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Axial trapping through a dielectric interface is investigated in the framework of the angular spectrum
representation and of the generalized Lorenz-Mie theory. We determine the optical force for an arbitrarily
polarized non-paraxial, strongly aberrated, axially symmetric focusing beam and apply this description to the
case of an arbitrarily positioned dielectric microsphere, commonly employed in optical tweezers, not taking
into account the contribution of evanescent waves at the interface. We derive the analytical expression of the
force profile, finding that the incident polarization does not affect the axial optical force. In addition, we derive
an approximated expression for the axial force as a function of beam displacement just outside the microsphere
and we show how the information provided by the ripple structure of the optical trapping efficiency versus
sphere displacement curve, due to the aberration effect, could be exploited to calibrate the bead axial position
versus the experimental beam positioning controls.
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I. INTRODUCTION

Many developments have been reported in optical trap-
ping in recent years �1–3�. One very important contribution
of the optical tweezers technique is its ability to carry out
mechanical measurements in the world of micro-organisms
and cells, which could be correlated with biochemical infor-
mation. For these measurements, the displacement of a bead,
with typical size, a, in the range of a few micrometers, is the
preferential force transducer, the accurate determination of
the position and displacement of such a trapped sphere being
crucial to extract physicochemical information �4–7�. In par-
ticular, recently Merenda et al. measured that neglecting the
microsphere displacements, which occur along the optical
axis �z direction� in correspondence to a change of the trans-
versal position, would lead one to overestimate the maximal
transverse trapping force up to 50% �8�. Gong et al.,
using the drag force method, concluded that the maximum
transverse trapping force is much larger than the measured
escape force, usually considered to be the maximal trans-
verse force �9�.

To date, especially for single-molecule experiments,
most of the studies are performed along the beam axis alone,
due to ease of either beam manipulation, or specimen pre-
paration, or data interpretation. Since the axial trapping
efficiency is weaker than the radial counterpart, this gener-
ally requires a high numerical aperture �NA� and an oil
immersion objective �8,10–16�. Typically, an oil immer-

sion-objective �glass–oil–cover slip, with refractive index,
n1�1.55� on water �n2�1.33� is employed, as schematized
in Fig. 1. To measure the distance between the trapped
sphere and the cover slip, an approach relying on detecting
the small oscillations produced by interference between the
forward-scattered light and the light reflected between the
trapped bead and the planar cover glass surface, has been
recently presented �17�. A different method, relying on un-
zipping a single DNA molecule, could also be used as a
reference signal for calibrations in the axial direction �7�.

Of course, in the presence of spherical aberrations due to
the n1-n2 refractive index mismatch at the dielectric inter-
face, the focal point, originated from the annular ring around
the optical axis, is closer to the cover slip surface upon in-
creasing the objective angle, �1. Such an optical aberration,
resulting in an elongated focal volume, is especially signifi-
cant for three-dimensional imaging and optical data storage,
and for laser trapping �18–24�. This effect, investigated ap-
plying vectorial and scalar theories �25–27�, is also particu-
larly important for measurements of low values of optical
forces, where the specimen is trapped away from the board-
ers of the Neubauer chamber ��100 �m deep� in order to
avoid boundary layer effects due to adhesion or viscous ef-
fects, consequently decreasing the trapping force.

A previous treatment of spherical aberrations on optical
trapping, presented by Lock �28�, used a focal beam descrip-
tion that does not completely satisfy Maxwell equations.
Rohrbach and Stelzer �29� gave a detailed analysis of the trap
stiffness in the presence of spherical aberrations based on the
propagation of electromagnetic waves, valid for the Rayleigh
�a��� regime, whereas other authors investigated the geo-
metrical optics �a��� domain �30–32�. Ganic et al. solved
the radiation trapping force numerically adopting the vecto-*antonio.neves@unile.it
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rial diffraction approach to represent the focused beam and
arbitrary particle size �33�.

