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Chaos in the parallel sheared plasma flow driven electromagnetic
turbulence in nonuniform magnetoplasmas

Arshad M. Mirza, Tariq Rafiq, and G. Murtaza
Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

P. K. Shukla and R. T. Faria, Jr.a)

Institut für Theoretische Physik IV, Fakulta¨t für Physik and Astronomie, Ruhr-Universita¨t Bochum,
D-44780 Bochum, Germany

~Received 13 October 1998; accepted 11 January 1999!

By employing the two-fluid model, a system of nonlinear equations for low-frequency
electromagnetic waves in nonuniform collisional magnetoplasmas has been derived. The plasma
contains both the equilibrium density gradient and sheared flows. In the linear limit, a local
dispersion relation has been obtained and analyzed in several interesting limiting cases. It is found
that equilibrium sheared plasma flows cause instabilities of Alfve´n-type waves even in the absence
of the density gradient. The numerical results also show a large growth rate of electromagnetic
parallel velocity shear~PVS! mode compared to the electrostatic mode for some ionospheric
parameters. For this case, the temporal nonlinear behavior of the relevant governing mode coupling
equations is governed by six coupled equations, which are a generalization of the Lorenz–Stenflo
equations and which admit chaotic trajectories. The results of this investigation should be useful for
understanding the linear and nonlinear properties of electromagnetic waves that are generated by
sheared plasma flows in magnetized plasmas. ©1999 American Institute of Physics.
@S1070-664X~99!03604-6#
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I. INTRODUCTION

There has been a renewed interest in the study of
parallel ion velocity shear~PIVS! instability, which has been
observed in some recent laboratory experiments1–3 that ex-
hibit nearly sonic flow of the ions along the magnetic fie
lines at the edge and also in the scrape off layer of a toka
device. Strong radial gradients of the parallel flow in t
vicinity of a poloidal shear layer have also been detecte4

Similarly, in naturally occurring plasmas, equilibrium
plasma flow velocities are found to be spatially inhomog
neous in a direction perpendicular to the ambient magn
field lines of force. Thus, the velocity shear can have b
parallel and perpendicular components and either of th
may excite electrostatic waves. For example, when equ
rium plasma flows have a gradient perpendicular to the
bient magnetic field, the excited modes are of t
Kelvin–Helmholtz-type.5 On the other hand, when the ma
netic field-aligned ion plasma flows are sheared, we have
possibility of exciting shorter scale electrostatic wave6

These results suggest that the PIVS modes could be on
the potential candidates for explaining the salient feature
anomalous transports that are caused by saturated ele
static turbulence in laboratory and space plasmas.

In the past, several authors6–8 have presented a detaile
instability analysis of low-frequency~in comparison with the
ion gyrofrequencyvci) electrostatic waves in fully ionized
collisionless magnetoplasmas in the presence of the ion
locity gradient. The latter produces a phase lag between

a!Permanent address: Instituto de Fı´sica ‘‘Gleb Wataghin,’’ Universidade
Estadual de Campinas, 13083-970, Campinas, SP, Brazil.
1101070-664X/99/6(4)/1107/6/$15.00
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magnetic field-aligned ion flow velocity perturbation and t
wave potential, which lead to an instability. Thre
dimensional simulations of this parallel ion velocity she
instability ~PIVS! have been recently carried out by McCa
thy et al.9 in order to understand the nonlinear mode stru
ture and the anomalous momentum transport in tokam
edges.4 Furthermore, it has also been shown10–13 that the
PIVS can also cause the instability of electrostatic waves
partially ionized collisional magnetoplasmas. Experimen
observations12 verify the theoretical predictions11,12 of the
collisional parallel velocity shear~PVS! instability.

However, in most of the laboratory and space plasm
the plasma beta (b58pn0T/B0

2, where n0 is the plasma
number density andB0 the strength of the ambient magnet
field! could exceed the electron to ion mass ratio. Acco
ingly, it becomes necessary to incorporate the electrom
netic effects on the PIVS modes.

