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Abstract. We describe the continuous and discrete mathematical models for Emission Com-

puted Tomography (ECT) and the need for attenuation correction. Then we analyse the problem

of retrieving the attenuation directly from the emission data, nonuniqueness and its consequences.

We present the existing and new approaches for solving the problem. Methods are compared and

illustrated by numerical simulations. The presentation focuses on Positron Emission Tomography,

but we also discuss the extensions to Single Photon Emission Computed Tomography.
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1 Introduction

Emission Computed Tomography (ECT), in its two modalities, SPECT and PET

(Single Photon and Positron Emission), is the main tool to understand physio-

logical processes inside the body at a molecular level. The pure mathematical

model (no attenuation, no scattering, high statistics, etc) for ECT is the Radon

transform, the same as for X-ray Computed Tomography (CT). In this article we

describe the main issues concerning the introduction of attenuation in the ECT

model and the different approaches to the direct computation of the activity and
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the attenuation maps from emission data only. Our emphasis will be on itera-

tive methods and Maximum Likelihood models for PET, although, it is worth

mentioning that each method for PET generates a similar approach for SPECT

and viceversa. We discuss the nonuniqueness issue for PET and present some

new methods for solving the problem as well as numerical simulations. Open

problems and research directions are discussed in Section 5.

1.1 What is Emission Computed Tomography (ECT)

In ECT we are trying to understand a physiological process, like glucose

consumption, blood flow, oxidative metabolism, neurotransmission, and many

others (see [17] for a long list for PET). How this is done? There is a compound

that is metabolized during that physiological process, and that could be tagged

using a radioative isotope. In the case of PET, the isotope is artificial and de-

cays emitting positrons. After a very short path, the positron meets an electron,

generating two photons in almost opposite directions, that are detected by pairs

of detectors. Each pair of detectors determines a line and the data is the total

number of coincidences counted along all possible lines (Figure 1 shows a PET

scanner with its ring of detectors).

We aim at reconstructing the emission density that is correlated with the

process being studied. The most common example in PET is glucose, that

is tagged withF18, giving rise to FDG (fluorodeoxyglucose). This measures

glucose consumption, an indirect description of many processes for clinical di-

agnosis (malignancy, heart failure, etc) as well as medical reserach (brain func-

tion, blood flow, etc). In the case of SPECT [5], the isotope is natural and

decays by generating a single photon (see Figure 2), so, the line is determined by

using a collimator.

Many photons are absorbed by the collimator before detection, thus obtaining

a very low statistics, poorer than PET.

1.2 A continuous ‘pure’ mathematical model

In a continuous setting, we aim at reconstructing a functionf (x) representing

the mean emission density at the pointx given the integrals along linesL, that is,
∫

L
f ds = dL (1.1)
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Figure 1 – PET scanner.

Figure 2 – SPECT data acquisition.
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wheredL is the mean number of coincidences detected by the pair of detectors

(or by a single detector and its collimator for SPECT) that determineL. Equa-

tion (1.1) means that the ‘pure’ problem reduces to invert the well known Radon

Transform [13]

f
R

−→
∫

L

f ds = p(l , θ) (1.2)

1.2.1 The difference between ECT and Computed Tomography (CT)

We observe that the inversion above is the basic model also for Transmission

Computed Tomography (CT), wheredL , instead of number of coincidences

stands forlog
pe

L

pd
L
, being in this casepe

L and pd
L the mean number of photons

emitted by a source and the detected ones respectively.

Inversion formulas for (1.2) can be easily obtained using the Fourier Projection

Theorem (see [13]). However, the higher levels of noise in ECT, as compared

to CT, made models that take into account noise characteristics and the use

of iterative methods more reliable, producing better images [25]. This leads

to to the necessity of discretization, in order to develop Maximum Likelihood

(ML) models.