Important, in the aberrated focal region, sharp fluctuations
of the absolute electric field occur and, depending on the
interface geometries, they can generate cusps, caustics, or
other folds �34,35�. Several techniques have been employed
to minimize the undesired effects of spherical aberra-
tion, both for imaging �36–38� and for optical trapping
�23,31,39–41�. However, the electric field ripples, clearly ap-
preciable also in the axial force curve, can be viewed as a
natural ruler allowing one to exactly determine the axial dis-
tances and, consequently, to calibrate the beam positioning
mechanisms �optics positions, microscope stage controls,
etc.�. Here we propose to exploit aberration to calibrate the
axial trap distance, and a model is presented to take into
account the ripple structure of the axial optical curve. We
derive an expression for the aberrated axial force that, by
comparison with analytical results, is shown to be able to
effectively describe the system, especially upon decreasing
the bead size, namely for Rayleigh experimental conditions,
where the aberration effects are more critical. This expres-
sion can be used to fit experimental data, thus allowing one
to determine the unknown axial calibration displacement pa-
rameters.

Concerning theories providing a description of the optical
trapping of particles with arbitrary size, valid for Rayleigh
and geometrical optics domain, the generalized Mie theory

�GLMT� is the most adequate �42–44�. However, a main
problem of GLMT stands in the nonparaxial beam descrip-
tion, which is fundamental to establish a true trapping in all
three dimensions with only one beam. Indeed, paraxial ap-
proximations are no longer valid for typical experimental
conditions, employing beams with NA�1, and microspheres
with diameters up to the order of 10 wavelengths. These
conditions require instead a full vectorial description of the
incident beam, decomposed in partial waves, and preferably
described in a coordinate system with the origin at the center
of the bead, and not at the focus of the beam �45�. This has
been achieved by the use of the T−matrix �46,47� and by
GLMT �42–44�, with the beam expressed by the angular
spectrum representation �45,48�. In this work, an exact vec-
torial diffraction treatment of the aberrated axial optical force
is presented, neglecting the contribution from evanescent
waves, i.e., for distances larger than a few wavelengths from
the interface, and valid for arbitrary sized dielectric spheres
and focusing beam.

As conceptually expected, the resulting analytical expres-
sion for the axial trapping force is not affected by the inci-
dent polarization along the z axis.

II. THEORETICAL MODELING

Optical trapping is generally carried out within a nonab-
sorbing fluid of refractive index smaller than the employed
dielectric particle, employing a high NA immersion micro-
scope objective, with a glass cover slip and an immersion
index matching fluid. The optically trapped object therefore
suffers an aberration due to the refractive index mismatch at
the interface �in our case, glass and water�, which causes an
apparent depth in the optical system �49�. The distance of
this new focal point from the nonoptically perturbed medium
is denominated focal shift. This effect is taken into account
easily with the angular spectrum representation, since the
plane interface is a surface of constant coordinate �49–55�.

As schematized in Fig. 1, the origin of our coordinate
system �z=0� is in the focal length, f , of the objective, and
the interface between the two dielectric media, having refrac-
tive index n1 and n2, respectively, is located at z=−d �z-axis
positive in the direction of beam propagation�. Both media
are assumed to be linear, homogeneous, isotropic, and non-
conducting. Assuming that the trapping focal beam position
is a few wavelengths or larger from the interface �i.e., not
taking into account contributions due to evanescent waves at
the interface�, we can apply the angular spectrum represen-
tation �also known as vectorial Debye diffraction theory or
Debye integral� �56�, weighting each ray by the Fresnel co-
efficients and applying the boundary conditions for the elec-
tric �E� and magnetic �H� fields at the interface. In this way
we obtain the analytical expression of the transmitted elec-
tromagnetic fields F2, in terms of a field F=Fxx̂+Fyŷ inci-
dent on the objective. The components of the incident field,
F, in an aplanatic system, are indicated as Fx,y =Ex,y for the
electric field or Fx,y = ±Hy,x for the magnetic field, respec-
tively. In cylindrical coordinates �� ,� ,z�, this reads as

