg=eBy/mc) electromagnetic waves in nonuniform Where £i=di+Veg: V+v;0;, L=+ (1Bo) VA, X2V,
magnetoplasmas which have the equilibrium density gradierfler [=Ne=No(X) < r‘e]z is the electron number density pertur-
dnjo/ox and the equilibrium velocity gradiengv;q/ox. — ation, 7.=0.5IveA; is the plasma resistivity.ve; the
Here, e is the magnitude of the electron charg®, is the electron—|o_n collision frequency,.= ¢/ w,¢ the collisionless
strength of the external magnetic field which is directedelectron skin depthw,, the electron plasma frequencg,

along thez-axis, m; the ion massg the speed of lightn;o(x) ~ =2XVujo/wcj, and w¢; the gyrofrequency of the particle
the unperturbed number density of the particle specigs  SPeCIes . _
equalse for the electrons andfor the iong, andv;o(x) the Similarly, thez-component of the ion momentum equa-

magnetic field-aligned unperturbed plasma flow velocity.tion can be written as
Both the equilibrium density and velocity gradients are along
i S o 5 ; ' e : 1 .
the x-axis, which is transverse tBoz, wherez is the unit (LI v)vi=— — | (9,484 V) b+ = LIA,]. (5)
vector along thez-axis. m; c
We assume that the difference between the electron and 1,5 remaining nonlinear equations for the electrons and

ion equilibrium drifts lead to an equilibrium plasma current, the ions in the presence of electromagnetic fields can be ob-

which p_rodyces a small shear component of the equilibriurqained by substituting1) and (2) into the electron and ion
magnetic field. The latter, however, can be neglected fOEontinuity equations. We have

laboratory and space applications, as the main component of

the magnetic field is a thousand times larger than the sheared c .

equilibrium magnetic field component. Furthermore, the(£$+vioo72—Der)nel— B zXVng-Vo—

plasma is assumed to be isothermal and that the equilibrium 0

is maintained by some external sources. c 5
In the low-frequency electromagnetic fields, the electron X VJeo: VA= —NeoLy| vip+ 7—— VA, (6)
. . . . ~16 4me neO

and ion fluid velocity perturbation's; 6 are

z

eBy

and
Ve%VEB+VDe+(UeO+UeZ)BJ_/Bo+ivez (1) c cn
and (L1=DyV2)Ni = 22X VNio- V= ——(Li+ v)V2
Bo Bowg;
e ) ) 2. ) 1.
Vi=Ves T (VioTviz) B, /Bot 20iz FVpi @ =~ o5 2% Vo VA Lo(niviy), Y]

where VEB=(C/BO)2><V¢ and Vpe= —(CTe/eBOne)i
X Vn, are the usuaE X B, andvp, the electron diamagnetic whereJ;jo=q;n;jqvjo is the unperturbed plasma current den-
drift velocities, respectively, andl,=—(c/Bowc;)(di+v;  Sity, Nis[ =n;j—Nno(x)<ne(x)] is the ion number density per-
+viod,+ Veg- V+0i,d,)V, ¢ the ion polarization drift ve- turbation, andy;=e, andge= —e.

locity, T, the electron temperature,, the electron number Equations (3)—(7) with ne;=n;;=n; are the desired
density,v;, the parallel component of the ion velocity per- nonlinear equations for electromagnetic waves in nonuni-
turbation, v; the ion collision frequency, and the form collisional magnetoplasmas with equilibrium density
z-component of the electron fluid velocity perturbatinnyis ~ gradient and sheared plasma flows.

obtained from Ampee’s law, yielding

c
Neb o= N0+ mViAz- 3) lll. LINEAR DISPERSION RELATION
In this section, we present the local dispersion relation
Furthermore, n; is the ion number densityE=—-V¢  for electromagnetic modes by neglecting the nonlinear terms
—c '9,A,z andB, = VA,x z are the electric and magnetic and assuming that the perturbation wavelength is much
field vectors, where¢ and A, are the scalar and the smaller than the velocity and density gradient scale-lengths.
z-component of the vector potentials, respectively. The comEquations(3)—(7) are then Fourier transformed by assuming

pressional magnetic field perturbation has been neglected ihat all the perturbed quantities are proportional to so(
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—iwt), wherek and w are the wave vector and the fre-

