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SUMMARY

The Common-Reflection-Surface (CRS) stack method is a powerful tool to produce high-
quality stacked images of multicoverage seismic data. As a result of the CRS stack, not only
a stacked section, but also a number of attributes defined at each point of that section, are
produced. In this way, one can think of the CRS stack method as a transformation from data
space to attribute space. Being a purely kinematic method, the CRS stack lacks amplitude
information that can be useful for many purposes. Here we propose to fill this gap by means
of a combined use of a zero-offset section (that could be a short-offset or amplitude-corrected
stacked section) and common midpoint gather. We present an algorithm for an inverse CRS
transformation, namely one that (approximately) transforms the CRS attributes back to data
space. First synthetic tests provide satisfying results for the two simple cases of single dipping-
plane and single circular reflectors with a homogeneous overburden, and provide estimates
of the range of applicability, in both midpoint and offset directions. We further present an
application for interpolating missing traces in a near-surface, high-resolution seismic exper-
iment, conducted in the alluvial plain of the river Gave de Pau, near Assat, southern France,
showing its ability to build coherent signals, where recording was not available. A somewhat
unexpected good feature of the algorithm, is that it seems capable to reconstruct signals even
in muted parts of the section.

GJI Seismology
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1 INTRODUCTION

The Common-Reflection-Surface (CRS) stack method is a recent
data-driven time imaging process (see, e.g. Hubral 1999; Jéger et al.
2001 and also references therein) that has been originally proposed
as an alternative to the classical normal moveout (NMO)—dip move-
out (DMO) chain (Yilmaz 2000) to build seismic stacked, simulated
zero-offset (ZO) time images of the subsurface. As already dis-
cussed elsewhere (Perroud & Tygel 2005), the CRS stack method
has both advantages and disadvantages with respect to its alternative
approaches. In fact, the adoption of the CRS stack method by the
geophysical community has been until now only limited, because
the classical NMO-DMO chain already provides good-quality ro-
bust results, so the need for a change is not obvious.

However, the CRS stack method does not provide only ZO im-
ages, but also a set of wavefield attributes (also called CRS pa-
rameters: emergence angles and wave front curvatures) that have
been exploited in several applications. These include, for example,
velocity model building (Della-Moretta ez al. 2001; Kliiver 2006),
multiple attenuation (Priissmann et al. 2006) or residual statics cor-
rection (Koglin ez al. 2006).

The CRS stack method can be seen as a transformation from the
data space (seismic amplitudes as a function of position and time)
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into attribute space (wavefield attributes as a function of position
and time). Note that data space position variables include both
midpoint and offset coordinates, while the attribute space position
variables consist in the midpoint coordinates only. In this way, the
attribute domain is much smaller, even if several attributes exist
per midpoint. This transformation can thus be represented by the
equation
CRS

{D(t,m, h)} = {P(t, m)} 1)
where D(t, m, h) and P(¢, m) denote the data and attribute sets,
respectively. Also, ¢ denotes time, m midpoint position and /4 half-
offset.

The CRS stack method provides also a generalized hyperbolic
moveout expression that allows for traveltime estimations for a re-
flection event at any midpoint and offset in the vicinity of a reference
position where the attributes have been estimated. In the simple sit-
uation considered here, that reference point is assumed to be a coin-
cident source—receiver (ZO) point, which, in many cases, can be ap-
proximated by the midpoint of the shortest available source-receiver
pair in the data. Moreover, to prove the concept, we also consider
the 2-D situation and non-converted (say, PP) data. In this case, the
number of CRS attributes is three. Assuming that these attributes,
denoted by P, P, and P;, were estimated at midpoint position
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m = 0 and at time #(0, 0), the traveltime, #(m, &), for the same
reflection event at the neighbouring midpoint m and half-offset 4
can be approximated as

t2(m, h) = (t(0, 0) + Pym)* + Pym* + Psh* . )

The traveltime of eq. (2) refers to a specific event (say, a primary
reflection) from a single (target) reflector, which is, of course, not
known. Following the literature (see, e.g. Jiger et al. 2001), the CRS
attributes admit appealing geometric interpretations as angles and
curvatures, related to the normal reflection (ZO) ray (called central
ray) that connects the midpoint m = 0 (called central point) to the
reflection point at the target reflector and then back to the central
point. That reflection point is referred to as the normal-incidence-
point (NIP). More specifically, we have