In this paper, we present an investigation of low
frequency~in comparison withvci) electromagnetic waves
in the presence of equilibrium sheared plasma flows in n
uniform magnetoplasmas. The two-fluid model is used
derive a set of nonlinear fluid equations. The latter inclu
the continuity and parallel momentum equations for the el
tron and ion fluids, in which the parallel component of t
drift fluid velocities are inserted. In the linear limit, we ob
tain a local dispersion relation which admits a new elect
magnetic instability. On the other hand, the newly deriv
nonlinear equations can be written as a set of six coup
mode equations, representing a generalization of Lore14

and Stenflo15 equations. The latter admit chaotic trajectorie
The manuscript is organized in the following fashion:
7 © 1999 American Institute of Physics
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Sec. II, we present a derivation of the nonlinear mode c
pling equations. Section III contains local linear dispers
relations which predict electromagnetic instability both
collision-dominated and collisionless regimes. The chao
behavior of nonlinearly interacting finite amplitude electr
magnetic waves is discussed in Sec. IV. A brief summ
and conclusions are presented in Sec. V.

II. DERIVATION OF NONLINEAR PVS MODE
EQUATIONS

We consider the nonlinear propagation of low-frequen
(v!vci5eB0 /mic) electromagnetic waves in nonuniform
magnetoplasmas which have the equilibrium density grad
]nj 0 /]x and the equilibrium velocity gradient]v j 0 /]x.
Here, e is the magnitude of the electron charge,B0 is the
strength of the external magnetic field which is direct
along thez-axis,mi the ion mass,c the speed of light,nj 0(x)
the unperturbed number density of the particle speciesj ( j
equalse for the electrons andi for the ions!, andv j 0(x) the
magnetic field-aligned unperturbed plasma flow veloc
Both the equilibrium density and velocity gradients are alo
the x-axis, which is transverse toB0ẑ, where ẑ is the unit
vector along thez-axis.

We assume that the difference between the electron
ion equilibrium drifts lead to an equilibrium plasma curren
which produces a small shear component of the equilibr
magnetic field. The latter, however, can be neglected
laboratory and space applications, as the main compone
the magnetic field is a thousand times larger than the she
equilibrium magnetic field component. Furthermore, t
plasma is assumed to be isothermal and that the equilibr
is maintained by some external sources.

In the low-frequency electromagnetic fields, the electr
and ion fluid velocity perturbations,13–16 are

ve'vEB1vDe1~ve01vez!B' /B01 ẑvez ~1!

and

vi'vEB1~v i01v iz!B' /B01 ẑv iz1vpi , ~2!

where vEB5(c/B0) ẑ3“f and vDe52(cTe /eB0ne) ẑ
3“ne are the usualE3B0 andvDe the electron diamagneti
drift velocities, respectively, andvpi52(c/B0vci)(] t1n i

1v i0]z1vEB•“1v iz]z)“'f the ion polarization drift ve-
locity, Te the electron temperature,ne the electron numbe
density,v iz the parallel component of the ion velocity pe
turbation, n i the ion collision frequency, and th
z-component of the electron fluid velocity perturbationvez is
obtained from Ampe`re’s law, yielding

nevez5niv iz1
c

4pe
“'

2 Az . ~3!

Furthermore, ni is the ion number density,E52“f

2c21] tAzẑ and B'5“Az3 ẑ are the electric and magnet
field vectors, wheref and Az are the scalar and th
z-component of the vector potentials, respectively. The co
pressional magnetic field perturbation has been neglecte
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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view of the low-b approximation ~viz., me /mi!b!1),
whereme is the electron mass. For simplicity, the ions a
assumed to be cold.

Substituting for thez-component of the electric field into
the parallel component of the electron momentum equa
and using~1!, we obtain

~L t
e1vDe0•“2he“'

2 !Az

1c~]z1Sv0
e
•“ !f2

cTe0

ene0
Lzne150, ~4!

whereL t
j[] t1vEB•“1v jz]z , Lz[]z1(1/B0)“Az3 ẑ•“,

ne1 @5ne2n0(x)!ne# is the electron number density pertu
bation, he[0.51neile

2 is the plasma resistivity,nei the
electron–ion collision frequency,le5c/vpe the collisionless
electron skin depth,vpe the electron plasma frequency,Sv0

j

5 ẑ3“v j 0 /vc j , and vc j the gyrofrequency of the particle
speciesj .

