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Chaos and fractals in geodesic motions around a nonrotating black hole with halos
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We study the escape dynamics of test particles in general-relativistic gravitational fields generated by
core-shell models, which are used in astrophysics as idealized models to observed mass distributions, such as
the interior of galaxies. As a general-relativistic core-halo system, we use exact axisymmetric static solutions
of Einstein’s field equations which represent the superposition of a central Schwarzschild black hole~the core!
and multipolar fields from external masses~the halo!. We are particularly interested in the occurrence of chaos
in the escape, which is characterized by a great sensitivity of the choice of escape by a test particle to initial
conditions. The motion of both material particles and zero rest mass particles is considered. Chaos is quantified
by the fractal dimension of the boundary between the basins of the different escapes. We find chaos in the
motion of both material particles and null geodesics, but its intensity depends strongly on the halo. We have
found for all the cases we have considered that massless particles are less chaotic than massive particles.

PACS number~s!: 05.45.Df, 95.10.Fh, 95.30.Sf, 05.45.Pq
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I. INTRODUCTION

Core-shell gravitational systems play an important role
astrophysics, because they can be used as approximatio
observed astronomical distributions of masses. These
tems are characterized by a central massive core~possibly a
black hole! and a surrounding halo of matter. The space
tween the core and the halo is assumed to be empty, an
gravitational field there satisfies the vacuum field equatio
In real systems the assumption that the region between
core and the halo is empty is clearly not satisfied, but it m
be approximately valid in some cases.

In Newtonian gravitation, a general way of treating t
field of the halo is by means of a multipole expansion. Ea
multipole term is a solution of Laplace’s equation, whi
increase with distance, contrary to the more usual decrea
multipoles. The field of a general halo can always be writ
as a linear superposition of such multipole terms. In gen
relativity, the situation is more complicated, because E
stein’s field equations are not linear. However, in the parti
lar case of axisymmetric~and static! vacuum fields, a genera
solution of the field equations is known, and this solution
parametrized by a certain metric function that is related i
simple way to the Newtonian gravitational field in the lim
of weak fields, and it can be used to perform a multip
expansion. Although such expansion is by no means uni
and its relationship with the Newtonian expansion is far fro
straightforward, it is still valuable and can be used to d
scribe the general-relativistic gravitational field of a gene
halo.
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This article is concerned with the motion of test particl
~both massive particles and light will be considered! in a
core-shell system in the region between the core~which we
assume to be a nonrotating black hole! and the halo, whose
gravitational field in this region is described by a multipo
sum, in which we keep terms of up to the third order~octo-
pole!. The treatment is fully relativistic, using exact solutio
of Einstein’s equations that describe the gravitatio
~vacuum! field due to the superposition of the fields of
Schwarzschild black hole and the various multipole com
nents of the halo; in some cases we also use the corresp
ing Newtonian field to compare the results. The motion
test particles in the core-halo field may depend on sev
parameters: the energy, the angular momentum, the m
pole strengths, etc. Depending on the values of these pa
eters, the motion may be either bounded or unbound
Bounded motion means that the particle is restricted t
finite volume of phase space; unboundedness means th
particle has access to an infinite phase-space volume. In
paper, we are interested in the escape properties of t
systems. If a system has two or more physically well-defin
escapes for a given set of parameters of the metric~for in-
stance, regions where a particle runs away to infinity,
where it falls into an event horizon!, then the escape i
chooses depends on the initial conditions; when the basin
escape have a fractal structure, we have a well-defined
of chaos, and the corresponding fractal dimension give
good quantitative characterization of chaos, besides havi
simple physical interpretation as a measure of the sensiti
to initial conditions~see Sec. III!. Since the fractal nature o
the boundary between the basins of escape is a topolog
feature, it is independent of the choice of the space-ti
coordinates; this assures the meaningfulness of this cha
terization for general relativity.

The study of chaos in dynamical systems with unbound
orbits is relatively recent@1#. The characterization of chao
for this class of problems is different from that used f
bounded Hamiltonian dynamics, which is based upon

s
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PRE 61 6507CHAOS AND FRACTALS IN GEODESIC MOTIONS . . .
destruction of Kolmogorov-Arnol’d-Moser~KAM ! tori. One
of the most important situations with unbounded motion
that of the escape of particles from a certain region; t
problem is closely related to scattering, the difference
tween the two being essentially the choice of the initial co
ditions. Escapes have been studied for several systems:
dimensional autonomous Hamiltonian systems@2–4#,
nonlinear oscillations@5,6#, two-dimensional conservativ
mappings@7#, chaotic cosmology@8,9#, and multiple-black-
hole space-times@10–12# are only a few examples.

This paper is organized as follows: in Sec. II we revie
the general vacuum static axisymmetric metric and som
its properties; and in Sec. III we define the box-counti
dimension and discuss its physical significance. In Sec.
we investigate the basins of escape in the motion of mate
particles for some choices of static axisymmetric metri
and show numerically the existence of chaos; the axial
temporal symmetries of the space-time allow us to defin
two-dimensional ‘‘effective potential,’’ which as in the New
tonian case determines the regions in space that are a
sible to the particle, thereby making the analysis of the re
tivistic system analogous to that of the Newtonian system
many ways. In Sec. V, we show that null geodesics are re
lar ~nonchaotic! in the field of a dipolar halo~plus the black
hole!, but chaos arises if we add multipole moments
higher order to the halo; and in Sec. VI we summarize
results and draw some conclusions.