FIG. 1. �Color online� Geometrical scheme of light propagation
through a refractive index mismatch interface. n0, n1, n2: refractive
indexes of air, glass, and water, respectively. f: focal length. �:
beam waist. wobj: radius of the objective back aperture. zo: nominal
focal beam position. The immersion medium, between the objective
and the cover slip, has the same refractive index, n1, as glass. The
black dot at z=0 will indicate in the following the microsphere
center.
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where cos �2= �1− �n1 sin �1 /n2�2�1/2, � is the azimuthal objective angle, k1 �k2� indicates the modulus of the wave vector in
the first �second� medium, ts and tp are the Fresnel transmission coefficients for s and p polarizations, and the left- and
right-hand superscripts correspond to the electrical and to the magnetic fields, respectively. The Fresnel transmission coeffi-
cients are given by

ts =
2n1 cos �1

n1 cos �1 + n2 cos �2
, tp =
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Similar expressions were obtained by Egner and Török using the Fresnel-Kirchhoff or Debye integral approach �57,58�. The
phase term in Eq. �1� represents the aberration function characterizing the spherical wave front distortion. From the radial
components of the fields, one can then obtain the beam shape coefficients �BSC�, Gnm

TM,TE, corresponding to transversal electric
�TE� and transversal magnetic �TM� multipoles, respectively �n=1, . . . , +� ,−nmn�. The BSC for an axis-symmetric
beam, following the procedure outlined in previous work �45�, can be expressed in spherical coordinates �r ,��, whose origin
of coordinates is located at the center of the microsphere as follows:
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Here, Jm are the Bessel functions of the first kind of mth
order, Ynm are spherical harmonics, Pn

m are the associate Leg-
endre functions, � denotes the complex conjugate, and
��o ,�o ,zo� are the nominal coordinates of the beam focal
position with respect to the origin. The angular integration
limit, �max, is given by the condition of total internal reflec-
tion, �max=sin−1�n2 /n1�, lowering the effective NA of the
objective. Equation �3�, whose right-hand side involves a
�1
2��2
2��2
1� matrix operation, generalizes the results
of Ref. �45�, since it also takes into account the effects of the
refractive index mismatch.

Considering that the beam movement is restricted to be
performed along the axial direction only, we can simplify the
expression above, setting �o=0. In this case, only the BSC
with m= ±1 remain �59,60�, due to the limiting conditions
imposed on the Bessel functions. Let us also suppose a trans-
versal electromagnetic �TEM0,0� Gaussian beam amplitude,

i.e., Fi=Fo exp�−�f sin � /��2�pi, where � indicates the inci-
dent beam waist before entering the objective back aperture
and pi are the polarization components, which can be directly
compared with experimental results. The two BSC are now
reduced to a single one:

Gn,±1
TM = �±px − ipy�Gn

TM, Gn,±1
TE = ��px + ipy�Gn

TE, �4�

where
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The symmetries for the BSC in Eq. �4� can now be explored
for the special cases of linearly polarized and circularly po-
larized beams, replacing the �px , py� polarization vector by
the appropriate Jones vector �Table I�. For circular polariza-
tion we have only BSC with m= +1 or m=−1, which in a
quantum interpretation corresponds to a discrete photon an-
gular momentum of ±� �61�. To determine the time averaged
EM resultant force, R, on a dielectric sphere, we proceed by
integrating the Minkowski form of the Maxwell stress tensor,
Tij, over the surface of a sphere in the far field �62�,

Ri =� TijdAj =
1

2
Re � ��EiEj

� + �HiHj
�

−
1

2
��E · E� + �H · H���ij�dAj , �6�

where � and � are the dielectric constant and the magnetic
permeability, respectively. The Lorenz-Mie theory, according
to which the fields are continuous inside and outside the
sphere surface, leads to the following expression for the axial
component of the optical force:

Rz =
�2�E0�2

k2
2 Re�i�

n=1

n�n + 2�
�n + 1���2n + 1��2n + 3�
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� − 2an+1an

��Gn+1
TMGn

TM�

+ �bn+1 + bn
� − 2bn+1bn

��Gn+1
TE Gn

TE�

�

+
i

n�n + 1�
�an + bn

� − 2anbn
��Gn

TMGn
TE���px�2 + �py�2� .