Similarly, thez-component of the ion momentum equ
tion can be written as

~L t
i1n i !v iz.2

e

mi
F ~]z1Sv0

i
•“ !f1

1

c
L t

iAzG . ~5!

The remaining nonlinear equations for the electrons a
the ions in the presence of electromagnetic fields can be
tained by substituting~1! and ~2! into the electron and ion
continuity equations. We have

~L t
e1v i0]z2De“'

2 !ne12
c

B0
ẑ3“ne0•“f2

1

eB0
ẑ

3“Je0•“Az52ne0LzS v iz1
c

4pene0
“'

2 AzD ~6!

and

~L t
i2Di“'

2 !ni12
c

B0
ẑ3“ni0•“f2

cni0

B0vci
~L t

i1n i !“'
2 f

52
1

eB0
ẑ3“Ji0•“Az2Lz~niv iz!, ~7!

whereJj 05qjnj 0v j 0 is the unperturbed plasma current de
sity, ni1@5ni2n0(x)!n0(x)# is the ion number density per
turbation, andqi5e, andqe52e.

Equations ~3!–~7! with ne15ni1[n1 are the desired
nonlinear equations for electromagnetic waves in nonu
form collisional magnetoplasmas with equilibrium dens
gradient and sheared plasma flows.

III. LINEAR DISPERSION RELATION

In this section, we present the local dispersion relat
for electromagnetic modes by neglecting the nonlinear te
and assuming that the perturbation wavelength is m
smaller than the velocity and density gradient scale-leng
Equations~3!–~7! are then Fourier transformed by assumi
that all the perturbed quantities are proportional to exp(ik•r
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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2 ivt), where k and v are the wave vector and the fre
quency, respectively. Equations~3!–~6! yield, respectively,

n15
en0

Te0
FS* ef2

1

ckz
~Ve2k•vDe01 ihek'

2 !AzG , ~8!

~V i1 in in!v iz.
ekz

mi
FS* if2

V i

ckz
AzG , ~9!

~Ve2kzv i01 iD ek'
2 !n11

ckydxn0

B0
f

1S ckzk'
2

4pe
1

kydxJe0

eB0
DAz2n0kzv iz50, ~10!

and

~V i1 iD ik'
2 !n12n0kzv iz2

kydxJi0

eB0
Az

52F ckydxn0

B0
1

c2k'
2

4pevA
2 ~V i1 in in!Gf, ~11!

whereV j[v2kzv j 0 andS* j5(11k•Sv0
j /kz).

Subtracting~11! from ~10! and using~8! and ~9!, we
obtain

F $ i ~Di2De!k'
2 1kzve0%S* e1

c2k'
2 lDe

2

vA
2 ~V i1 in i !Gf

5F $ i ~Di2De!k'
2 1kzve0%~Ve2k•vDe01 ik'

2 he!

1kz
2c2k'

2 lDe
2 1

kykzcs
2dxJie

en0vci
G Az

kzc
, ~12!

where Jie[Ji01Je0 , vA5B0 /(4pn0mi)
1/2, and cs

5(Te /mi)
1/2 are equilibrium current, the Alfve´n and ion

acoustic velocities, respectively. Equations~8!–~10! yield
the following result:

F $Ve2kzv i01 ik'
2 De%S* e1

kycs
2

Lnvci
2

cs
2kz

2

~V i1 in in!
S* i Gf

5F ~Ve2kzv i01 ik'
2 De!~Ve2k•vDe01 ihek'

2 !

2kz
2c2k'

2 lDe
2 2

kykzcs
2dxJe0

en0vci
2

kz
2cs

2V i

~V i1 in in!
G Az

kzc
. ~13!