1.3 A discrete model

We consider now the discretized two-dimensional PET model. In what follows,

xj denotes the expected number of coincidences per unit area in thej th pixel

( j = 1, . . . , n) (we are assuming here that the “tubes” are of constant cross-

section and that dividing the radioactivity concentration per unit volume by the

area of this constant cross section gives us the “number of coincidences per unit

length”); x represents then-dimensional vector whose jth component isxj and

will be referred to as the image vector (see Figure 3).

Suppose we count coincidences alongm lines. We denote byg the m-

dimensional vector whosei th element,gi (gi ≥ 0), is the number of coinci-

dences which are counted for thei th line (i = 1, . . . , m) during the data col-

lection period; we shall refer tog as the measurement vector. Ifai j (ai j ≥ 0)

denotes the probability that a positron emitted from pixelj results in a coin-

cidence at thei -th line of response (in this work, as usual, this probability is
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Figure 3 – Discretization.

approximated by the weighted length of the intersection), thengi is a sample of

a Poisson distribution whose expected value is

〈ai , x〉 =
n∑

j =1

ai j x j (1.3)

where〈, 〉 is the standard inner product andai is thei th column of the transpose

AT of them × n projection matrixA = (ai j ) [28].

The probability of obtaining the measurement vectorg if the image vector

is x (i.e., the likelihood function) is

PL(g|x) =
m∏

i =1

[
〈ai , x〉gi

gi !
exp(−〈ai , x〉)

]
. (1.4)

The reconstruction problem is to estimate the image vectorx given the data

measurementsg.

As mentioned before one approach to this problem, first suggested in [24],

is the ML method which estimates thex that maximizesPL(g|x) subject to

nonnegative constraints onx, or, equivalently, finds thex ≥ 0 which maximizes

L(x) =
m∑

i =1

gi log〈ai , x〉 − 〈ai , x〉. (1.5)
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In [26] and [16], the Expectation Maximization (EM) algorithm was proposed

for the maximization of (1.5). This results in an iterative algorithm, which,

starting with a strictly positive vectorx(0), successively estimates the image

vector by

x(k+1)
j =

x(k)
j∑m

i =1 ai j

m∑

i =1

ai j gi

〈ai , x〉
, j = 1, . . . , n (1.6)

The EM algorithm’s convergence rate is extremely slow and a significant

amount of computation is often needed to achieve an acceptable image, (es-

sentially, applying filtered backprojection costs one iteration of the EM, and, in

general, at least fifty iterations are required). In the 90’s faster methods, like

ordered subsets [14] and RAMLA [4], made possible the adoption of iterative

methods by commercial scanners.

2 The need for attenuation correction: attenuated transforms, problems

In practice, a more accurate model for ECT should be considered because of

the attenuation effect, that is, the fact that a substantial number of photons

is absorbed by the tissue, and the formulas in (1.1) should be substituted by

(see [21])

e−
∫

Lμ(η) dη

∫

L
f (x) dx = dL (2.7)

for PET and ∫

L
f (x) e−

∫
Lμ(x+tθ⊥)dt dηdx = dL (2.8)

for SPECT, whereμ is now the attenuation density anddL as before. Consid-

ering that the previous formulas are now strongly nonlinear, the usual way to

compensate for atenuation is to estimate it by a previous (or simultaneous) CT

scan for estimatingμ. An important improvement could be achieved if it is

possible to retrieve the attenuation map directly from the activity data (mean-

ing less time, less patient motion, automatic registration, no error amplification,

etc). Recently, PET scanners coupled with CT scanners, called PET-CT, have

been developed, overcoming the problem (at a very high cost). However, still

many of the existing scanners are not PET-CT, and there is not such a capabil-

ity in most of the gamma-camera based systems [22] with coincidence detection
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(SPECTscanners adapted for coincidence detection), and in small high resolution

tomographs for research purposes [19].