II. THE WEYL METRIC

Many astrophysical systems have axial symmetry, a
their mass distribution can often be approximated by a st
configuration. Throughout this article, we consider only a
symmetric static gravitational fields, and use the Weyl me
to describe a general static axisymmetric space-time@13#:

ds25e2cdt22e22c@e2g~dr21dz2!1r 2df2#, ~1!

wherer andz are the radial and axial coordinates, andf is
the angle about thez axis, which is the axial symmetry axis
Throughout this article, we will use units such thatc51 and
m51, wherem is the mass of the central black hole~1!. c
andg are functions ofr andz only. In these coordinates, th
vacuum Einstein equations reduce to

]2c

]r 2
1

1

r

]c

]r
1

]2c

]z2
50, ~2!

dg5r F S ]c

]r D 2

2S ]c

]z D 2Gdr12r
]c

]r

]c

]z
dz. ~3!

The first expression is just Laplace’s equation in cylind
cal coordinates; the second equation definesg, once c is
found. From Eq.~2! and the form of the metric~1! it is clear
that in the weak-field limitC can be identified as the New
tonian scalar gravitational field.

The metric ~1! is independent of the timet and of the
symmetry anglef. From this we obtain the two constants
motion Ê ~energy! andL̂z ~projection of the angular momen
s
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tum on the symmetry axis!, that are conserved along th
trajectories of test particles in the metric~1!. They are given
by

Ê[pt5gtt ṫ , ~4!

L̂z[pf5gffḟ, ~5!

where the overdot denotes differentiation with respect to
proper time in the case of a massive test particle, or an af
parameter, in the case of particles with zero rest mass.
only independent dynamical variables are thusr and z and
their momentapr and pz : the time evolution oft and f is
given by the quadratures above. This means that the dyn
cal system corresponding to the motion of test particles
the Weyl metric has only two degrees of freedom.

Besides the energy and thez component of the angula
momentum, there is another quantity that is conserved al
the trajectory of a test particle, namely, its rest mass. T
conserved quantity is given by

gmnpmpn5Ê2gtt1L̂z
2gff1 f ~ ṙ 21 ż2!5m0

2 , ~6!

where f 52grr 52gzz5e2(c2g) andm0 is the rest mass o
the test particle, which must satisfym0!1. Dividing both
sides bym0 ~if m0Þ0), we rewrite the above equation in
more convenient form:

E2gtt1Lz
2gff1 f ~ ṙ 21 ż2!5d, ~7!

where E5Ê/m0 is the test particle’s energy per mass,Lz

5L̂z /m0 is the z component of the angular momentum p
mass, and the overdot now means differentiation with resp
to the new affine parameter obtained from the previous
by multiplication bym0 . d51 for massive particles, andd
50 for particles with zero rest mass. The conservation eq
tions for the scaled quantitiesE andLz are

E5gtt ṫ , ~8!

Lz5gffḟ. ~9!

Remember that the differentiation is performed with t
scaled affine parameter.

The equations of motion for the test particles are

ẍm1Gab
m ẋaẋb50, ~10!

whereGab
m are the Christoffel symbols. The equations fot

and f reduce to the quadratures~8! and ~9!. Using these
equations and Eq.~1!, we cast the equations for the remai
ing variablesr andz in the convenient form

r̈ 52
1

2 f
@g,r

ttE21g,r
ffLz

21 f ,r~ ṙ 22 ż2!12 f ,zṙ ż#, ~11!

z̈52
1

2 f
@g,z

ttE21g,z
ffLz

21 f ,z~ ż22 ṙ 2!12 f ,r ṙ ż#. ~12!

To proceed further, it is convenient to define the prola
spheroidal coordinatesu andv by
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z5uv, ~13!

r 25~u221!~12v2!, u>1, 21<v<1. ~14!

In these coordinates, Eq.~2! separates, and a general soluti
is obtained in a series of products of Legendre polynom
and zonal harmonics@14#. We must select a class of solu
tions that represents the physical system we are intereste
the field ~1! should be the result of the superposition of
Schwarzschild black hole and multipolar contributions fro
an external halo. It is well known that in Weyl’s coordinat
the black hole’s event horizon is represented as a singula
lying on the symmetry axis, the inner region being exclud
from the picture@13#; the ‘‘bar’’ singularity is therefore due
to the choice of coordinates, which do not cover the wh
space-time. On the other hand, the halo field, being the re
of external matter sources, cannot have singularities in
region interior to the halo. The general solution that satis
these conditions is

c5 1
2 lnS u21

u11D1 (
n51

`

anPn~u!Pn~v !. ~15!

The first term represents a Schwarzschild black hole w
unit massm51, and the terms under the summation sign
multipolar contributions from the halo.

Using the coordinatesu andv and the expression~15! for
c,g can be obtained from a straightforward integration
Eq. ~3!; the constant of integration is chosen so as to av
conical singularities on thez axis, by imposingg50 for r
50 anduzu.1.

