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The singular structure of the spacetime associated to a cosmic string interacting with either a plane-
fronted gravitational wave or a pencil of electromagnetic radiation is analyzed. We find that depending
on the value of the string constant the interaction can produce either a directional or an essential curva-

ture singularity along the cosmic string.
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In numerical simulations of the evolution of a network
of cosmic strings, ' as well as in the study of the evolution
of a single string,? the spacetime is fixed a priori. Usual-
ly, either the Minkowski or the Friedman-Robertson-
Walker metric is taken as the background spacetime. In
general, no considerations are made about the backre-
action of the cosmic string on the metric. For nonstatic
strings the production of gravitational radiation can be
significant and in a more accurate scenario cannot be
disregarded.? Also, the radiation reaction on the motion
of the string should be considered. The exact equation of
motion of strings in which the gravitational backreaction
modifies the string evolution is not known.* In other
words, almost all the information that we have about the
evolution of cosmic strings does not take into account the
string’s own gravitational field.

Because of the intrinsic nonlinearities of the Einstein
equations, as well as the string evolution equation, the
interaction of the gravitational field with the cosmic
string may not be trivial in the sense that the interaction
may change the nature of the spacetime singularities
that describe the cosmic string. For instance, the de-
scription of a cosmic string by the same singularities that
describe a usual rod will dramatically change some of
the string properties that produce gravitational-lens ef-
fects and are used to seed galaxies.’

Solutions of the Einstein equations have been studied
that describe a cosmic string of infinite length in interac-
tion with (a) black holes located along the string,® (b)
cylindrical gravitational waves with one’ or two degrees
of freedom?® that have as a symmetry axis the string, (c)
other infinitely long strings forming a bundle of parallel
strings,® and (d) one'® or several cosmic walls'! perpen-
dicular to the string. In all these cases there is a rather
trivial interaction; at most the interaction changes the
value of the string constant. The singular structure of
the spacetime, even in the more elaborate cases, is rather
simple: We have the superposition of a conic singularity
and the singularities that represent the object in interac-
tion. In other words, the string only shows up in the
spacetime curvature as a single Dirac distribution with
support on the infinite line occupied by the string.

In this Letter we study exact solutions of the Einstein

equations that represent (a) the interaction of a plane-
fronted gravitational wave with an infinite cosmic string
perpendicular to the wave front, and (b) a pencil of elec-
tromagnetic radiation traveling parallel to a cosmic
string. In both cases we find a very different singular
structure of the Riemann-Christoffel curvature tensor
than the one already mentioned. We find that the in-
teraction of the strings with either the gravitational
waves or the electromagnetic field may give rise to three
different types of singularities: (1) the usual conic one
found in the already studied cases, (2) a directional
singularity, and (3) an essential singularity. The appear-
ance of the different singularities is related to the value
of the string constant.
Let us consider the line element
ds’=Hdu?+2dudv+2Adudx+2Bdudy

—Fe % (dx*+dy?), (1)
where H, A, and B are functions of u, x, and y; Vis a
function of x and y; and F is a function of u only. The
metric (1) is a special case of the general metric that ad-
mits a null vector with zero covariant derivative.!? In
particular, we shall be interested in the case where the
functions F, A4, and B are restricted by

F=(au—uo)? A,—B.=0, A,+B,=0, (2)
where a and u( are arbitrary constants.
The Einstein equations for the metric (1) with the re-

striction (2) give the energy-momentum tensor (EMT)
as

Tyv=wlulv+p(l#kv+lvk#) , 3)
where
etV %
Y= Jemr HoxtHn) o p= gy Vst Voy) (@)
k,=(H/2)8}+&;+ A8;+ B8}, (52)

l,=8Y, my=—~Fe 285, n,=—-Fe ?s}. (5b)
We have that

ktk, =l10"=l,m"=[,n"=k,n" =k,m"'=m,n"=0,

(6)

ktl,=—mm'=—nn"=1.