Equations~12! and~13! are two coupled equations inf
andAz which yield the following dispersion relation:
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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F $ i ~Di2De!k'
2 1kzve0%S* e1

c2k'
2 lDe

2

vA
2 ~V i1 in in!G

3F ~Ve2kzv i01 ik'
2 De!~Ve2k•vDe01 ihek'

2 !

2kz
2c2k'

2 lDe
2 2

kykzcs
2dxJe0

en0vci
2

kz
2cs

2V i

~V i1 in in!
G

5F $ i ~Di2De!k'
2 1kzve0%~Ve2k•vDe01 ik'

2 he!

1kz
2c2k'

2 lDe
2 1

kykzcs
2dxJie

en0vci
GF $Ve2kzv i0

1 ik'
2 De%S* e1

kycs
2

Lnvci
2

kz
2cs

2

~V i1 in in!
S* i G . ~14!

We now discuss analytical solutions of~14! for two
cases. First, for homogeneous and collisionless plasmas
v i0@ve0 , Eq. ~14! takes the form

V i
2FvV i2kz

2c2k'
2 lDe

2 1kz
2cs

22
kykzcs

2dxJe0

en0vci
G

5kz
2vA

2d0FV i
21V i

kycs
2

Lnvci
1kz

2cs
2S kydxv i0

kzvci
21D G , ~15!

where d0511cs
2kydxJi0 /(en0vcikzc

2k'
2 lDe

2 ). Equation
~15! predicts an instability.

Second, in a collisional-dominated plasma without t
electron diffusion and electron shear flows, we readily obt
from ~14!

V i5
1

d1
F2

d0kz
2vA

2knkycs
2

vcin in
2 in inkz

2c2k'
2 lDe

2

1 i
kz

4vA
2cs

2d0

n in
S kydxv i0

kzvci
21D G , ~16!

where d15n inneik'
2 le

21kz
2@vA

2d01cs
2# and kn51/Ln . For

k'
2 lDe

2 !1, Eq.~16! admits an oscillatory instability in colli-
sional plasmas with parallel ion velocity gradient whose
crement for]v i0 /]x5dxv i0.kzvci /ky is

g5
kz

4vA
2cs

2d0

d1n in
US kydxv i0

kzvci
21D U. ~17!

In order to estimate the growth rate of PVS mode,
have solved Eq.~14! numerically by choosing some typica
parameters10 of Earth’s auroral F-region at an altitude of 35
km. The magnetic field strengthB0.0.4 G, the electron
number densityne0.231011m23, the neutral number den
sity nn0.2.531014m23, the ion temperatureTi.4000 K,
and the electron temperatureTe.2Ti . Hence, we obtain for
the electron thermal velocityv te.53105 m/s, the ion ther-
mal velocityv t i.23103 m/s, the ion sound velocitycs.2
3103 m/s, the ion gyroradiusrs.8.5 m, n i i /vci.7.3
31024, nei /vce.2.231026, n in /vci.1.2531023, nen /
vce.1.631026, the plasmab.3.531025 with the ion-
neutral collision frequencyn in50.3. The normalized growth
rate g/n in of PVS mode as a function ofk'rs is shown in
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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Fig. 1 for a fixed value ofkics /n in50.2 by ignoring electron
and ion diffusion terms and for different values of th
sheared parameteras5u]v0 /]xu/n in . Our numerical results
show that the sheared-driven flow~with positive gradient!
always destabilizes the plasma forLn ~10 m–100 km!. The
growth rate of the present electromagnetic instability
found to be larger than the electrostatic mode.10 It may be
noted here that these results are only valid for long pertu
tion wavelength in whichk'rs,1. Therefore, for short
wavelength modes~in comparison withrs), one has to use
kinetic treatment for the ions.

IV. CHAOTIC BEHAVIOR OF ELECTROMAGNETIC
TURBULENCE

In order to study the temporal behavior of nonlinea
interacting finite amplitude two-dimensional electromagne
waves in collisional magnetoplasmas without the den
gradient, we follow the approach of Lorenz14 and Stenflo,15

and look for solutions having the following form

f5f1~ t !sin~Kxx!sin~Kyy!, ~18!

n5n1~ t !sin~Kxx!sin~Kyy!, ~19!