guency, respectively. Equatio3)—(6) yield, respectively,

eny o
n1=_|_ S, 00— (Q k'VDeO+|7lekL)Az ) (8)
e0
. ekz Qi
(Qi'HVin)Uiz:Fi S,ip— c_kZAZ : 9
ck,d,n
(Qo—Kyvio+iD k2 )Ny + —22
ckk?  k,dyJeo
( 4;e + yeéoe A,—nok,vi,=0, (10)
and
, k,d,Jio
(Qi"_lDiki)nl_nOkzviz_ yeéol z
ck,d,n c2k?
= |yxo, T (Q +ivg) |, (12)

whereQ)j=w—Kkup o andS, ;= (1+k-8 0/kz).
Subtractlng(ll) from (10) and using(8) and (9), we
obtain

22y 2
. 2 J_)\D
{'(Di_De)kL"'szeO}S*e"' (Qi+iv) |

UA

:[{i(Di_ De)ka_+kzveo}(Qe_k'VDeO+ikJ2_ 7e)

kyk,C5d,Jie] A

2212y 2 yhz¥sHXvie _Z
+k2c?k? N3, “eros ke’ (12)
where JieEJi0+JeOv up= Bo/(477n0mi)1/2, and Cs

=(T./m,)¥? are equilibrium current, the Alfwe and ion
acoustic velocities, respectively. Equatio(®—(10) yield
the following result:

Kk C2 2k2
B a2 y&s siz _
[{Qe sz|O+|kLDe}S*e+ Lowe  (Qi+ivi) S*JQS

= [ (Qe—kiot+ ikiDe)(Qe_ K-Vpeoti Wekf)

kykzcgdx‘]eo
EMNywc;

k220 |A,
C(Qi+ivyy) ke

—k2c?k? NG — (13

Equations(12) and(13) are two coupled equations ih
andA, which yield the following dispersion relation:
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21,2 %
. 1 ADe .
{l(Di_De)ki_"kzveO}S*e"_v—z(Qi"HVin)l
A
X (Qe_szi0+ikiDe)(Qe_k'VDeO+inekf)
N kykzcgdeeo_ kgcg_ni
e (Qi+ivip)
:[{i(Di_De)kf+kzve0}(ﬂe_k'VDeO+ikf 7e)
kyk,c2d,J;
yRz xVie
+k§C2ki)\2De+ Tswu [{Qe_ K,vig
kyc2 k2c?
.2 s zCs _
+ikTDg}S, et L. og (Qi+iVin) S,il- (14

We now discuss analytical solutions ¢f4) for two
cases. First, for homogeneous and collisionless plasmas with
Vip>veo, EQ.(14) takes the form

kyk,C2d,J
yhz xve0
le in—kgczkih%e-l- kgcg— W
kyc2 kyd,v;
=K2028, Q2+ 0, —— +K%c 2( Y XU'O—lﬂ, (15
Lhogi K 0

where  8p=1+c2k,d,Jio/(eNywik,C?kINE,).
(15) predicts an instability.

Second, in a collisional-dominated plasma without the
electron diffusion and electron shear flows, we readily obtain
from (14)

Equation

1] SokGviknk,c?
[_ w—ivinkiczkﬂ%e

Qi: 5_1
o Kz Acs o[ kyyvio _1”
Vin \ K, ’

WeiVin

(16)

where 6;=vinveik? N2+ k2[va6,+¢2] and k,=1/L,. For
k?\3.<1, Eq.(16) admits an oscillatory instability in colli-
sional plasmas with parallel ion velocity gradient whose in-
crement fordv o/ dx=dywio>kK,wi /K, is