P - 2sin 90’ P = 2t, cos® 6, P 2ty cos? 6y -

Vo Vo Yo

€)

in which ¢, is the ZO time, v is the medium velocity at the vicinity
of the central point, and 0, is the emergence angle. Moreover, the
quantities K, and K ;, refer to the curvatures of the so-called normal
(N) and normal-incidence-point (NIP) waves, respectively, at the
emergence central point. As introduced in Hubral (1983), the N
and NIP waves are fictitious eigenwaves with respect to the ZO
central ray, which means that, for each of them, the wave fronts at
the initial and endpoints of that ray coincide. The N and NIP waves
differ by the behaviour of their wave fronts at the point NIP. In the
vicinity of that point, the wave front of the N wave coincides with
the reflector’s curvature. On the other hand, the wave front of the
NIP wave reduces to the NIP point. It is also instructive to observe
that, for a common midpoint (CMP) gather around the central point
(m = 0), the traveltime equation reduces to the well-known normal
moveout (NMO) equation. As a consequence, the attribute P; can
be readily interpreted as P3 = 4/v2, where vym, is the usual NMO
velocity. We remark, in passing, that a similar interpretation for P,
as a velocity also exists (see, Hertweck et al. 2007).

The above representation of the data in the new (attribute) domain
is not complete, since it is purely kinematic. We miss the amplitude
of the seismic events, that are necessary for a full representation
of the data. In this sense, it can be stated that the CRS transfor-
mation, on its own, induces a loss of information that cannot be
reversed. To establish a transformation that could allow to go back
from the attribute space to the data space, we need to add some
dynamic information. Our purpose here is to demonstrate that this
goal can be achieved if we have, in addition to the CRS attributes at
a given trace, also data from two trace gathers in its vicinity. These
are (1) the real-amplitude (as if measured) ZO gather and (2) the
CMP gather centred at the reference midpoint. The chosen ZO and
CMP traces should be sufficiently close to the reference midpoint,
so that the validity of the CRS approximation of any reflection
traveltime is valid in this range. We propose then to call this new
transformation /nverse CRS. In symbols, it may be represented by
the equation (compare with eq. 1)

{P(t,0), D(t, m, 0), D(t, 0, h)} “E5"(D(t, m, b} , 4)
where P(z, 0) is the CRS attribute set at the reference midpoint, and
D(t,m, 0)and D(t, 0, h) are the ZO and CMP data sets, respectively.
Since the (forward) CRS transformation of eq. (1) is essentially an
approximate process (namely, it is realized upon the use of the
hyperbolic traveltime approximation 2), the proposed Inverse CRS
transformation of eq. (4) should also not be expected to provide
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exact (loss-free) results. One of our goal is therefore to evaluate in
which range these losses can be considered as insignificant.

It is to be remarked that a real-amplitude ZO section is not easily
available in seismic exploration. As a consequence, to implement
the CRS Inverse transformation, we need to assume that the ZO
section is available. We remark, in passing, that the Inverse CRS
transformation is not restricted to seismic data. For ground pene-
trating radar (GPR) data, for example, this drawback is overcome
since a fairly close approximation to the ZO section can be obtained
from measurements using shielded antennas. A discussion on how
to obtain a valid approximation of the real-amplitude ZO section
from the multicoverage data, that can be used for our Inverse CRS
transformation purposes, lies outside the scope of this paper. Here
we only observe that such ZO section can, in principle, be obtained
together with the CRS attributes and an adequate average of the
available, near-offset traces. An algorithm to actually perform this
task is a topic of further investigation.

In the following, we describe the Inverse CRS transformation, as
well as the algorithm that allows one to build a trace at any midpoint
and offset. As indicated above, both the ZO and CMP sections in
the vicinity of the reference trace are assumed to be available. For
illustrative purposes, we apply it to two simple synthetic cases of
a dipping planar and a circular reflector. Finally, our algorithm has
been tested for the interpolation of missing traces in a real high-
resolution seismic data set.

2 THE INVERSE CRS
TRANSFORMATION

The problem to be solved can be formulated as follows: to build
the unknown data trace at a given midpoint position and offset,
in the vicinity of a reference trace, for which we know (1) the CRS
attributes, (2) the ZO gather and (3) the CMP gather. The known
Z0 and CMP gathers consist of traces located in the vicinity of the
reference trace.