As usual, the expression (3) is obtained assuming that
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the components of the Riemann-Christoffel curvature
tensor are sufficiently regular to construct a well-defined
Ricci tensor and Ricci scalar in order to have meaningful
Einstein equations. In the case that the curvature tensor
is singular, say along a line, it may be that (3) is no
longer valid on that line. The determination of the EMT
associated to a curvature singularity is not an easy task.
For instance, for singular points and lines there does not
exist a general theory of distributions in curved spaces.
Even more, the existence of such a theory has been ques-
tioned.!?> There are some particular occasions in which
the EMT associated to singular lines has been deter-
mined.”!'#1® On the other hand, the EMT associated to
singular surfaces can always be determined. '%!7
The metric (1) admits several important particular
cases; three of the most studied are the following.
(i) Cosmic strings.— When
H=A=B=0, @)
V=2lnr, (®)

where r =(x2+y2) "2, the metric (1) represents the usu-
al cosmic string of constant linear mass density A.° This
interpretation is based on the fact that the EMT (3) with
the restrictions (6) and (7) reduces to the EMT of an
infinitely long cosmic string,

TH =p,(t"t" —z"zY). 9)

The density p; is the distribution with support in the
string,

ps =A8(x)8() /g2, g2=(au—uo)2r®, 10)
and t* and z* are two orthonormal vectors defined by
V2t# =k*+1* and V2z* =k*—1* (t*1,= —z"z,=1 and
t*z,=0). The deficit angle Aa is related to A by the re-
lation Aa =87XA. For cosmic strings originating in phase
transitions in the very early Universe, A is estimated to
be between 10 73 and 10 ~°,

(ii) Gravitational waves.— When

V=0, an

H,xx+H,yy =0, (12)
the metric (1) represents a plane-fronted gravitational
wave propagating in vacuum, and the EMT (3) is null in
this case. This solution is a generalization of a metric
studied by Kundt.'® An example of this wave is provid-
ed by

H=U,(u)Ref()+U,(u)Imf(), (13)
A=Relp (O +0,(u)g(D],

B =Imlg, ) () +¢,(u)g ()],

where U\, U, ¢1, 62, f, h, and g are functions of the indi-
cated arguments and {=x +iy. The functions U, and
U, are associated with the different polarizations of the
gravitational field.

(iii) Pencils of light.— When V=0, and H is taken as

H=8wlnr,, a1s)

(14)

where r1=[(x—a;)?+(y—5b,)?1"2, with o, a,, and b,
constants, the EMT (3) reduces to

TE =w,I"l", w,=w0é(x—a)8(y—b1)//g,. (16)
Thus the metric (1) in the present case represents a
beam of electromagnetic radiation of zero cross section
located at x=a; and x=5b,. The constant w is the ener-
gy per proper length of the beam of radiation. The
metric (1) with the same restrictions as before and
H=y()y(), v an arbitrary function, represents a
beam of directed electromagnetic radiation. Note that
for either of the functions H mentioned above we have
H ,.+H ,,#0 on the line defined by x=a; and y=b,.
These metrics are generalizations of metrics studied
some years ago by Bonnor. !

Recently, another particular case of the metric (1) has
been considered in connection with strongly gravitating
cosmic strings.?’ In this case the functions U; and U,
are taken as being distributions in order to have a null
curvature tensor outside the string world sheet. In this
Letter we shall consider two other particular cases of (1)
with the restrictions (2).

(a) Cosmic strings with gravitational waves.—We
claim that the metric (1) with F, A, and B given by (2),
V by (8), and H a solution of Eq. (12) represents a usual
cosmic string of infinite length placed on the line »=0 in-
teracting with a plane-fronted wave. This interpretation
is based, as usual, on the fact that in this case the EMT
(3) reduces to the EMT (9) (the EMT of a cosmic string
located along the r =0 axis) and that when A =0, we end
up with the plane gravitational wave described in (ii).
Note that in the present case p; is given by (10) and it
does not change with the interaction, but #* and z* that
are related to /* and k* as in (i) do change. Now k* is a
function of H, A4, and B [cf. Eq. (5a)l.