Methods trying to perform this task, without CT corrections, tend to retrieve

solutions that generate an undesired cross talk between the activity and atten-

uation images, unless a considerable amount of information about attenuation

values is assumed as in [20]. That is, visually, the main drawback is that the

shadow of the attenuation appears in the emission image and vice versa. This is

a consequence of nonlinearity and nonuniqueness of the inversion of the oper-

ators just described. In the following we analyse the problem and we describe

the existing and new approaches for its solution, now restricted to PET ((2.7)).

3 Recovering the attenuation from activity data only: nonuniqueness and
different approaches

It is very easy to show that, for data generated by circularly symmetric activity

and attenuation images, the inversion in (2.7) has an infinite number of solu-

tions. Also, examples of the influence of ‘approximate’ nonuniqueness could

be found in [2]. In any case, methods based on consistency of the data, first

proposed by Natterer [20] have been the most effective ones, producing the best

images. In the followingμ andλ will stand for the images corresponding to

the attenuation and the activity values respectively. The results of the numerical

experiments corresponding to the methods described in3.2and3.3are described

in Section 5.

3.1 Natterer

For the sake of completeness, and because it was the first to introduce in the

problem the necessity of data consistency, we briefly describe in this section

Natterer’s approach [20]. As we said before, this approach relies heavily on the

knowledge of additional information on the attenuation, but, on the other hand, it

is the point of departure of the other successful approaches based on consistency.

From the Helgason-Ludwig conditions for PET data [11], [18], if we take the

Fourier Transform of them-th moment, all coefficients greater thanm should be

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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zero, that is

∫ 2π

0

∫ +∞

−∞
sme−ikθeT(s,θ)g(s, θ) dsdθ = 0, ∀k > m ∈ Z≥0 (3.9)

andT(s, θ) is the Radon Transform ofμ. g is the projection data as before.

(3.9) determines a set of equations to be satisfied by the attenuation. However,

these equations are not enough to completely determineμ. So, the idea is to

use additional information in order to reduce the indetermination. To do this,

Natterer et al. [29] consider that the sought attenuation is a shifted version of a

given one. That is, they considerμ(x) = μ0(Ax+ a) whereA is a 2x2 matrix

anda a 2-vector. If the attenuation is not too different fromμ0 sometimes it

works fine.

3.2 Bronnikov

In this Section we present a method for the attenuation recovery from PET

emission data, that follows closely Bronnikov’s approach for SPECT. Our im-

plementation uses known properties of pseudoinverses, allowing a relatively low

cost reconstruction, as compared to Bronnikov’s implementation for SPECT.

We show experimentally that, even without regularization, the obtained images

are stable. Following [7, 6], the discretization of the attenuated Radon transform

for PET (2.7) can be described by the equation:

Aμλ = g , (3.10)

where Aμ ∈ Rm×n represents the projection matrix,μ ∈ Rn, the attenuation

vector,λ ∈ Rn, the activity, andg ∈ Rm the emission data vector as before. As

in [7], μ appears as a matrix parameter. The elements of the matrixAμ = (ai j )

are now defined by:

ai j = σi j e
−

∑
k μksik (3.11)

whereσi j and sik stand for the intersection length of theith ray with thej th

and kth pixels of activity and attenuation, respectively. In our approach, for

the sake of simplicity, we consider the same discretization for both, activity

and attenuation.
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The number of equationsm in (3.10) should be greater than or equal to the

number of variables, that is, the number of attenuation voxels (l ) plus the number

of activity voxels (n): m ≥ n + l . In the particular case where the images have

the same resolution, (l = n), Bronnikov observed experimentally that the choice

m = 3n is the more efficient one. For a general Hilbert spaceH , let H be a

closed subspace ofH and H
⊥

its orthogonal complement. If we assume that

g ∈ H , it can be written as

g = ḡ + g⊥ (3.12)

whereg ∈ H andg⊥ ∈ H
⊥

. In our caseH is Rm and H is the range of the

operator defined by (3.10). So, letR(Aμ) be the range of the operatorAμ and

R(Aμ)⊥. Its orthogonal complement. thenRm = R(Aμ) ⊕ R(Aμ)⊥ and we can

write g = g + g⊥, whereg ∈ R(Aμ) andg⊥ ∈ R(Aμ)⊥ andg ∈ Rm. Then

the consistency condition for (3.10) is that the data should not have components

other than those in the operator’s range, that is,

g⊥ = 0. (3.13)