The construction of the unknown data trace means filling the
‘right” amplitude (i.e. a valid approximation of it) at all time sam-
ples. We therefore need to estimate both time and amplitude for all
events that can be identified in the known part of the data. We shall
describe below how these are estimated. As far as possible, we want
this transformation to be macro-model independent, so we shall try
to use in the process data-related quantities only.

2.1 Equation for traveltime

Traveltime estimation can be achieved directly using the CRS trav-
eltime approximation, like the one shown above in eq. (2) for the
2-D case. For an event such that the ZO traveltime at the refer-
ence point is #(0, 0), we can evaluate the corresponding traveltime
at any neighbouring position m and half-offset 4, since the CRS
attributes are known at the reference trace (located at midpoint
m = 0). However, it could be helpful in practice to decompose the
calculation into the three steps below. The reason is that we shall
make use later of the calculated values obtained in the individual
steps.

(i) First, we evaluate #(0, /), the time of the chosen event within
the CMP gather, at half-offset 4. In the 2-D case, this is obtained
setting m = 0 in eq. (2), namely

12(0, h) = £3(0, 0) + Psh>. (5)
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(i1) Second, we evaluate #(m, 0), the traveltime of the chosen
event within the ZO section, at midpoint . In the 2-D case, this is
obtained setting 2 = 0 in eq. (2), namely

t2(m, 0) = (¢(0, 0) + Pym)* + Pym>. (6)

(iii) Finally, we evaluate ¢(m, /), the traveltime for the same event
at midpoint m and half-offset 4. This can be achieved by means of
the equation

t*(m, k) = t*(m, 0) + £%(0, h) — £2(0, 0), (7)
which combines the previous two results.

This final eq. (7) reveals how the hyperbolic traveltime of a
reflection event at any midpoint and offset can be simply derived
from the ones that refer to the ZO and CMP gathers. It can be
seen as a decomposition of the traveltime squared #2(m, /) in terms
of the squared ZO and CMP traveltimes, *(m, 0) and #2(0, &),
respectively. It is valid as long as the CRS traveltime approximation
is. For example, it is exact for a dipping plane reflector with a
homogeneous overburden.

‘We remark that a similar decomposition formula, using, however,
traveltimes instead of traveltimes squared, have been presented in
Tygel & Santos (2006), but it is valid in a shorter range.

2.2 Equation for amplitude

Although it has been relatively straightforward to predict the trav-
eltime above, this is not the case with amplitude. This is so because
the CRS stack method provides kinematic attributes only. As a mat-
ter of fact, full account of amplitudes involves many factors, such
as angle-dependent reflection/transmission coefficients, geometri-
cal spreading, medium attenuation, source wavelet etc. Determina-
tion of all these quantities is, of course, unfeasible. Nevertheless,
as shown below, a reasonable approximation can be achieved. Our
idea is similar to the one presented in a previous work by Rousset
et al. (2001), that is to rely on the available data itself to estimate
amplitudes.

We suppose we have full knowledge (traveltime and amplitude)
at each sample of the two specific ZO and CMP gathers. More
specifically, we consider that for each event that we select, the trav-
eltime and amplitude pairs [#(0, m), A(0, m)] and [#(0, &), A(0, )]
that refer to the ZO and CMP gathers, respectively, are known. Note
that, for the determination of the traveltime #(m, ), we have already
computed, with the help of the eqs (5) and (6), the traveltimes #(m,
0) and #(0, /). We can therefore pick the corresponding amplitudes
A(m, 0) and A(0, #) within the given ZO and CMP gathers, together
with the amplitude 4(0, 0) at time #(0, 0) at the reference trace (see
Fig. 1). The question now is how to evaluate the unknown amplitude
A(m, h) relatively to these known (data-driven) quantities.

Our main assumption is that the predicted traveltime, ¢t(m, &),
and amplitude, A(m, h), are supposed to be valid only in the
neighbourhood around the reference trace, so the CRS traveltime
equation should provide a good approximation. Concerning the
amplitude, we further assume that the physical quantities such as
velocities, densities, are also more or less stationary in this neigh-
bourhood. As a consequence, we may restrict the analysis to the
main laterally variable factors, which are geometrical spreading
and reflection angle. We propose here that the change of amplitude
with offset (AVO effect) can be considered stationary with respect
to midpoint variation. In this way, after estimating the amplitude
change with offset at the reference point from the known CMP
gather, we can use it as an estimate for amplitude change with offset
for neighbouring midpoints.