K7vAcE 80| ( kydyvio ) ‘
—-1]].
01Vin |

Y K @i @
In order to estimate the growth rate of PVS mode, we
have solved Eq(14) numerically by choosing some typical
parameter® of Earth’s auroral F-region at an altitude of 350
km. The magnetic field strengtBo 0.4 G, the electron
number density,,=2x10*m~3, the neutral number den-
sity Npe=2.5X10"m™3, the ion temperaturd;=4000K,
and the electron temperatufe=2T, . Hence, we obtain for
the electron thermal velocity,,=5x 10° m/s, the ion ther-
mal velocityv,;=2x 10° m/s, the ion sound velocitg,=
x10°m/s, the ion gyroradiusps=8.5m, v;/w.=7.3
X104, veilwee=2.2X10"%, v /w=1.25X10"3, g,/
wee=1.6x10"°, the plasmaB=3.5x10 ° with the ion-
neutral collision frequency;,=0.3. The normalized growth
rate y/v;, of PVS mode as a function &, ps is shown in
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Fig. 1 for a fixed value okcs/v;,=0.2 by ignoring electron . c(K2—4K§)KXKy
and ion diffusion terms and for different values of the Ny =—DK?ny+ AmeB, AlA;
sheared parameter,=|dvo/dx|/vi, . Our numerical results
show that the sheared-driven flofwith positive gradient
always destabilizes the plasma fof (10 m—100 km. The —NoK,d (
growth rate of the present electromagnetic instability is
found to be larger than the electrostatic motiét may be  where a;=d,Jio/[€By(De—D;)],  a»=c/[4meBy(D,
noted here that these results are only valid for long perturba~D,)], az=cn;y/Byw.i(De—Dj), ,30 c(dyveo) wee, B1
tion wavelength in whichk, p;<1. Therefore, for short =(cT,/enBy), and 5.= 051ye|)\ The time derivative
wavelength mode&in comparison withp,), one has to use s defined by a dot og;, A; andA,. We note that the terms
kinetic treatment for the ions. proportional to sin(B,x) have been dropped in the derivation
of (22—(27).
Equations(22)—(27) can be appropriately normalized so
IV. CHAOTIC BEHAVIOR OF ELECTROMAGNETIC that th(a/ can belsput in a form which is 7similar to that of
TURBULENCE Lorenz}* Stenflo;® and Mirza and Shuklal We have the
following 6X6 matrix:
In order to study the temporal behavior of nonlinearly

A, (27)

interacting finite amplitude two-dimensional electromagnetic /| d X —og 09 SY O S1 0
waves in collisional magnetoplasmas without the density| ¢ v r -1 -X 0 -s,Z 0
gradient, we follow the approach of Loréfiand Stenfld? d v o -b o v 0
and look for solutions having the following form iz _ S3
. . dTV -1 bl S4U ) 0 55X
= p1(t)sin(Kx)sin(Kyy), (18 d.U 0 o, Y 0 -0y O
n=ny(t)sin(K,x)sin(K,y), (19 d,w -s;Y 0 sg Y 0 -0y
A=A (1)sin(K,x)cog Kyy) — Ay(t)sin(2K,x), (20 X
and Y
Y4
v,=v1(t)sIN(K,x)cog K y) —v,(t)sin( 2K ,x), (21 x| (28
whereK, andK, are constant parameters, a#d, n;, A;, U
A,, vy, andv, are some time-dependent amplitudes. W

Substituting(18)—(21) into (4)—(7), we readily obtain

: which describes the nonlinear coupling between various am-
(p1+vidy) agK?=K?n + a KyA, pling

plitudes. Here, o= Ve|/7]e , 01=D¢olne, o3=vj,/

— S (K2—4KDOK K, AA,, (22 meK?, r_BOkyal/ neK?,  b=4KI/K?  so=a;K,a,/

ajazneK?, Sl_a4/ala377eK » So=B1KKyaza,s/aK 7,

Ar=— 17eK2AL+ BoKy 1 — B1K K N1 A, S3= ﬂlK Kya,8,4/2K%a37e, S4= eﬂlK Kya3a4/
cmK? a5ne, s5=cK,K a1a6/B K2as7e, =4eK? cas/

micK?ag, s;=cK, Kya1a5/2K 7eBoas, With KZ—K2~|— K3
and 7= t/ty, wherety= 7.K?.

Next, if we takeKZ=4K?, (28) then reduces to the Lo-
B1 renz and Stenflo-type equations. However, the normaliza-

Cc
+ B—OKXKyA2¢>1, (23

A= — 47 K2A,— — K K, 1A+ KK AL, .
2 etxP2 5B ybihALt 2 My tions used here are
(24
V27K?B,
. cK2d,v; cK,K pr=a X=+t—F7—F——X,
V1=~ VinUyt yBX 2 o+ |_3:( *piV, o KKy
0 0
e e . \/Enevina'3K4BO
__ - A=aY=2—"""—Y,
+ miBOKXKyA2¢1 miCAl' (25) 1 2 CalKXK§
) e . c 4
- — A VeinK*Boa
U2 VinU2 miCAZ ZBOKxKy¢lU1 AzzaSZ:_MZ’
CalKXKy
e (29
—KK Ay, 26
2m Bo y$1h 29 \/EVeineausdeie

n1:a4U:i ,
2
and cea;KiDe
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2B.d v v T T T T T g T d T T T
V,=agV= :Mv, 25| ]
Ky
and
20| .
B1vEineasK*BodyJdio
V2=a6W= 3 2.3 . >E
m;c”aiKiDe £ 15F -