�7�

Here an and bn are the traditional Mie scattering coefficients
for a dielectric sphere.

The previous equation is greatly simplified for the on-axis
beam, since only the m= ±1 multipole coefficients are
present, due to the BSC in Eq. �4�. The Rz value is also
independent of polarization, since the Jones vector is unitary
by definition, i.e., no gain or loss in the axial trapping force
occurs upon using a linear or circular polarized incident
beam. Upon inserting Eq. �4� in Eq. �7�, and using the defi-
nition of trapping efficiency �63�, Qz=cRz / Pn2, where c is
the speed of light in vacuum and P indicates the laser power
through the objective back aperture �radius=wobj� �Fig. 1�,
since the Gaussian beam tails are truncated by the finite ap-
erture, one has finally,

Qz =
2

�ko��2	n2�1 − exp�− 2wobj
2 /�2��


Re�i�
n=1

n�n + 2�
�n + 1���2n + 1��2n + 3�
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��Gn+1
TMGn

TM�

+ �bn+1 + bn
� − 2bn+1bn

��Gn+1
TE Gn

TE�

�

+
i

n�n + 1�
�an + bn

� − 2anbn
��Gn

TMGn
TE�� , �8�

where ko is the wave vector in air. This gives an adimen-
sional quantity indicating the amount of momentum trans-
ferred from the beam onto the microsphere. This expression
for the axial trapping efficiency does not take into account
losses due to system absorption or to the actual microscope
objective transmission, which experimentally are around
60% �1�.

Furthermore, aiming to derive an approximate expression
for the axial trapping efficiency of an aberrated system on a
microsphere as a function of the axial distance, we start from
Eq. �5�, which is an integral equation for the beam axial
position. In particular, we determine the points of stationary
phase under the aperture angle integral �64�, as recently ap-
plied to the analytical description of arbitrary strongly aber-
rated axially symmetric focusing by a sphere lens �35�. The
axial optical force, Eq. �8�, derives its oscillatory nature
from the BSC of Eq. �5�, which is of the kind Gn

TM,TE

=�x1

x2fn
TM,TE�x�exp�i�g�x��dx �65�, where �→�. The method

of stationary phase can be applied to evaluate the asymptotic
behavior of the previous integral for the critical points of the
first and second kind. In fact, calculation up to the critical
points of the second kind is needed to obtain the ripple struc-
ture, since the optical force involves the product of this type
of integral with its complex conjugate. This leads to

Gn
TM,TE �� 2	

��g��xc��
fn

TM,TE�xc�exp�i�g�xc� ± i	/4�

+
1

i�
� fn

TM,TE�x2�
g��x2�

exp�i�g�x2��

−
fn

TM,TE�x1�
g��x1�

exp�i�g�x1�� , �9�

where the sign is taken depending on the sign of g��xc�, and
xc is the critical point in the integration interval. In a wave-
theoretical context, the previous expression may be inter-
preted as phase interference from the diffractive wave �64�.
The approximate and exact expressions for the BSC given by
Eq. �9� and Eq. �5�, respectively, are used in Eq. �8� to de-
termine the optical force.

III. QUANTITATIVE RESULTS

Using numerical calculations based on the model de-
scribed in the preceding section, we clarify how the aberrated
axial trapping efficiency depends on the axial distance, and

TABLE I. Frequently used normalized Jones vectors.

Linear x
polarization

Linear y
polarization

Right circular
polarization

Left circular
polarization

�10 � �01 � 1
�2 �1i � 1

�2 � 1

−i �
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on the separation, d, between the n1 /n2 dielectric interface
and the origin of the coordinate system �z=0�. The beam is
moved axially with respect to the microsphere, which is
placed at the origin, by changing the values of zo. For in-
stance, zo=0 represents a beam nominally focused positioned
at the center of the microsphere, while d=0 represents the
case of a nonaberrated focal system. Simulations of the axial
trapping efficiency achieved by an objective in an aplanatic
system were performed for a variety of combinations of bead
size and cover glass position. In particular, all of the simula-
tions considered the trapping of a micrometer-sized spherical
bead with an index of refraction, nb=1.59 �polystyrene� in
water �n2=1.33�, objective focal length, f =1.7 mm, back
aperture radius, wobj=2.5 mm, with a trapping laser having
�=800 nm, and �=2.5 mm. The index of refraction of
glass and of immersion oil, n1, was taken as 1.51. These are
typical values employed in experimental conditions.