In this article, we are interested in the multipole contrib
tions only up to the octopole term@n53 in Eq. ~15!#. Rede-
fining the coefficients in the expansion, we can writec as

c5 1
2 lnS u21

u11D2Duv1~Q/6!~3u221!~3v221!

1~O/10!uv~5u223!~5v223!, ~16!

whereD, Q, andO are related to the dipole, quadrupole, a
octopole moments; we will refer to them as the dipole, qu
rupole, and octopole strengths, respectively. Now an exp
expression forg may be found by direct integration. Sinc
the expressions are cumbersome and not particularly illu
nating, we will not write them here; they can be found
@15–17#. We observe only that due to the nonlinearity
Einstein’s equation, there are nonlinear terms of interac
between the multipole terms ing: the gravitational field due
to the different terms in the expansion~15! is not simply the
superposition of the fields due to each term separately; th
a dramatic difference between the Newtonian and the r
tivistic theories.

We finish this discussion by recalling again that the co
dinatesu and v describe the metric only outside the bla
hole; in these coordinates, the event horizon is given by
segmentr 50,uzu<1. Since we are interested only in the m
tion of particles outside the event horizon, this singular
havior of the coordinates will not concern us here.
ls
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III. FRACTAL BASIN BOUNDARIES

We now review briefly some basic concepts on fractals
dynamical systems with escapes; a complete discussio
found in @1#. Systems allowing escapes have isolated
stable periodic orbits lying near the openings of the poten
~we are considering Hamiltonian systems with two degr
of freedom, such as those treated here!; these are the so
called Lyapunov orbits@2#. We define theinner regionof the
system to consist of the closed region in the configurat
space bounded by the Lyapunov orbits and by the equipo
tial curves of a given energy. In order to simplify the discu
sion, we suppose for the moment that we have an inner
gion which has two distinct escapes, denoted by 1 and 2~the
generalization of the discussion for a higher number of
capes is straightforward!. By escapewe mean a route tha
allows the particle to leave the inner region permanen
The particular escape chosen by a particle is dependen
the initial conditions of that particle. For a given dynamic
system and a given energy, the set of points in phase s
that correspond to initial conditions such that the parti
chooses escape 1 is thebasincorresponding to escape 1; th
basin corresponding to escape 2 is defined analogousl
point in phase space is defined to be a boundary poin
every neighborhood of such a point contains points belo
ing to both basins. The basin boundary is the set formed
all the boundary points.

This system is chaotic if its basin boundary is fract
Near a fractal basin boundary the points belonging to
different basins are mixed in a very complex way, down
arbitrarily small scales. If we draw a plot of the basins w
a finite resolution, and amplify a region containing a frac
boundary, then no matter how much we amplify it, we w
always find complex structures of intermixing points of bo
basins. This implies a strong dependency on the initial c
ditions near a fractal basin boundary.

If a system has a fractal basin boundary, then it ha
fractal set of unstable ‘‘eternal’’ bounded orbits that nev
escape in the past and in the future~orbits that have neve
entered nor will ever leave the inner region!, called thecha-
otic saddle. The basin boundary is formed by trajectori
belonging to the stable manifold of the chaotic saddle, t
is, by trajectories that never escape in the future~‘‘trapped’’
trajectories!; the unstable manifold is formed by orbits th
do not escape fort→2`. The chaotic saddle, as well as i
stable and unstable manifolds, are sets of zero mea
within the phase space. The chaotic saddle is made by
infinite number of unstable periodic orbits~those that are no
confined within KAM tori! and their homoclinic and hetero
clinic crossings, which in the absence of KAM surfaces
the set of orbits that remain in the inner region for all time
It contains a countable infinity of periodic orbits and an u
countable infinity of aperiodic orbits. The chaotic saddle
part of the full invariant set, which is the set ofall eternal
orbits. Notice that in general not all eternal trajectories b
long to the chaotic saddle: if the system has a stable peri
orbit for energies above the escape energy, then orbits
this one will also be eternal, and they form a nonze
measure set of eternal orbits that are not part of the cha
saddle. For Hamiltonian systems with two degrees of fr
dom such as the ones considered in this article, these o
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PRE 61 6509CHAOS AND FRACTALS IN GEODESIC MOTIONS . . .
are bounded by the outermost KAM torus, which separa
the inner region filled with bounded orbits from the out
regions filled with escaping orbits~with the exception of the
zero-measure set or orbits on the stable manifold of the c
otic saddle!. The region of phase space bounded by the o
ermost KAM torus consists in general of a mixture of chao
and regular orbits. This region is a nonhyperbolic part of
invariant set.

We note that, for a system~at a given energy! to have a
fractal basin boundary, it not only needs to be nonintegra
but also it must be such as to allow the presence of suc
fractal set of trapped trajectories. In other words, the pot
tial must be such that the particle can bounce back and f
many times before it escapes, if the system is to hav
fractal basin boundary. The existence of such ‘‘bouncing
bits’’ is not a sufficient condition for a fractal boundary, b
it is necessary. An example of a nonintegrable dynam
system with regular basin boundaries is given by the mo
of null geodesics in the black hole plus dipole field, d
cussed in Sec. V.