If A+
μ ∈ Rn×m stands for the Moore-Penrose pseudoinverse of the matrix

Aμ [3], then:
g = Pμg
g⊥ = P⊥

μ g
(3.14)

where
Pμ = Aμ A+

μ

P⊥
μ = I − Aμ A+

μ.
(3.15)

are the orthogonal projections ontoR(Aμ) andR(Aμ)⊥, respectively.

With the previous notation, the consistency condition assumes the form:

P⊥
μ g = 0. (3.16)

In the case of PET,Aμ is the product of two matrices: a diagonal matrix, that

depends on the attenuation, and a projection matrix,S, that does not, that is:

Aμ = Dμ−S (3.17)

with

(Dμ−)i i = e−
∑

k μksik (S)i j = σi j .

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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Considering that, in this particular case (Dμ− diagonal and positive),

(Dμ−S)+ = S+(Dμ)−1, and replacing (3.17) in (3.16), we obtain

I − Dμ−S(Dμ−S)+ = I − Dμ−SS+Dμ = I − Dμ−(I − SS+)Dμg = 0 (3.18)

where

Dμ = (Dμ−)−1. (3.19)

Therefore the consistency condition is equivalent to:

Dμ−(I − SS+)Dμg = 0 (3.20)

In system (3.20), the matrixDμ− can be eliminated, by multiplying by the inverse.

We have, then, a ‘linear system’ forx = Dμg, nonlinear forμ, that can be written

in a more convenient form as:

Mx = 0 (3.21)

with

M = (I − SS+)xi = ui gi , xi ≥ gi ui = e
∑

k μksik .

In the next section we describe two different approaches for solving (3.21)

3.2.1 Using the Newton-Raphson method

System (3.21) can be solved using the Newton-Raphson method for non-linear

systems with nonnegative constraints, defined by the iteration:

Jμ1μ = F(μk) (3.22)

where

1μ ≡ μk−μk+1, (3.23)

F(μ) = Mx(μ) (3.24)

(x is given by (3.21)) andJμ is the Jacobian matrix with components:

ji j =
∂ fi (μ)

∂μ j
. (3.25)

Jμ or:

ji j =
∑

l

mil
∂

∂μ j
xl =

∑

l

mil xl σl j . (3.26)
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In matrix form,

Jμ = M Bμ = Q2Qt
2Bμ , (3.27)

whereBμ is a matrix with components defined by

bi j = xi σi j . (3.28)

Using the QR decomposition and (3.21), the matricesSandM can be written as:

S = (Q1 Q2)

(
R

0

)

M = Q2Qt
2

with Q1 ∈ Rm×n andQ2 ∈ Rm×(m−n). As in the original Bronnikov’s approach,

the Jacobian matrix is singular with rankm − n. An alternative, equivalent, but

more expensive way to obtainM is the SVD decomposition. In [9], details could

be found on the different ways to deal with the matrixM .

3.3 The ML Approach. Crepaldi and De Pierro

According to our analysis in (1.3), the ML approach, that takes into account the

statistical properties of the noise, tends to retrieve better solutions than nonsta-

tistical models. So, back to the discretized model, given the activity and the

attenuation maps for PET, where the attenuation is independent of the position

along the projection line, the expected number of counts is given by

ri = ai bi (3.29)

with

ai ≡ exp





−

n∑

j =1

si j μ j





(3.30)

and

bi ≡
n∑

j =1

σi j λ j (3.31)

with σi j being the probability that an annihilation occurred atj is detected in

tubei andsi j the intersection of tubei with boxk:

Now, if gi is the number of counts measured at thei -th tube of detectors, as in

Section 1.3 thegi ’s, are independent Poisson variables with meanri . So, after
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excluding terms not containingλ or μ, the new log-likelihood function that we

want to maximize is

L (λ, μ) =
m∑

i =1

(−ri + gi ln ri ) . (3.32)

or equivalently,

L

(
λ,μ

)
=

∑

i

{
− exp

(
−

∑

j

si j μ j

)( ∑

j ′

σi j ′λ j ′

)

− gi

∑

j

si j μ j + gi ln
∑

j

σi j λ j

} (3.33)

It can be proven that, for fixedμ, L is a concave function ofλ and vice versa [23].