(b) Cosmic strings and pencils of light.—When H is
given by (15) and ¥ by (8), we have that the EMT (3)
reduces to

T =T +T;". an
Therefore the metric (1) in this case represents the su-
perposition of a beam of electromagnetic radiation of
zero cross section located at x=a; and y =5, and a
cosmic string placed at x =y =0.

We want to remark that the interpretation of the
above two particular cases relies on the hypothesis of
regularity of the curvature tensor that gives rise to Eq.
(3). In order to determine if the given interpretation is
always correct we shall study the singular structure of
the curvature tensor.

The curvature invariants

I, =R,,V;‘gk“k}‘mvm" , I, =Rﬂmk"kln ‘ne,

(18)

I3 =R,nok*k*m'n®, I4=R,,,m"m*n'n°,
for the metric (1) with the restrictions (2) reduce to

I, +1,=—8rw, I4,=—8np,

19)
1|=J1+J2+J3, I3=J4+J5+J6, (
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with p and w defined in (4), and

Ji=*/F)(A4 ., —H ./2),
J2=Qe*/F)(A4.,V . —B.V,),

Jy=—(*¥/FYH V —H,V,), (20)

Ja=*/F)(A4,,—H +,/2),
Js=Qe*/F)(A,V ,+B .,V ),
Jo=—(*/FYH V ,+H,V,).

Now we shall study the curvature invariants associat-
ed to the metric (1) with ¥ given by (8), F by (2), H by
(13), 4 and B by (14) with the specialization

h=f=()° g=()?*,
n
Ui=2Repi, U=2Im¢i, Im¢,=0,

where the prime indicates differentiation with respect to
the argument, and a and B are real constants such that
a¥ —1. In this case the metric (1) represents a single
cosmic string interacting with the particular gravitation-
al wave described by (13), (14), and (21), i.e., a special
case of the situation (a). The quantities J in this case
are

J1=Br*tP1(g5/F)cosl(B—1)6], (22)

Ja=@r/B) I+ 203 e~ HU  cos[(a+1)6]
+U,sinl(a+1)61}/F, (23)
Jy=2r®* e H{—U, cosl(a—1)6]
+Ussinl(a —1)01}/F , (24)
Ja=—PBr** P 1(ps/F)sinl(B—1)61, (25)
Js=@r/B)J +20r e U  cos[(a—1)6]
+U,sinl(a—1)61}/F, (26)
Joe=2r®* " Hy sinl(a —1)0]
—U,cosl(a—1)61}/F, Q7

where 0 denotes the usual polar angle # =arctan(y/x).
First we shall consider the invariants for the case in
which the cosmic string is not present. Setting A =0 in
(22)-(27) we have that only J| and J4 are different from
zero; also w =p =0 in this case. Furthermore, if we take
B=1, the functions J, and J4 are regular on »=0. In
consequence, for this particular gravitational wave we

have that the curvature invariants I, = —I1,=J,, I3=J4,
and 1,=0 are regular on r=0. When <1 and A =0
the invariants I, =—1,=J,, Is=J4 have an essential

singularity on »=0 and in consequence there is a rod lo-
cated on r=0. The actual computation of the EMT as-
sociated with the rod is not an easy task as we pointed
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out before, but its presence can be noticed either by the
behavior of the motion of test particles near =0 or by
the evolution of the geodesic deviation. The equation
that describes the geodesic deviation of test particles is
particularly useful in this case due to its explicit depen-
dence on the curvature tensor. Thus, when the string is
not present, to have a pure gravitational wave we need
B=1.

Now we shall study the invariants for the string in-
teracting with the particular gravitational wave de-
scribed by (21) with B=1. We can distinguish three
different cases.

(1) When 8A+a>1 and =1, all the functions J as
well as the curvature invariants 7y, I, and I3 are regular
on r=0 and /4 has only the conic singularity character-
ized by the delta function that appears in p;. Thus, we
have that the interaction of the string with the gravita-
tional wave does not change the singular behavior of the
curvature on r =0.