The intensity behavior of the absolute electric field
squared �nominally placed at zo=25 �m� upon varying the
axial distance, as determined by Eq. �1�, is displayed in Fig.
2. The intensity profile is no longer symmetric along the
optical axis, differently from the case of the unaberrated sys-
tem �d=0�. The observed oscillations are interpreted as due
to constructive and destructive interference, because of the
different propagation lengths of each plane wave after the
mismatch interface �38,66�.

These oscillations can be mapped onto the axial trapping
efficiency through Eq. �8� as a function of the microsphere
displacement with respect to the beam position. Since we
placed the microsphere at the origin, such displacement is
given by �z=−zo. For d�0, the trapping efficiency is re-
duced, as clearly observable from the absolute values of the
minima, decreasing upon increasing the value of d �Fig. 3�.
Such reduction of the trapping efficiency with the increase of
the trap depth originates from spherical aberrations, which
focus the outermost rays of the beam in front of �namely, at
a lower z value than� those in the center of the beam, thus
creating an elongated focus. This eventually causes the pe-

ripheral rays to miss the bead as the cover glass is moved
away from the interface, hence decreasing the resulting trap-
ping efficiency.

Concomitantly, the escape force in the positive z direction
decreases as the beam is displaced further into the medium
�18,29,67�. The stable trapping positions, given by the axial
coordinates where the axial trapping efficiency is zero and
the ��z ,Qz� curve exhibits a negative slope, are evidenced in
Fig. 3 with circles.

We also examined how the force curves are influenced by
the size of microspheres. It can be observed �Fig. 4� that the
periodicity of the ��z ,Qz� curve remains unchanged for dif-
ferent values of microsphere sizes, as described by Eq. �8�.
In addition, smaller microspheres �a=0.5 �m in Fig. 4� can
exhibit more than one trapping position. The oscillations due
to aberrations correspond to those observed in the electric
field �Fig. 2�. We also notice that the same argument about

FIG. 2. �Color online� Numerically computed intensity of the
electric field as a function of the coordinate, z, for a nominal beam
coordinate zo=25 �m, at different distances, d, between the unab-
errated focal beam position and the dielectric interface.

FIG. 3. �Color online� Axial trapping efficiency, Qz, as a func-
tion of the displacement between the microsphere and nominal fo-
cal beam position ��z=−z0�, for a 2 �m polystyrene sphere, for
different d values. Circles along the Qz=0 line represent the stable
trapping positions.

FIG. 4. �Color online� Axial optical trapping efficiency, Qz, as a
function of the beam focal position ��z=−z0�, for polystyrene mi-
crospheres, for different bead sizes �d=50 �m�.
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the decrease of the trapping efficiency as in Fig. 3 also ap-
plies to the case in which the sphere diameter varies �see the
Qz minima in the Qz�0 region in Fig. 4, whose absolute
values increase upon increasing the bead size�, i.e., better
trapping occurs for larger microspheres in an aberrated sys-
tem. Figure 5 shows the resulting ripple structure due to the
aberration, which is more evident for smaller particles, as
expected �23�, and which exhibits more than one trapping
region. Figure 6 shows instead that the ripple structure in the
axial optical trapping efficiency profile, as a function of trap-
ping depth �distance from the interface� for a microsphere,
having a=�=800 nm. Compared to the study by Ganic and
co-workers �33�, our work solves the trapping problem ana-
lytically up to the stage for which this is possible, thus
greatly reducing the demand of computation time. In general,
it is possible to solve part of the vectorial Debye theory, or
even to determine the beam expansion coefficients finally
obtaining only one numerical integral, analytically including
the effects of aberration. In addition, these optical force cal-
culations provide a full optical force curve versus beam focal
position with respect to the microsphere, instead of particular
points of the force curve.