However,L is not jointly concave for(λ, μ). Following [23], we develop an

alternate maximization method, where each maximization step is based on the

minorizing functions approach proposed in [10]. The difference between the

algorithm in [23] and ours is essentially the guaranteed monotonicity for the

latter. If we assume first that the attenuation map is constant, using the logarithm’s

concavity, and, taking into account that

∑

j

σi j λ
k
j〈

σi , λ
k
〉 =

∑
j σi j λ

k
j〈

σi , λ
k
〉 =

〈
σi , λ

k
〉

〈
σi , λ

k
〉 = 1, (3.34)

whereλk is the current emission at iterationk and, for any given vectorsu = (u) j

andv = (v) j 〈u, v〉 =
∑

j u j v j stands for the scalar product, we have that:

ln
∑

j

σi j λ j = ln
∑

j

λk
j

λk
j

〈
σi , λ

k
〉

〈
σi , λ

k
〉σi j λ j (3.35)

is greater equal than

ln
∑

j

σi j λ j ≥
∑

j

σi j λ
k
j〈

σi , λ
k
〉 ln

〈
σi , λ

k
〉

λk
j

λ j . (3.36)

On the other hand, using the same procedure to separate theμ variables for

the (negative) exponential term. That exponential part is greater or equal than

− exp



−
∑

j

si j μ j



 ≥ −
∑

j

si j μ
k
j〈

si , μk
〉 exp

(

−

〈
si , μ

k
〉

μk
j

μ j

)

. (3.37)
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Using (3.36) and (3.37), we obtain, for eachk:

L(λ, μ) ≥ 8(λ,μ, λk, μk) (3.38)

with

8(λ,μ, λk, μk) =
∑

i

{
−

∑

j

si j μ
k
j〈

si , μk
〉 exp

(
−

〈
si , μ

k
〉

μk
j

μ j

)
〈
σi , λ

〉

− gi

〈
si , μ

〉
+ gi

∑

j

σi j λ
k
j〈

σi , λ
k
〉 ln λ j

} (3.39)

Now, the algorithm’s global iteration is defined in two steps: for a given

activity-attenuation vector pair(λk, μk), the first step consists of solving

the problem

λk+1 = arg max
λ≥0

8(λ,μk, λk, μk) (3.40)

and the second step iterates inμ solving the problem

μk+1 = arg max
μ≥0

8(λk+1, μ, λk, μk). (3.41)

The solution of the first problem (3.40) is nothing but the EM algorithm applied

to L with fixedμ and this gives the updating

λk+1
l =

λk
l

al

∑

i

gi σi l〈
σi , λ

k
〉 (3.42)

with

al =
∑

i

{
σi l exp

(
−

〈
si , μ

k
〉)}

. (3.43)

The solution of the problem defined by the second step (3.41) requires solving

a set of nonlinear optimization problems in one variable that can be very eas-

ily solved using the Newton-Raphson method with a positivity constraint. In

our implementation, enough iterations of Newton-Raphson’s method were per-

formed in such a way that the maximum in (4.41) is guaranteed (in practice one

iteration of Newton Raphson is enough to increase the function value) as well

as the monotonicity of the algorithm (4.40–41). In [15],λ andμ are updated

sequentially by applying Newton’s method to the first order necessary conditions
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for the maximum. Trial and error is needed to choose the ascent parameters, in

order to preserve monotonicity, as in [23].