The presence of a fractal set of unstable orbits is the re
of transversal crossings of the stable and unstable manif
of the Lyapunov orbits@2#. The basin boundaries betwee
the different escapes are the stable manifolds of
Lyapunov orbits. The homoclinic and heteroclinic crossin
imply a horseshoe symbolic dynamics, which is respons
for the chaos and the fractal character of the basin bou
aries. The horseshoe dynamics results also in the existen
a set of countable unstable periodic orbits, which thus m
exist if the system has a fractal basin boundary.

To give a quantitative measure of the sensitivity to init
conditions of a system with a fractal basin boundary,
define the box-counting dimension@18# of the boundary as
follows: Let two points chosen randomically in a region
the phase space be separated by a small distancee; it is then
generally the case that the probability that the two poi
belong to different basins scales as

P~e!}eD2d, ~17!

whereD is the ~integer! dimension of the region where th
ensemble of points was chosen, andd is the ~possibly non-
integer! dimension of the intersection of the basin bounda
with this region. If the boundary is nonfractal, thend5D
21, while if the boundary is fractal, we haved.D21. By
choosing randomly a large number of points in a region
the phase space for a certain fixede, we can calculateP(e)
numerically, and by doing this for several values ofe, we
can calculate the fractal dimensiond; this is the method we
use in this article~see@18# for more details!.

If our system has a stable periodic orbit for energ
above escape, then as we said above it has a set of po
measure of nonescaping orbits bounded by tori in ph
space. Escaping orbits that come close to this set stay i
neighborhood for a long time before leaving; in other wor
this set is ‘‘sticky’’ @7#. This complicates the task of calcu
lating the box-counting dimension, for it demands a grea
integration time. We also observe that for this same rea
the boundary between the escaping and the nonesca
regular orbits does not have a well-defined box-counting
mension.
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We observe that since the fractal structure of the ba
boundary is a topological feature of the dynamical system
is a valid characterizations of chaos in general relativity.

IV. DYNAMICS OF MATERIAL PARTICLES

In this section, we study the motion of material test p
ticles in the metric~16! for some choices of the multipole
momentsD, Q, andO. Important properties of the dynamic
can be understood by means of the ‘‘effective potentia
associated with this metric@19#.

The boundary of the region in configuration space tha
accessible to the particle is found by settingṙ 5 ż50 in Eq.
~7!, with d51 for massive test particles:

E2gtt1Lz
2gff2150. ~18!

The ‘‘effective potential’’V(r ,z) is then given by

V~r ,z![E25
12Lz

2gff

gtt
. ~19!

Substituting for the Weyl metric~1!, we have

V~r ,z!5e2cS 11
e2cLz

2

r 2 D . ~20!

The region on therz plane accessible to the particle is give
by V(r ,z)<E2. Using Eq.~16! for c, we thus have an ex
pression for the effective potential in terms of the multipo
moments. We note thatV depends only onc, and not ong.

In the following subsections, we will analyze the dynam
ics for some interesting choices ofD, Q, andO. For bounded
trajectories, this system was shown through Poincare´ sec-
tions to be chaotic@15–17#.

A. Dipole potential

If we makeQ5O50 in Eq. ~16!, we have a pure dipole
field together with a Schwarzschild black hole. The Newto
ian system equivalent to this is the field due to a point m
superposed on a Newtonian shell dipole field, which is s
ply a field of constant acceleration. Bounded trajectories
the relativistic system have been studied, and chaos has
found using Poincare´ sections@16#; the Newtonian system
can be shown to be integrable, so the chaos is due to gen
relativistic contributions to the dynamics. We shall no
study this system in the open regime, that is, with energ
large enough to allow them to escape either to infinity or
the event horizon.

In Fig. 1 we show some contour levels of the effecti
potential V(r ,z) for D5331024 and Q5O50, with Lz
53.0. The first feature we notice is the ‘‘tunnel’’ formed b
the equipotential curves for small values ofr, which leads to
the event horizon~remember that, in these coordinates, t
event horizon is given byr 50 anduzu<1). This is the route
followed by particles that fall into the black hole. We ob
serve thatV is invariant under the transformationz→2z;
D→2D.

If a particle has high enough energy (E2 higher than about
0.94 for the parameters of Fig. 1!, it can also escape to in
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6510 PRE 61ALESSANDRO P. S. DE MOURA AND PATRICIO S. LETELIER
finity. This is shown clearly in Fig. 1 by the opening th
appears in the equipotentials for high energies.

Now let us pick one specific value for the energy, f
instance,E250.95. At this energy, a particle’s orbit can hav
three outcomes:~1! escape into the black hole;~2! escape to
infinity; and ~3! bouncing back and forth forever, and nev
leaving the inner region.

To investigate the nature of the basin boundaries, we n
a portrait of the basins; to do this, we define a tw
dimensional section of the three-dimensional energy she
the phase space that is accessible to the particle. FoE2

50.95 we define this section as the set of initial conditio
with spatial coordinates lying on the segment given byz
50 and 15<r<25, with velocities given by

ṙ 5v cos~u!, ż5v sin~u!, ~21!

where

v5~ ṙ 21 ż2!1/25
1

f
~12E2gtt2Lz

2gff! ~22!

is defined by the conservation equation~7! with d51, and
0<u<2p. This section is thus a topological segment o
cylinder embedded within the phase space, and we will
note it byS.