(0,0)

(0.h)

t(0,h)

A(0,h
A(m,h) O

Figure 1. Schematic representation of quantities used in the calculation.

As the depth of the reflector can change laterally, it is clear that
both the geometrical spreading and reflection angle can significantly
change. In accordance, the changes in amplitude introduced by these
two factors are investigated below (see Appendix A for a detailed
derivation).

(i) Geometrical spreading: As well known (see, e.g. Tygel et al.
1992; Cerveny 2001), the precise evaluation of geometrical spread-
ing can be a complicated task, with factors such as source and re-
ceiver ray angles, as well as second mixed derivatives of traveltime
with respect of source and receiver coordinates. Once again, our
goal here is to evaluate only the local change in geometrical spread-
ing, in a ‘small’ area where the Earth subsurface is supposed to have
stationary parameters. In this situation, we propose to approximate
the change of geometrical spreading in terms of the variations in
traveltime. More precisely, we will consider the change of ampli-
tude as a function of the quantity ¢* (m, #), namely the traveltime to
the power o, where @ = 1/2 for the case of 2-D in-plane spreading
only and o = 1 in the case of 3-D spreading. We note, in particular,
that for a planar dipping reflector in 2-D with a homogeneous over-
burden, the geometrical spreading factor is exactly ¢'/2 (m, k). As a
consequence, the amplitude after geometrical spreading correction
reads A(m, h) x t'/% (m, h).

From the above observations, we propose that, instead of trying to
estimate the change in amplitudes, A(m, &), we consider the change
of the quantity A(m, h) x t* (m, h). In the seismic literature, that
quantity is known as a true amplitude (see, e.g. Schleicher et al.
2007).

(ii) Reflection angle: As the depth of the reflection point can
vary with midpoint m, it implies that for a given half-offset 4, the
reflection angle, 0, can also vary with the reflection-time #(m, h).
Shuey (1985) has provided a useful approximation for the rela-
tive change with angle of the reflection coefficient, and therefore
amplitude, that can be written in the form

R(0) — R(0) = G sin(0), ®)
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where R(6) stands for the reflection coefficient as a function of the
reflection angle, 0, and G is a constant that depends on the local
physical parameters only. For our purposes, we can consider G as
a constant in the neighbourhood of the reference trace. Thus, the
relative variation (ratio) of the reflection coefficient at any midpoint,
m, with respect to the reflection coefficient at the reference midpoint
can be simply approximated by the corresponding variation (ratio)
of sin 2(#) at these two midpoints. We note, in particular, that for our
familiar example of a planar dipping reflector in a 2-D homogeneous
overburden, this ratio can be shown to be equal to the ratio between
squared traveltimes (see Appendix A).

Based on the above considerations, we propose to replace the
variation of the quantity R(6) — R(0) between midpoint m and the
reference midpoint by the quantity #2(0, h)/t>(m, h).

(iii) Final amplitude equation: The two above considerations
lead to the following equation to evaluate the amplitude at position,
m, and half-offset, 4,

A(m, h) = prT—”
120, h)
t2(m, h)
Note that this formula leaves unchanged the amplitude within the
Z0 gather (h = 0), as well as within the CMP gather (m = 0).

The evaluation of the unknown quantity, A(m, h), relies only on
quantities that are data-dependent, which can be picked from the two
given specific configurations or computed from the CRS attributes.
No other information is required, as long as the stationarity of model
physical parameters in the vicinity of the reference position is a
valid approximation. This process can therefore really be qualified
as data-driven and macro-model-independent.

{A(m, 0)t*(m, 0)

[A(0, h)t*(0, k) — A(0, 0)t%(0, 0)]} )

2.3 General algorithm

We shall now assemble the above obtained results as building blocks
of an algorithm that will produce a new data record at midpoint
position, m, and half-offset, 4, starting from the given ZO and CMP
gathers in the neighbourhood of the reference trace.

(1) First, if not known, compute the CRS attributes for all sam-
ples of the record at the reference position (m = 0). For that, use the
CMP gather (to obtain P; in the 2-D case), and the ZO gather (to
obtain P, and P, in the 2-D case), together with the corresponding
coherence values. This has to be done only once for all data traces
to be built in the vicinity of the given reference trace.

(2) Startaloop on time samples, #(0, 0), with amplitude, 4(0, 0),
from the record at the reference midpoint, m = 0, and half-offset,
h = 0. Each time sample will be taken as a possible reflection event
if its CRS attributes have coherence values that are high enough.
Otherwise, go to the next sample.