Finally, in Fig. 7, we compare the oscillatory periodicity
derived from the exact and approximated expressions of the
axial trapping efficiency, namely plotting Eq. �8� and deriv-
ing Qz from Eq. �9�, respectively. Indeed, multiplying Eq. �9�
by its complex conjugate allowed us to obtain a series of
leading oscillatory terms that represents the ripple structure
observed in the axial trapping efficiency curve,

Qz�zo� � A0 exp�− i��k1
2 − k2

2��2d − zo�zo/n1�

+ A1 exp�i�k2 − k1�d − ik2zo� , �10�

where Ai are the amplitudes that vary along the beam dis-
placement direction. This expression can be used to describe
measured oscillation of the axial force. From Fig. 7, we no-
tice that the accordance between the exact and the approxi-
mate resulting curves improves upon decreasing the bead
size, namely for Rayleigh experimental conditions, where the
aberration effects are more critical, whereas the agreement
between the resulting oscillatory periodicities is very good
also for larger bead size �a�. In particular, we point out that,
once the ripple structure of the axial force is experimentally

FIG. 5. �Color online� Two-dimensional plot of the axial optical
trapping efficiency, Qz, as a function of �z=−z0 �horizontal axis�
and microsphere diameter �vertical axis�. The well-defined ripple
structure is clearly appreciable for smaller spheres �Rayleigh con-
dition�. The maximum axial trapping efficiency is indicated by the
black region �negative force values� at the right of the high intensity
peaks.

FIG. 6. �Color online� Two-dimensional plot of the axial optical
trapping efficiency, Qz, as a function of �z=−z0 �horizontal axis�
and microsphere �with size a=�� distance from cover slip �vertical
axis�. The ripple structure can be seen clearly as trapping depth
increases.

FIG. 7. �Color online� Axial optical trapping efficiency �red
solid line� as a function of �z for small microsphere diameters ��
=800 nm�, interface distance, d=50 �m, and its stationary phase
approximation, Eq. �9�, in the ripple range �blue dashed line�.
Curves translated vertically by subsequent offsets of 0.05 for better
clarity.
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measured, one can use Eq. �10� to fit the data and also de-
termine the calibration parameters needed to relate the nomi-
nal beam position �zo� with the experimental motion con-
trols. In fact, since zo is related to the experiment controls on
optics positions and microscope stage through a linear or a
nonlinear function depending on the particular employed
motion stage, one can determine the unknown parameters of
this function by inserting it in Eq. �10�, and then fitting the
axial trapping efficiency oscillation ripples. Hence, the oscil-
lation ripples constitute a natural role for axial displacement
control calibration.

IV. CONCLUSIONS

The model here presented substantially extends previous
reports �48�, taking into account the effects of a refractive
index mismatch in a typical trapping experiment, with a vec-
torial description of light. In this way, we have obtained two
important results. First, the axial trapping efficiency can be
determined for an arbitrary microsphere size and beam po-
larization. In particular, the resulting analytical expression
demonstrates that the polarization does not affect the axial
trapping efficiency, even when aberrations are taken into ac-
count.

Second, we describe the influence of spherical aberration,
due to refractive index mismatch of medium and cover slip,
on the optical force and on the trapping efficiency. We derive
also an approximated expression for the axial force and we
discuss how the information provided by the ��z ,Qz� ripple
structure could be used to calibrate the axial position of a
microsphere inside the immersion medium versus the experi-
mental beam positioning. This calibration approach, working
for an arbitrary depth, does not need to detect the interfer-
ence between the sphere and cover slip �17�, or to unzip a
known DNA molecule �7�. It could be very useful, especially
for dual optical trapping configuration, often preferable to
single trapping setups, due to its ease of manipulating par-
ticles, beam coupling to resonance modes of microspheres,
spectroscopic capability, noise reduction, and moreover al-
lowing one to obtain a whole curve of the optical force as a
function of the nominal beam position �48,68,69�.
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