To obtain numerically the intersection of the basins w
this section, we divide the intervals 15<r<25 and 0<u
<2p into 400 equal parts each; this defines a grid onS
composed of 4003400 points. For each of these points, w
integrate numerically the equations of motion for the dip
metric, and record the outcome: if the trajectory falls into t
black hole~numerically, if r becomes too small, or less tha
0.5 in this case!, that initial condition belongs to basin 1;
the trajectory escapes to infinity~numerically, if r or z be-
comes too large, larger than 60 in this case!, it belongs to
basin 2; and if after a certain proper timetmax ~in this case
we have chosentmax5100 000; for reference, the typica
exit time is about 2000! the trajectory chooses none of th
two escapes above, then we admit that it belongs to the s
‘‘trapped’’ trajectories that never leaves the confining regio

FIG. 1. Level contours of the effective potential for the dipo
field (Q5O50), with D5331024 andLz53.0. The values ofE2

for the equipotentials are, from the inside out, 0.93, 0.94, 0.95,
0.96. Since we have chosen units such thatG5c5m51 (m is the
black hole’s mass!, all quantities in this and the other figures a
dimensionless. In regular units,r andz are given in units ofGm/c2,
which is half the Schwarzschild radius of the black hole.
ed
-
of

s

e-

e

of
.

We choosetmax such that the set of ‘‘trapped’’ trajectories
well resolved for the scale of the grid we use.

The results of this calculation are shown in Fig. 2~a!. A
black dot means that the corresponding point (r ,u) in S be-
longs to basin 1; a white dot indicates that it belongs to ba
2; and a gray dot means it belongs to the set of ‘‘trappe
trajectories. We notice a complex Cantor-like mixing of b
sins, indicating that the structure continues down to sma
scales. This is confirmed by the amplification of a detail
Fig. 2~a! shown in Fig. 2~b!. The area covered by Fig. 2~b! is
about 10 orders of magnitude smaller than that of Fig. 2~a!,
giving strong evidence that the basin boundary is inde
fractal. We note that the set of trapped trajectories ha
nonzero measure; this is clear from Fig. 2~a!. Figure 3~a!
shows the intersection of some of these trapped orbits w

d

FIG. 2. Basin portrait of the sectionSof the phase space for th
dipole field, with initial conditions on the axisz50, for D53
31024, Lz53.0, andE250.95. The black areas correspond to r
gions ofSwhose trajectories fall into the event horizon; white are
correspond to trajectories that escape to infinity; and gray a
correspond to trajectories that remain trapped inside the confi
region. This figure was calculated on a grid of 4003400 points.~b!
is a magnification of~a!.
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PRE 61 6511CHAOS AND FRACTALS IN GEODESIC MOTIONS . . .
the surface of sectionz50. The parameters are the same
in Fig. 2.

To have a more precise and quantitative characteriza
of the fractal structure seen in Fig. 2, we proceed to
calculation of the fractal dimension, as discussed in Sec.
The random points are chosen inS, and for each point (r ,u)
we find through numerical integration to which of the bas
it belongs, and then do the same for two nearby phase-s
points given byr 1e and r 2e and the sameu. If all three
points do not belong to the same basin, then the point (r ,u)
is considered an ‘‘uncertain’’ point, meaning that it lies clo
to a basin boundary. For a large numberN of points ran-
domly chosen inS, the fraction of uncertain points isf (e)
5N8/N, whereN8 is the number of uncertain points found
the sample ofN points. ForN large enough,f is proportional
to P in Eq. ~17!; finding in this wayf for several values ofe,
a log-log plot of f (e) should give a straight line, and th
basin boundary dimensiond is found by the angular coeffi
cient through Eq.~17!. For reasons explained in Sec. III, w
calculated by choosing points in a region that does not
tersect the trapped region bounded by KAM tori. By getti
rid in this way of the ‘‘stickiness’’ of the regular region, w
are able to obtain a meaningful result ford.

The results are shown in Fig. 3~b!. We have chosenN

FIG. 3. ~a! Poincare´ section of trapped orbits, with the surface
section z50, for D5331024, Lz53.0, andE250.95; l is an
affine parameter.~b! Plot of the fraction of ‘‘uncertain’’ pointsf (e)
as a function of the separatione.
s

n
e
I.

s
ce

such thatN8.100; this means a statistical uncertainty
about 10% inf. We see that the points lie on a clearly defin
straight line; the angular coefficient isa50.4760.02, which
gives a dimension ofd51.5360.02, showing unambigu
ously that the boundary is fractal. We remember thatd is the
dimension of the intersection of the basin boundary with
two-dimensional sectionS; the dimension of the basin
boundary in the accessible three-dimensional space isd11.
We have calculatedd for some subregions ofS, and we have
always obtained the same value to within the statistical
certainty, showing that the method is self-consistent and
result is meaningful.

We have studied how the box-counting dimensi
changes as we change the various parameters of the m
If D50, a particle needs an energyE higher than 1 to be
able to escape to infinity. IfDÞ0, the escape energy be
comes less than 1, and depends on the angular mome
Lz . We denote the escape energy byE05E0(Lz). The basin
boundary dimensiond is defined only forE.E0. We have
found that forE.1, d51 ~to within the statistical error!, and
the basin boundary is regular. We have verified this result
several values ofLz andE, and three different values ofD.