(i) Compute ¢(0, &), t(m, 0) and ¢t(m, h) from #(0, 0) and its
CRS attributes, according to eqs (5-7).

(i1) Pick A4(0, k) at time #(0, /) in the CMP gather and A(m, 0)
at time ¢(m, 0) in the ZO gather, using interpolation from sur-
rounding data samples, and compute 4(m, /) using eq. (9).

(ii1) All obtained pairs of time and amplitude should be stored
for future use. Note that calculated times are not necessary
monotonously increasing. In the case there are more than one
group of CRS attributes for the same time sample (conflicting
dips), this process has to be carried out for each CRS attribute
group.

(3) End of the loop on time samples.

© 2010 The Authors, GJI, 183, 1392-1400
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(4) Order the time-amplitude pairs by increasing times and in-
terpolate the amplitudes at the data time-sampling rate.

The above algorithm, which builds a single data trace, can then
be used in a loop on midpoint, m, and fixed half-offset, 4, to build
a common-offset (CO) section. In addition, in an outer loop on
half-offset, 4, it can be further used to build the full data set.

Note that with this scheme, a given reflection event is built sample
by sample, so that we do not have to make any assumptions on
the signal wavelet, only that it has been adequately sampled. Pre-
processing steps such as filtering or deconvolution that enhance the
signal-to-noise ratio and signal resolution can be applied on the
Z0 and CMP gathers. This can be done either before or after the
application of the algorithm.

3 SYNTHETIC EXAMPLES

The synthetic data have been computed by a ray tracing calculation
with 2-D in-plane amplitudes, convolution by a ricker wavelet and
addition of white noise with a signal-to-noise ratio of 10.

Two simple models will be tested to check the efficiency of our
algorithm. They are shown in Fig. 2. The models consist of (1)
a dipping planar reflector, within a homogeneous overburden, for
which the time eq. (7) is exact, and (2) a circular reflector, tangent
to the dipping plane at the normal incidence point for the refer-
ence position, for which the time eq. (7) is only approximate. The
choice of these models reflects our assumption that the Earth sub-
surface has to be locally simple enough so that the CRS traveltime
equation provides a good approximation.

3.1 Dipping plane

Fig. 3(a) shows the two specific configurations that have been used
to build the full data set: the ZO gather on the top and the CMP
gather at the bottom. From the traces in these two gathers, the CRS
attributes at the reference midpoint m = 0 have been extracted,

Dipping reflector
0 T.

-500

-1000

-1500

Depth (m)

-2000

-2500

-1500  -1000 -500 0 500 1000 1500

-3000

Midpoint position (m)

Figure 2. Simple synthetic examples: the red line represents the dipping
planar reflector, the green line the circular reflector and the black line the
common normal ray; both reflectors are tangent at the normal incidence
point.
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Midpoint position (m) Midpoint position (m)
-490 -290 9 290 490 -490 -290 Q 290 490

Time (s)

ZO section ZO section
Offset (m) Offset (m)
N Q 590 |090 1590 2090 o 9 590 1090 1590 2090
z e
g 1 GE! 1
E | FE
2 2
CMP gather CMP gather
(a) ()

Figure 3. Synthetic data for (a) the planar dipping reflector and (b) the
circular reflector.

together with their coherence values. They are shown at Fig. 4(a).
Traces were then built following the above-described algorithm for
all midpoints and offsets. The built traces are compared to the
synthetic data in Fig. 5(a), for small, medium and large offsets. We
can see how the built trace compares well with the synthetic data in
the vicinity of the reference midpoint, but differences appear when
offset or distance to the reference midpoint increase. To evaluate
how far we can go, a map of the relative mean quadratic error
is shown in Fig. 6(a). The contour at 0.2 provides a conservative
estimation of the area where the approximation is very satisfying. It
covers an extent approximately equal to the reflector depth, both in
the offset and midpoint direction. Note that the noise is suppressed
by the process when there is no coherent signal, that is when CRS-
attribute coherency is less than a given threshold.

3.2 Circular reflector

The same figures (Figs 3b to 6b) were obtained for the circular
reflector. Note that in this case, the CRS traveltime formula is only
approximate, so the differences between the built traces and the
synthetic data become significant for shorter offsets, or distances
from the reference midpoint.