Az5A1~ t !sin~Kxx!cos~Kyy!2A2~ t !sin~2Kxx!, ~20!

and

vz5v1~ t !sin~Kxx!cos~Kyy!2v2~ t !sin~2Kxx!, ~21!

whereKx andKy are constant parameters, andf1 , n1 , A1 ,
A2 , v1 , andv2 are some time-dependent amplitudes.

Substituting~18!–~21! into ~4!–~7!, we readily obtain

~ḟ11n if1!a3K25K2n11a1KyA1

2d2~K224Kx
2!KxKyA1A2 , ~22!

Ȧ152heK
2A11b0Kyf12b1KxKyn1A2

1
c

B0
KxKyA2f1 , ~23!

Ȧ2524heKx
2A22

c

2B0
KxKyf1A11

b1

2
KxKyn1A1 ,

~24!

v̇152n inv11
cKy

2dxv i0

B0
f11

cKxKy

B0
f1V2

1
e

miB0
KxKyA2f12

e

mic
Ȧ1 , ~25!

v̇252n inv22
e

mic
Ȧ22

c

2B0
KxKyf1v1

2
e

2miB0
KxKyf1A1 , ~26!

and

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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ṅ152DeK
2n11

c~K224Kx
2!KxKy

4peB0
A1A2

2n0KxdxS v i0

B0
DA1 , ~27!

where a15dxJie /@eB0(De2Di)#, a25c/@4peB0(De

2Di)#, a35cni0 /B0vci(De2Di), b05c(dxve0)/vce , b1

5(cTe0 /ene0B0), and he50.51neile
2. The time derivative

is defined by a dot onf1 , A1 andA2 . We note that the terms
proportional to sin(3Kxx) have been dropped in the derivatio
of ~22!–~27!.

Equations~22!–~27! can be appropriately normalized s
that they can be put in a form which is similar to that
Lorenz,14 Stenflo,15 and Mirza and Shukla.17 We have the
following 636 matrix:

S dtX

dtY

dtZ

dtV

dtU

dtW

D 5S 2s0 s0 s0Y 0 s1 0

r 21 2X 0 2s2Z 0

Y 0 2b 0 s3Y 0

21 b1 s4U 2s2 0 s5X

0 s1 s1Y 0 2s1 0

2s7Y 0 s6 Y 0 2s2

D
3S X

Y

Z

V

U

W

D , ~28!

which describes the nonlinear coupling between various
plitudes. Here, s05nei /heK

2, s15De /he , s25n in /
heK

2, r 5b0kya1 /heK
2, b54Kx

2/K2, s05a1Kya2 /
a1a3heK

4, s15a4 /a1a3heK
2, s25b1KxKya3a4 /a2K2he ,

s35b1KxKya2a4/2K2a3he , s45eb1KxKya3a4 /
cmiK

2a5he , s55cKxKya1a6 /B0K2a5he , s654eKx
2a3 /

micK2a6 , s75cKxKya1a5/2K2heB0a6 , with K25Kx
21Ky

2

andt5t/t0 , wheret05heK
2.

Next, if we takeKy
254Kx

2, ~28! then reduces to the Lo
renz and Stenflo-type equations. However, the normal
tions used here are

f15a1X56
A2heK

2B0

cKxKy
X,

A15a2Y56
A2hen ina3K4B0

ca1KxKy
2

Y,

A25a3Z52
neiheK

4B0a3

ca1KxKy
2

Z,

~29!

n15a4U56
A2neihea3K2dxJie

cea1Ky
2De

U,
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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V15a5V57
A2B0dxv i0

Ky
V,

and

V25a6W5
b1nei

2 hea3
2K4B0dxJi0

mic
3a1

2Ky
3De

W.