We have also investigated howd changes with the dipole
strengthD. In the limit uDu→`, we have a field dominated
by the dipole component; the geodesics defined by a p
dipole field are integrable, and thus we expectd to approach
1 for high values ofD. If we decreaseD enough, we end up
reaching a valueD0 below which the particle can no longe
escape to infinity, andd is no longer well defined. NearD
5D0, with D.D0, the opening of the equipotential to th
escape to infinity is small, and the particle is likely to boun
more times before it escapes through this route than in
case of higher values ofD, and we accordingly expect th
chaos to be ‘‘larger’’ in this case, that is,d to be larger.
These features are indeed verified in a plotting ofd versusD
for E250.95 andLz53.0, shown in Fig. 4. For these value
of D andLz , we haveD0[2.531024. The system is regula
(d5160.01) for D>931024, and d reaches its highes
value of about 1.6 atD5D0.

B. Quadrupole potential

We next turn to the caseD5O50. This quadrupole field
has a reflection symmetry with respect to thez axis: the

FIG. 4. Box-counting dimension of the basin boundary as
function of the dipole strengthD, for E50.95 andLz53.0.
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metric is unchanged byz→2z. For the oblate case (Q
.0), the open equipotentials are similar to the pure dip
case discussed above~except for the aforementioned symm
try!. A more interesting choice isQ,0 ~prolate case!; in this
case, as shown in Fig. 5, there are two different escape
infinity, besides the escape into the event horizon. We inv
tigate this system for the energyE250.97, withLz52.6 and
Q52431026. For these parameters, the invariant set
pears to have zero measure, since we were not able to
any stable orbit in the inner region.

We proceed as we did for the dipole case. We cho
initial conditions in the segmentr 525.0, uzu,25.0; the ve-
locities are given by Eq.~21!. The results are in Fig. 6~a!,
with black dots denoting trajectories that escape upwa
white dots denoting trajectories that escape downward,
gray dots denoting trajectories that fall into the event ho
zon. Figure 6~b! shows an amplification of a very small are
of Fig. 6~a!, and the absence of smoothness in the ba
boundary shows clearly its fractal character. The fractal
mension was computed as described above, and the valu
obtained wasd51.6060.03. In the corresponding oblat
case, withQ51431026 and all other parameters bein
equal, we found no detectable chaos, and the basin boun
was found to be regular, withd51 to within our numerical
accuracy. This is in agreement with the results found in@17#,
where it was found~by using Poincare´ sections! that for a
black hole plus oblate quadrupole field the bounded or
show an almost regular behavior, the chaotic regions be
restricted to very small volumes in phase space, while
corresponding prolate field shows strong chaos.

We have calculatedd for other values of the energy an
angular momentum, and we found that, as opposed to
dipolar halo system studied in the previous section, this s
tem is chaotic forE.1. In fact, we found that the boundar
is fractal for arbitrarily large values of the energy~for Q
,0), as far as we have been able to investigate; this app
to be an important difference between the dipolar and q
drupolar halos.

Since the basin boundary between the escapes is
stable manifold of the chaotic saddle, we have associa
with the chaos in the choice of the escape route a chao
the escape time as well, as is well known in chaotic scat
ing. This happens because orbits starting from very cl

FIG. 5. Level contours of the effective potential for a quad
pole field (D5O50) with a prolate halo (Q52431026) and
Lz52.6. The values ofE2 for the equipotentials are, from the insid
out, 0.93, 0.94, 0.95, and 0.96.
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initial conditions may make a different number of bounc
before escaping, leading to very different escape~proper!
times. We have illustrated this by finding numerically th
escape proper timeste for orbits starting from a fixed posi
tion r 525, z50, for several velocity anglesu, as defined by
Eq. ~21!. We plotte(u) in Fig. 7~a!. The ‘‘spiked’’ character
of the graph is striking, suggesting a fractal structure. Thi
confirmed by Fig. 7~b!, which shows that the functionte(u)
has a fractal set of singular points, wherete(u) goes to in-
finity; this set is the intersection of the line of initial cond
tions with the basin boundary. We observe that the esc
time te is to some extent arbitrary, because it depends
where we stop the integrations of the trajectories before
consider them to have escaped. However, the fractal st
ture seen in Fig. 7 is topological, and is not affected by t
choice. These features of the escape time function remain
same forr andz within the inner region.

In order to gain more insight into the fractal structure
the basin boundary and its related complex dynamics,

-

FIG. 6. Basin portrait for the quadrupole field, withQ524
31026 andLz52.6. Black areas denote regions whose trajecto
fall into the event horizon; gray areas correspond to trajectories
escape towardz→1`; and white areas correspond to trajectori
that escape towardz→2`. ~b! is a magnification of~a!.
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now define a surface of section in phase space denotedP
and given byż50, for a givenE and Lz . We defineI n(n
>1) as the set of points on the surface of initial conditionS
that generate orbits that crossP at leastn times in the nega-
tive direction~that is, satisfyingz̈,0) before escaping. Ob
viously I n is a subset ofI k if k,n, and we have that

I 1.I 2.I 3.•••. ~23!