Unfortunately, the application of the algorithm above in its pure form, as well

as Nuyts’, still generates images with the undesired ‘cross-talk’, so, following

Natterer’s original idea, consistency should be imposed. The way we found to

do that is by using Iterative Data Refinement.

3.3.1 Iterative Data Refinement (IDR)

In this Section we briefly describe the general methodology known as Iterative

Data Refinement (IDR). A more detailed description together with some histor-

ical background and applications in tomography could be found in [8].

Let x be a mathematical representation of a physical object. It might represent,

in our problem, the activity density. Theidealized measureris defined as the

operatorA that provides theideal measurement vector,ŷ, when applied to the

vectorx:

Ax = ŷ.

The matematical operator that recovers the input from the output is called the

recovery operatorand denoted byR:

Rŷ = x̂.

In generalx̂ is a good approximation forx.

However, in practice we do not have an exact physical implementation of the

idealized measurerA. We have an actual measurerB which, givenx, produces

theactual measurement vectorỹ:

Bx = ỹ.

The problem arises because, in general,x̃ = Rỹ is not a good approximation

for x.

This difficulty is the motivation forIterative Data Refinement(IDR). The main

idea is: if yk is a reasonable approximation forŷ, then

ARyk − η(k)BRyk ≈ ŷ − η(k)ỹ

Comp. Appl. Math., Vol. 25, N. 2-3, 2006
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whereη(k) is a relaxation parameter. From this equation, it is natural to propose

the iterative process:

yk+1 = ARyk + η(k)(ỹ − BRyk). (3.44)

Suppose thatyk is a good approximation for̂y. Then

yk ≈ ARyk.

and (3.44) becomes

yk+1 = yk + η(k)(ỹ − BRyk). (3.45)

In the next Section we describe how we apply IDR to the activity attenuation

problem.

3.3.2 IDR and the optimization approach

The main numerical problem that we have to solve for the optimization model

is the fact that iterative methods like (3.40)-(3.41) tend to choose the ‘wrong’

solution (fixed point). Solutions showing the undesired ‘crosstalk’ look more

equilibrated and highly likely than the ones we are looking for. This rationale

plus the observation of the results of many experiments led us to the introduction

of a multiplicative factor in (3.42), that, essentially “breaks” the equilibrium, but

still converging to an ML solution. That is, we substituted (3.42) by

λk+1
l = φξ (k)

λk
l

al

∑

i

gi σi l〈
σi , λ

k
〉 (3.46)

whereal is as before and

φξ (k) =
k + ξ

k + 1
(3.47)

is the multiplicative factor that retains the asymptotic convergence properties of

the EM part of the algorithm,ξ is a constant parameter to be chosen.φξ (k) tends

to one, so that the monotonicity property of the likelihood remains essentially

valid when updating the activity variables. An important observation is that the

multiplicative factor enhances the data, preparing a better starting point for the

next step, IDR.
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In order to apply IDR to our problem, nowx represents the vector whose el-

ements are the activity and attenuation densities, that is,x = (λ, μ), B is the

operator that we want to ‘invert’, that is, the discrete Radon transform with the

corresponding attenuation, given by the left hand side of (2.7), andR the recov-

ery method of simultaneous reconstruction, previously described (the alternated

maximization using the multiplicative factor for the EM step). In the appropriate

notation, we can write (3.45) as

gk+1 = gk + η(k)(g̃ − BRgk). (3.48)

Observe that, in (3.48), if there is convergence to a fixed point, sayg̃∗, the ideal

measurement (and that is the case), that means that the datag̃has been modified in

such a way that our activity-attenuation solution is one that the forward operator

(the attenuated Radon Transform) applied to it is consistent with the original data

(actual measurement).

Summarizing, our method consists of two iterative processes: the IDR it-

erations and the alternated iterations from section 2 that recover both images

simultaneously. This can be described by the following steps; for a given start-

ing point, and the datãg, and, in general, for a point(λk, μk) and the modified

datagk:

Step 1: Apply (4.41-42) until convergence usinggk as data, that is, compute

Rgk.