However, there further exists a significant range where the differ-
ences between the synthetic data and the data built with the Inverse
CRS algorithm can be considered negligible. Its width, both in mid-
point and offset coordinates, is approximately equal to the target
depth in these simple cases (about 1000 m). To check how the algo-
rithm behaves in more complex situations, an illustration has been
performed using real data.

3.3 Real data set

To test the Inverse CRS algorithm in a real data case, we present an
application for interpolating missing traces in a near-surface high-
resolution seismic experiment, conducted in the alluvial plain of
the river Gave de Pau, near Assat, southern France. As shown by
the stack section obtained after conventional processing (Fig. 7), the
subsurface consists in a pile of horizontal depositional layers, with
clear impedance contrasts at various times in the range 0.03-0.14 s,
corresponding to depths between 30—150 m for an average velocity
around 2000 ms~!. The data were obtained using 1 m spacing for
both shots and receivers, and offsets in the range 0—70 m. To increase
the CMP fold, neighbouring CMP gathers were mixed 2 by 2, so
the CMP interval is also 1 m. This stack section will be used here

Vnmo (m/s) Angle (degree) Kn (1/m) :(10""
1500 2500 -25 0 -5 0 5
1.04 e | i i

s

@

E

= 1.24 1.24 1.24
—_ il e ——
coherency coherency coherency

o
(=]

Time (s)

b e
b

b

0

-

1.04 1.0

(a)
Vnmo (m/s) Angle (degree) Kn (1/m) x10~%
1500 2500 25 0 5 0 3
1.0+ 1.0+ = 1.0
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1.2 1.2 1.24

coherency coherency coherency

(=]
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pry

1.0+
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Figure 4. CRS attributes and their corresponding coherency obtained from
the reference position for (a) the planar dipping reflector and (b) the circular
reflector. In both figures, the expected attribute value in its validity range is
also shown in red. The red line on coherency plots represents the coherency
threshold for acceptance of attributes values.
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Figure 5. Comparison of the built traces (in red) with the synthetic data 0.20
(in black) for small, medium and large offsets, with the reference midpoint
located at position 0. (a) Planar dipping reflector; (b) Circular reflector. Figure 7. Conventional stack section, used here as the reference ZO section.
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Figure 8. Acquisition map in the offset-CMP coordinates, with missing
traces in red, reference CMP gathers in green and the gathers to be built in
blue.

as our best estimate of the ZO section needed by the Inverse CRS
algorithm.

The seismic acquisition experiment was conducted using a set of
two-channel DMT Summit boxes connected by a wire to the control
unit. It appeared that one of the boxes was not working properly,
so that the corresponding traces were killed for further processing.
These missing traces are located in red in the acquisition map of
Fig. 8. Our purpose here will be to apply the Inverse CRS algo-
rithm to build replacement traces, to avoid the processing artefacts
generated by such discontinuities.

Trace interpolation for seismic data has long been a topic of
research, since the seismic data migration algorithms generally as-
sume unaliased regular spatial sampling, what is not always possi-
ble to achieve during data acquisition, due to real world physical
or economic constraints. Classically, it is achieved by linear-event
extrapolation in the time—space domain (Bardan 1987) or in the
frequency—space domain (Spitz 1991). We propose here a different
data-driven approach based on CRS attributes, that does not need
to make assumptions about the linearity of seismic events. Another
CRS-based approach (Hoecht et al. 2009) was proposed recently
as an operator-oriented interpolation scheme, that is more intended
at regularize irregular data geometry, looking for coherencies in
common-offset volumes. We feel that our approaches are comple-
mentary, since our interpolation scheme can be used from sparse
data only.

To apply the Inverse CRS algorithm, reference CMP gathers
have to be chosen in the vicinity of the traces to be built. The CMP
gathers corresponding to CMP number 58 and 148 were chosen
as reference CMP for Inverse CRS application. These gathers are
shown in Fig. 9, and their locations with respect to missing traces
are shown in Fig. 8.

We present here the results corresponding to a set of demonstra-
tion gathers, which are shown in blue in Fig. 8. The first one is
the CMP gather corresponding to the CMP number 60, where three
traces are missing. Next, two common offset gathers (COG) have
been processed, corresponding to intermediate (36 m) and large (60
m) offsets. Two traces are missing in each of these gathers. The
demonstration gathers are shown in Fig. 10, with available traces
in black. Note that noisy parts of the traces were muted both above
and below the reflection events, to eliminate unwanted signals, such
as refracted P-waves, or direct surface waves.