For systems without KAM tori~as appears to be the ca
of the quadrupole field with the parameters of Fig. 7!, the
basin boundary is given by lim

n→1`
I n . If we let I n , with n

being a negative integer, denote the set of points inS corre-
sponding to past-directed orbits that crossP in the negative
direction at leastunu times, then the unstable manifold of th
chaotic saddle is analogously given by limn→2`I n . Defining
now the setRn5I nùI 2n , the chaotic saddle is given b
lim

n→1`
Rn . This simply states that the chaotic saddle is

intersection of its stable and unstable manifolds.
The mechanism of the construction of the fractal ba

boundary by the dynamics of the system may be followed
examining the setsI n(n.0). Figures 8~a!, 8~b!, and 8~c!
showI 1 , I 2, andI 3, respectively, using the same grid as th
of Fig. 7~a!. As n increases, the structure ofI n becomes more

FIG. 7. Time of escape versus the velocity angle (Q524
31026,Lz52.6), for r 525 andz50. ~b! is a magnification of~a!.
e

n
y

t

and more complicated: every stepI n→I n11 results in taking
from I n increasing numbers of ever thinner strips, alternate
We recognize this as the mechanism for the construction
Cantor set, in the limitn→1`.

We can follow in the same way the construction of t
chaotic saddle itself: in Fig. 8~d! we showR2; compare this
with Fig. 8~b!.

The Newtonian system equivalent to the multipole fie
we are dealing with is given by the Hamiltonian

H5 1
2 ~pr

21pz
2!1V~r ,z!, ~24!

whereV(r ,z) is the effective potential

V~r ,z!5
Lz

2

2r 2
2

1

r
1c~r ,z!, ~25!

and c is given by Eq.~16!. For the dipole field (Q5O
50), as we mentioned before, the Hamiltonian~24! is inte-
grable. For the quadrupole field, however, it is not@15#, so
we expect to have a fractal basin boundary for this case
well. Figure 9 shows some level contours ofV with Lz
52.6 andQ52431026, D5O50; these are the same pa
rameters we have used for the relativistic case. For this ne
tive value ofQ, we have two escapes~for Q.0, there is only
one escape!. Since we want to compare the Newtonian a
the relativistic cases, we choose the energy to beE21,
whereE is the energy we used in the relativistic case, wh
gives 20.0151. We proceed as in the relativistic case
calculate the basin boundary dimension. The initial con
tions are chosen in the segmentuzu,5, r 513. The result is
d51.6460.02, which is roughly the same value~actually a
little larger! we obtained for the relativistic case.

C. Quadrupole ¿ octopole potential

The last case we investigate in this section is the fi
formed by the superposition of the quadrupole and octop
components,D50 with Q, OÞ0. The octopole term break
the reflection symmetry of the quadrupole potential, as
be seen in Fig. 10, which shows some level contours of
effective potential for D50, Q52431026, O521
31027, andLz52.6. We still have three escapes as in t
previous case, but the equipotentials are distorted, and ar
longer symmetrical with respect to thez50 axis. We select
the energyE250.97, and pick the initial conditions on th
segmentuzu,20, r 520. Using these parameters, we ha
calculated the basin boundary dimension, and foundd
51.5960.02, which is practically the same value obtain
for the pure quadrupole fieldO50. If we calculated for the
pure octopole fieldO521027, Q50, keeping the other pa
rameters fixed, we findd51.7060.02, which islarger than
the value obtained for the mixed field. This is a somew
surprising result, and it shows that a ‘‘more complicate
field does not necessarily result in a more complicated~or
‘‘more chaotic’’! motion.
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FIG. 8. ~a! I 1, ~b! I 2, ~c! I 3, ~d! R2, for Q52431026, Lz52.6, andD5O50.
in

n

ca ld

95,
V. THE NULL GEODESICS

We will now study the dynamics of the null geodesics
the metric~16!. For null geodesics,ds250 andd50 in Eq.
~7!, and we have

E2gtt1Lz
2gff1 f ~ ṙ 21 ż2!50, ~26!

FIG. 9. Level contours of the effective potential for the classi
quadrupole field withQ52431026 andLz52.6. The values ofE2

for the equipotentials are, from the inside out, 0,20.01,20.02, and
20.03.
with f 52gzz52grr . The effective potential is then give
by

E2

Lz
2

[
1

b2
5V~r ,z!52

gff

gtt
5

e4c

r 2
, ~27!

l FIG. 10. Level contours of the effective potential for the fie
with D50, Q52431026, O521027, andLz52.6. The values
of E2 for the equipotentials are, from the inside out, 0.94, 0.
0.96, and 0.97.
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whereb is the impact parameter with respect to thez axis.
The curveV(r ,z)51/b25const is the boundary of the re
gions of therz plane accessible to a particle having an i
pact parameter ofb. We notice that in the case of massiv
particles, the effective potential depends separately onE and
Lz , while for the case of massless particles, it depends o
on the ratioE/Lz5b. The equations of motion for the nu
geodesics are Eqs.~11! and ~12!, together with the quadra
tures ~8! and ~9!, with E and Lz related byb5Lz /E. The
initial conditions must be such as to satisfy the constra
~26!.