Equationg28) are the generalized Lorenz—Stenflo equa-
tions, whose properties can be studied both analytically, as 1.0}
well as numerically by means of standard technicfdéghe
equilibrium points of(28) can be obtained by setting time

derivative terms equal to zero and solving this nonlinear set  **[_Z, . . . . . ]
of coupled equations. Thex® matrix case has been studied 0.2 0.4 0.6 0.8 10 12
in some detail by Mirza and Shukt4lt is worth mentioning K pq

that a detailed behavior of chaotic motion can be studied by
numerically solving(28). However, this investigation is be- FIG. 1. Normalized local growth ratg/vi, Vs k, ps for kics/vin=0.2, L,

yond the scope of this paper.

The stability of the stationary states can be studied by

simple linear analysis. Lettingd=X,+X;, Y=Y+Y,, Z
:ZS+Zl! U:US+ Ulr V:VS+V1, andW:WS+Wl, the
linearized system is

d.X,
d.Y,
d.z,
d.V,
d.u,
d.W,
—og 09 SYs O Sq 0
r -1 —Xg O s,Zg 0
Y 0 -b 0 sy 0
| -1 by sUs —o, 0 seXs
0 o, $1Ys O -0 0
-s;¥, O Sg Ys 0 -0y
Xy
Yy
Z;
X v, | (30
U,
Wi

where X;<Xg, Y1<Y,, Z;<Z, U;<Ug, V<€V, and

=100 km, and for different values af;. The values of various plasma
parameters are given in the text.
a

for r=1, the eigenvalues are=—b and A=—(1+0),
which are always negative. Finally, foe>1, the nontrivial
stationary points ar&Xg =Yg ==*b(r—1) andZs=r—1.
The eigenvalues of(31) are A\=—(o+b+1) and
+iy20(oc+1)/(c—b—1), so that the stationary states
(X5 .Y ,Zy) are sinks forr e (1), wherery=o(o+b
+3)/(0—b—1). A Hopf bifurcation occurs at,,. For o
>1+b, imaginary roots are possible and that forr the
nontrivial fixed points are saddles with two dimensional un-
stable manifolds. Thus, far>r, all the three fixed points
are unstable but the attractor set still exiétdor larger
values, further bifurcation may occur leading to chaotic be-
havior.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the linear and non-
linear dynamics of low-frequency electromagnetic waves in
nonuniform collisional magnetoplasmas which have equilib-
rium density gradient as well as sheared plasma flows. It is
found that free energy stored in the latter can be coupled to
Alfvén-type modes. Specifically, in a collision-dominated
magnetoplasma without the density gradient, we have the
possibility of a resistive instability of Alfve-type waves in
the presence of equilibrium sheared ion flows. Our numerical
studies for the ionospheric parameters also show that the
electromagnetic parallel velocity shed@VS) driven mode
grow faster than the electrostatic mode. Furthermore, linearly
excited finite amplitude electromagnetic waves interact
among themselves and lead to a chaotic state due to the

Wy<Wsand (Xs, Ys, Zs, Us, Vs, W) represents a station- mode couplings. This has been demonstrated by looking for
ary state. The corresponding characteristic equation is thushe time-dependent solution of the nonlinear equations that

(02 N)2(N+Db)[ogoy+ (0o(1—T)+ 201+ 0go) N

+(1+0’0))\2+)\3_(0'0_r)(TlSl]:O, (31)

govern the dynamics of finite amplitude electromagnetic

waves in a resistive medium. We find that the nonlinear dy-

namics of electromagnetic turbulence in the presence of
sheared plasma flows without the density gradient can be

which governs the linear stability of the stationary state. Ifexpressed as a set of six coupled mode equations, or simply
we seto,=01=5;=0 then we recover the results of our the generalized Lorenz—Stenflo equations. The latter admit

earlier investigatiort! For example, if we take<1, the ori-

chaotic trajectories under appropriate limits. In conclusion,

gin is a hyperbolic sink and is thus stable. On the other handye stress that the present investigation should be helpful in
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