For the different demonstration gathers, the new traces obtained
using the Inverse CRS algorithm are shown in red in Fig. 10, and
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Figure 9. Reference CMP gathers chosen to build the missing traces.
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Figure 10. Results of the Inverse CRS traces building: the interpolated
traces in red are compared with the normally acquired traces in black.

compared with their normally acquired neighbouring traces in black.
In most cases, the results look very satisfying, especially when the
offset is not too large. However, a few artefacts seem to appear in the
COG 60 m: at the beginning of the unmuted zone, the offset is much
larger than the target depth, so we should not expect the Inverse CRS
approximations to be valid; at the end of the trace, the increase of the
noise level seems to be responsible for the observed discrepancies. A
somewhat unexpected good feature of the algorithm, is that it seems
capable to reconstruct signals even in muted part of the section. This
can be seen by the event around 0.14 s, visible on the constructed
traces, both in the CMP gather 60 and the COG gather 36 m.

4 CONCLUSIONS

At the present stage of this on-going research, we have proposed an
algorithm that is able to build seismic traces from a very limited set
of real data, namely a CMP gather and a ZO section, together with
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the CRS attributes that can be obtained from them. First synthetic
tests of the algorithm provide satisfying results for the two simple
cases of single dipping plane and singular circular reflectors with a
homogeneous overburden. The region of accepted approximations
has been observed to be, in midpoint and offset, of a similar extent
as the reflector depth in the first case, and a little less in the second
case. Further tests carried out with real seismic data have also given
positive results, showing the ability of the proposed algorithm to
interpolate missing traces. In principle, the technique could be ex-
tended to larger offset ranges in 2-D by the use of Common-Offset
CRS stack method, and could also be adapted to 3-D using the
3-D ZO CRS stack method. Applications of this technique could be
numerous, from noise suppression, data compaction, trace interpo-
lation, etc.
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APPENDIX A: DERIVATION
OF AMPLITUDE EQUATION

Here we derive eq. (9), which was used to construct the amplitudes,
A(m, h), as a function of the traveltimes and amplitudes of the ZO
section and reference CMP gather.

Our derivation assumes that the amplitude to be reconstructed
belongs to a primary reflection. In accordance to small offset and
midpoint variations, we use zero-order ray theory, to express the
amplitude as the proportionality relation

R(m, h)
L(m, h)’
in which R(m, h) is the reflection coefficient and L(m, h) is the

geometric spreading. The latter, moreover, is assumed to be propor-
tional to traveltime, namely

A(m, h) o (A1)

L(m, h) « t“(m, h) , (A2)

where « = 1/2 or « = 1 in the 2-D and 3-D situations, respectively.
The above two relations can be recast into the single equation
R(m, h)

te(m,h)’

in which C denotes a constant. Our next step is now to find a suitable

approximation for the reflection coefficient, R(m, h). The simplest
one is Shuey’s approximation (Shuey 1985)

Am,h)=C (A3)

R(m, h) = R(m, 0) + G sin*O(m, h) , (A4)

where the R(m, 0) and G are the so-called intercept and gradient,
respectively, and 6(m, h) is the incidence angle of the reflection ray
at the reflection point. In the framework of small midpoint variation,
we assume that G is independent of m.

We now make use of Fig. A1l to approximate sin6(m, k) as

2hcosy

sinf(m, h) = ot i)’

(AS)

in which v is an ‘average’ (constant) velocity and y is the reflector
dip, whose cosine variations could be considered as negligible for

:_ 4. Co,
} YSJ’ .......
i ’ |
Reflector
v

Figure Al. Geometry for the approximation formula for sin6(m, /). The
reflector is assumed planar with dip y. Overburden is homogeneous with an
average velocity v.
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small variations of m. Multiplying both sides of Shuey’s eq. (A4)
by C and using eq. (A3) twice to replace CR(m, h) and C R(m, 0),
respectively, we can write

A(m, h)t*(m, h) — A(m, 0)t*(m, 0) = C.G sin®0(m, h),

A(0, (0, h) — A(0,0)%(0,0) = C.Gsin> (0, h).  (A6)

Division of both the above equations together with the use of
eq. (AS) yields
A(m, h)t*(m, h) — A(m, 0)t*(m,0) %0, h)
A0, )t(0, k) — A(0, 0)t(0,0) ~ t2(m, k)
Rearranging the above equation to have A(m, h) explicit, we recover
the amplitude eq. (9) given in the text.

(A7)
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