Step 2: Update the data in (4.45) using the forward operatorB.

Step 3: Go back toStep 1. Stop if a suitable criterion is satisfied.

In the next sections we present our simulations and describe how the various

parameters have been chosen, including the value of the constantξ in the multi-

plicative factor and the number of iterations used for each method, the alternated

maximization and IDR.

4 Simulations

In this Section we present a visual comparison of the methods described in

Sections 4.2 and 4.3, and the results for pure ML approaches without IDR. That

is, we consider only methods not adding any information about the solution,

Comp. Appl. Math., Vol. 25, N. 2-3, 2006



“main” — 2007/2/22 — 16:05 — page 221 — #17

ALVARO R. DE PIERRO and FABIANA CREPALDI 221

through the use of approximate. For the simulations we used a simple model of

a 2D thorax cross section phantom. The activity source was modeled as a ring,

representing the heart, inside an ellipse, which represents the background activity

in the human body, approximately 10 times less than the ring’s activity. The

attenuation map was an ellipse representing the body, two ellipses representing

the lungs and a small circle for the spine bone (see Figure 4). For all the 50× 50

reconstructions it is also shown the profile of the the 35th line and 16th line for

32× 32 reconstructions.

Figure 4 – Phantom.

For all the experiments, the starting images were uniform using an average

value; there were no modifications in the results when varying these values in an

acceptable range. Images were reconstructed using a 50× 50 grid, except for

Bronnikov’s, that was 32× 32, because of the huge amount of computations.

Figures 5 and 6 show the reconstructions for Nuyts et al’s method and pure

Crepaldi & De Pierro’s (without IDR) respectively. The cross-talk between

images is clearly seen.

Figure 7 shows the result of applying Bronnikov’s approach (that computes

only the attenuation) and Figure 8 the result for Crepaldi & De Pierro’s method

with IDR. In both cases the cross-talk almost dissapeared.

Finally Figure 9 shows the result obtained by Bronnikov’s approach with

noise. Noise was generated by using a Poisson generator with mean given by the

data for each projection. Our results with noise for IDR did not show substantial

changes.
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Figure 5 – Nuyts et al.

Figure 6 – Crepaldi-De Pierro.
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Figure 7 – Bronnikov’s.

Figure 8 – Crepaldi-De Pierro with IDR.
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Figure 9 – Bronnikov’s with noise.

5 Some conclusions and questions still to be answered

The methods presented in Sections 4.2 and 4.3 are a first step to obtain quality

images in ECT from emission data only, without any additional information.

However, there is a relatively long list of open problems still to be addressed.

It follows.

1. One advantage of iterative methods with IDR, as compared to Bronnikov’s

approach is the possibility of considering ML models for the noise, but the

other one is the computational burden. Iterative methods ‘could be’ com-

putationally much less time consuming if faster methods like RAMLA [4]

are used for the inner part in (3.40)-(3.41). The overall number of iterations

(including IDR) should be also reduced.

2. Reasonable stopping criteria are needed for the outer (IDR) and inner

iterations.

3. Stability: together with the number of iterations, several other parameters

are involved. Also, there is some dependence of these parameters with

respect to the discretization.

4. Some kind of regularization should be considered. That could help to

improve the images in the presence of noise, but could also help for the

choice of the ‘right’ solution.
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5. Local convergence results could be obtained along the lines of [12].

6. We are currently working on simulations for more complex objects, for

example, nonconvex. Preliminary results show that our approach with

IDR does not produce a convexification as in [23].

7. We are now implementing the methods for SPECT simulations, and with

real data, in a joint research with the Heart Institute of the University of

São Paulo.

It is also worth mentioning that these methods for problems with two ‘sepa-

rated’ unknowns and many possible solutions depending on the data, could be a

reference in other important inverse poblems like optical tomography and phase

retrieval.
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