(2) When 8AL+a=1 and =1, except for J, and J,4
all the J’s have a directional singularity. Hence the
value of curvature invariants Iy, I,, and I3 on the line
r=0 depends on the angle at which we approach this
line. 74 has a conic singularity as in the preceding case.
Hence, we have that the interaction of the string with
the gravitational wave produces along the axis r=0 the
superposition of a directional and a conic singularity.
Note that when the string is not present, A =0, the conic
singularity disappears. In this particular case the in-
teraction changes the nature of the curvature singularity.
For some authors,?' the appearance of directional singu-
larities is an indication that the coordinate patch used in
the neighborhood of the singularity is inappropriate.

(3) When 8A+a <1 and B= 1, the quantities J,, J3,
Js, and J¢ present an essential singularity. So, 1), I,
and 7; have an essential singularity on »=0 and 74 a con-
ic one. Therefore the interaction of the string with the
gravitational wave gives rise to a naked singularity all
along the string. Also, as in the preceding case, when
the string is not present (A =0) this essential singularity
disappears. We can think of this type of singularity as
produced by a condensation of the gravitational field
along the cosmic string. The EMT associated to the
singularity on »=0 is no longer (9) and (10). Because of
the presence of the essential singularity the EMT splits
into two parts: The first one is the EMT (9) and (10)
and the second represents the distribution of tensions
along the essential singularity; in particular we can have
“hoop tensions.”'® In summary, the structure of the
EMT will look more like a usual rod than the one of a
cosmic string. Again, the correctness of this statement
can be seen from the study of the motion of test particles
near »=0. In general, the effect of the essential singu-
larity will dominate over the conic one. The appearance
of naked singularities in metrics that represent infinitely
long lines is a known property of this class of solutions to
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the Einstein equations. >

For the complementary case, 8 <1, the most interest-
ing situations are obtained when 8A+a>1 and either
8L +pB=1 or 8L+pB>1. In both cases we have the in-
teraction of a gravitational wave, that has an essential
curvature singularity on =0, with a cosmic string. The
interaction changes the nature of the singularity; in the
first case the interaction changes the essential singularity
into a directional one and in the second the essential
singularity is regularized. In both cases the conic singu-
larity that describes the string is always present.

The singular behavior of the interaction of a cosmic
string with the gravitational wave represented by (21) is
not only a property of this last set of functions. There
are a variety of functions f, A, etc., that describe gravita-
tional waves interacting with a single string that have the
same singular behavior of the curvature tensor already
studied. As an example, we can mention that any set of
functions that behave near r=0 as (21) will produce the
same singular structure. Moreover, by choosing the
functions ¥ and H given by (8) and (13), respectively,
and A and B given by (21) with ¢, =Im¢; =0 and 4 =¢*°
we have a metric that represents a pencil of light that in-
teracts gravitationally with a cosmic string in a way that
reproduces the singular structure of the curvature tensor
already studied. Also, for a beam of electromagnetic ra-
diation characterized by the function y it is not difficult
to find functions A, g, etc., that give rise to a similar
singular structure of the curvature invariants.

Therefore, either the gravitational or electromagnetic
waves can interact with cosmic strings in such a way that
they cause an essential singularity of the Riemann-
Christoffel curvature tensor all along the position of the
cosmic string.

We want to stress that the substitution of a conic
singularity by an essential singularity to represent the
string will produce quite different effects on the motion
of massive particles as well as photons near the string.
For instance, the geodesic deviation equation will have a
completely different set of solutions. Also, the dynamics
related to the intersection of strings for nonconic singu-
larities is quite different; in the present case the strings
interact like the usual rods.

In conclusion, we think that because of the peculiari-
ties of the Einstein equations, as well as the cosmic string
evolution equation, the interactions of the strings with

the gravitational field produced by different fields such as
the electromagnetic field or by the presence of massive
bodies need to be better understood in order to construct
consistent models of interacting strings. We recall that
these fields will always be present in a cosmologic or
cosmogonic scenario.

Most of the algebra of this work was performed using
the program of algebraic manipulation yx-TENSOR. 23
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