Equations~28! are the generalized Lorenz–Stenflo equ
tions, whose properties can be studied both analytically
well as numerically by means of standard techniques.18 The
equilibrium points of~28! can be obtained by setting tim
derivative terms equal to zero and solving this nonlinear
of coupled equations. The 333 matrix case has been studie
in some detail by Mirza and Shukla.17 It is worth mentioning
that a detailed behavior of chaotic motion can be studied
numerically solving~28!. However, this investigation is be
yond the scope of this paper.

The stability of the stationary states can be studied b
simple linear analysis. LettingX5Xs1X1 , Y5Ys1Y1 , Z
5Zs1Z1 , U5Us1U1 , V5Vs1V1 , andW5Ws1W1 , the
linearized system is

S dtX1

dtY1

dtZ1

dtV1

dtU1

dtW1

D
5S 2s0 s0 s0Ys 0 s1 0

r 21 2Xs 0 2s2Zs 0

Y 0 2b 0 s3Y 0

21 b1 s4Us 2s2 0 s5Xs

0 s1 s1Ys 0 2s1 0

2s7Ys 0 s6 Ys 0 2s2

D
3S X1

Y1

Z1

V1

U1

W1

D , ~30!

where X1!Xs , Y1!Ys , Z1!Zs , U1!Us , V1!Vs , and
W1!Ws and (Xs , Ys , Zs , Us , Vs , Ws) represents a station
ary state. The corresponding characteristic equation is th

~s21l!2~l1b!@s0s11~s0~12r !12s11s0s1!l

1~11s0!l21l32~s02r !s1s1#50, ~31!

which governs the linear stability of the stationary state
we sets25s15s150 then we recover the results of ou
earlier investigation.17 For example, if we taker ,1, the ori-
gin is a hyperbolic sink and is thus stable. On the other ha
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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for r 51, the eigenvalues arel52b and l52(11s),
which are always negative. Finally, forr .1, the nontrivial
stationary points areXs

65Ys
656Ab(r 21) and Zs5r 21.

The eigenvalues of ~31! are l52(s1b11) and
6 iA2s(s11)/(s2b21), so that the stationary state
(Xs

6 ,Ys
6 ,Zs) are sinks forr P(1,r H), where r H[s(s1b

13)/(s2b21). A Hopf bifurcation occurs atr H . For s
.11b, imaginary roots are possible and that forr .r H the
nontrivial fixed points are saddles with two dimensional u
stable manifolds. Thus, forr .r H all the three fixed points
are unstable but the attractor set still exists.18 For large r
values, further bifurcation may occur leading to chaotic b
havior.

V. CONCLUSION AND DISCUSSION

In this paper, we have investigated the linear and n
linear dynamics of low-frequency electromagnetic waves
nonuniform collisional magnetoplasmas which have equi
rium density gradient as well as sheared plasma flows.
found that free energy stored in the latter can be couple
Alfvén-type modes. Specifically, in a collision-dominate
magnetoplasma without the density gradient, we have
possibility of a resistive instability of Alfve´n-type waves in
the presence of equilibrium sheared ion flows. Our numer
studies for the ionospheric parameters also show that
electromagnetic parallel velocity shear~PVS! driven mode
grow faster than the electrostatic mode. Furthermore, line
excited finite amplitude electromagnetic waves inter
among themselves and lead to a chaotic state due to
mode couplings. This has been demonstrated by looking
the time-dependent solution of the nonlinear equations
govern the dynamics of finite amplitude electromagne
waves in a resistive medium. We find that the nonlinear
namics of electromagnetic turbulence in the presence
sheared plasma flows without the density gradient can
expressed as a set of six coupled mode equations, or sim
the generalized Lorenz–Stenflo equations. The latter ad
chaotic trajectories under appropriate limits. In conclusi
we stress that the present investigation should be helpfu

FIG. 1. Normalized local growth rateg/n in vs k'rs for kics /n in50.2, Ln

5100 km, and for different values ofas . The values of various plasma
parameters are given in the text.
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understanding the salient features of low-frequency elec
magnetic turbulence in low-temperature laboratory and sp
plasmas which contain sheared plasma flows.
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