In the case of the dipole field (Q5O50), we find that
below a certain value of the impact parameterb the equipo-
tential curves open, and the orbits can either fall into
event horizon or escape to infinity. We find, however,
numerical calculations of pictures of the basins, which sh
regular basin boundaries, and by the computation of the
sin boundary dimension, which givesd51 to within the sta-
tistical uncertainty, that the basin boundaries are regular
the system presents no chaos. This result holds for all va
of D andb we have investigated, and it seems safe to c
clude that massless test particles in the field of a black h
surrounded by a dipolar material halo move in regular orb

When we introduce terms of higher order in the multip
lar expansion of the halo, this situation changes. We ill
trate this with a pure quadrupolar halo. IfQ.0, there are
only two escapes~toward infinity and toward the event hor
zon!, and the orbits are again regular. IfQ,0, however, we
have three escape routes~toward the event horizon, towar
z→`, and towardz→2`), and chaotic behavior arise
This can be seen in Fig. 11, where we show some equ
tential curves forQ520.05, with D5O50. Choosingb2

512.5, we obtain a picture of the basins by numerical in
gration, with the initial conditions in the segmentr 52,uzu
,2. The result is shown in Fig. 12~a!, and an amplification
of several orders of magnitude@Fig. 12~b!# shows that the
basin boundary is fractal. This is further confirmed by t
calculation of the basin boundary box-counting dimensi
which yieldsd51.2560.02. We have verified that an octo
pole halo also gives rise to chaos, as is probably the cas
multipole terms of higher order.

Now we make some general remarks on the motion

FIG. 11. Level contours of the effective potential for null ge
desics for the quadrupole fieldQ520.05,D5O50. The values of
b2 (b is the impact parameter with respect to the symmetry a!
are, from the inside out, 10.0, 15.0, and 20.0.
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massless particles in the metric~16!. The absence of stabl
periodic orbits, and therefore of a nonzero-measure se
confined orbits, was verified in all cases we have inve
gated, leading us to make the hypothesis that this is a gen
feature of the motion of zero mass particles in the bla
hole–halo field; we speculate that this may be the case fo
static axisymmetric metrics. We also observed that, in
cases in which there are only two escapes~as, for instance, in
the dipolar halo field and in the quadrupolar field withQ
.0), the motion of zero rest mass particles is always re
lar, as opposed to the motion of material particles in
same fields. When there are three or more escapes, on
other hand, chaotic behavior appears. We have found, h
ever, that the motion of massless particles is always
chaotic ~that is, the box-counting dimensiond of the basin
boundary is lower! than the motion of massive particles fo
the same field, for all cases considered by us.

FIG. 12. Basin portrait for null geodesics withQ520.05,
D5O50, andb2512.5. Areas in black correspond to trajectori
that fall into the event horizon; areas in gray correspond to tra
tories that escape towardz→1`, and areas in white denote trajec
tories that escape toz→2`.
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VI. CONCLUSIONS

In this article we have considered core-shell gravitatio
models, which could describe inner regions of elliptical g
axies. Our study focused on the dynamics of test partic
moving in the gravitational field of such objects, and w
have particularly studied unbounded motions and their a
ciated escape dynamics, both for massive test particles
for light.

In the case of massive particles, chaos was found in
form of fractal basin boundaries. We single out the case
dipolar halo, which has a Newtonian counterpart that
known to be integrable; the chaos for this case is thus a re
of relativistic corrections to the dynamics. This is compatib
with earlier results obtained with bounded orbits@15#. Also
for this case, we have investigated the set of trapped or
with nonzero measure, and we showed that it is formed
orbits that are bound by KAM tori in phase space. Th
means that even for energies above the escape energy,
are regions in phase space wherein the motion rem
bounded. Such stable regions are surrounded by uns
ones, where particles either fall into the black hole or esc
to infinity, these two outcomes being separated in ph
space by a fractal basin boundary.

We have found that the core-dipole system is not cha
for energies above 1, which is the escape energy for an
lated nonrotating black hole. The system appears to be m
chaotic~its boundary dimension attains its highest value! for
energies near escape.
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If the halo is composed of a pure quadrupole term,
situation changes. For a prolate halo (Q,0), there can be
three escape routes, as opposed to only two present in
dipole case, and in this case the system is chaotic for a
trarily large values of the energy, as far as we could de
mine. Oblate halos (Q.0) show no detectable chaos for th
parameters we have used, as opposed to the prolate
This is in agreement with results found previously f
bounded orbits@17#, which show that oblate halos have ve
little chaos.

In the case of massless particles~null geodesics!, we find
that the black hole1 dipolar halo system is not chaotic, th
basin boundary between the escapes being regular fo
values of the parameters we have investigated. If we ad
quadrupole term to the halo, the motion becomes chaot
Q,0; the orbits are still regular forQ.0, further confirm-
ing that oblate halos are a weak source of chaos. Term
higher order also introduce chaos in the system. In cont
to the case of material particles, we have not found a
stable periodic orbit, with its accompanying nonzer
measure set of confined orbits. We believe the absenc
stable periodic orbits of massless particles is a general
ture of axisymmetric static gravitational fields.
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