
Groups Geom. Dyn. 4 (2010), 263–273
DOI 10.4171/GGD/83

Groups, Geometry, and Dynamics
© European Mathematical Society

The Sigma invariants of Thompson’s group F
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Abstract. Thompson’s group F is the group of all increasing dyadic PL homeomorphisms of
the closed unit interval. We compute †m.F / and †m.F I Z/, the homotopical and homological
Bieri–Neumann–Strebel–Renz invariants of F , and show that †m.F / D †m.F I Z/. As an
application, we show that, for every m, F has subgroups of type Fm�1 which are not of type
FPm (thus certainly not of type Fm).
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1. Introduction

1.1. The group F . Let F denote the group of all increasing piecewise linear (PL)
homeomorphisms1

x W Œ0; 1� ! Œ0; 1�

whose points of non-differentiability 2 Œ0; 1� are dyadic rational numbers, and whose
derivatives are integer powers of 2. This is known as Thompson’s Group F ; it first
appeared in [22].

The group F has an infinite presentation

hx0; x1; x2; � � � j x�1
i xnxi D xnC1 for 0 � i < ni: (1.1)

Let F.i/ denote the subgroup hxi ; xiC1; : : :i. The presentation (1.1) displays F

as an HNN extension with base group F.1/, associated subgroups F.1/ and F.2/,
and stable letter x0; see [17], Proposition 9.2.5, or [13] for a proof. Thus F is
an ascending2 HNN-extension whose base and associated subgroups are isomorphic
to F .

�The third author is partially supported by “bolsa de produtividade de pesquisa” from CNPq, Brazil.
1Here, PL homeomorphisms are understood to act on Œ0; 1� on the left as in [15] rather than on the

right as in [13].
2See Subsection 2.1 for the definition.
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The correspondence between the generators xi in the presentation (1.1) and PL
homeomorphisms is as in [15]. For example, the generator x0 corresponds to the PL
homeomorphism with slope 1

2
on Œ0; 1

2
�, slope 1 on Œ1

2
; 3

4
�, and slope 2 on Œ3

4
; 1�.

The group F has type F1, i.e., there is a K.F; 1/-complex with a finite number
of cells in each dimension [13]. Therefore F is finitely presented and has type
FP1. Furthermore, F has infinite cohomological dimension [13], H �.F; ZF / is
trivial [14], F does not contain a free subgroup of rank 2 [10], and the commutator
subgroup F 0 is simple [12], [15]. It is known that F has quadratic Dehn function
[18]. The group of automorphisms of F was calculated in [9].

1.2. The Sigma invariants of a group. By a (real) character on G we mean a
homomorphism � W G ! R to the additive group of real numbers. For a finitely
generated group G the character sphere S.G/ of G is the set of equivalence classes
of non-zero characters modulo positive multiplication. This is best thought of as the
“sphere at infinity” of the real vector space Hom.G; R/. The dimension d of that
vector space is the torsion-free rank of G=G0, and the sphere at infinity has dimension
d � 1. We denote by Œ�� the point of S.G/ corresponding to �.

We recall the Bieri–Neumann–Strebel–Renz (or Sigma) invariants of a group G.
Let R denote a commutative ring3 with 1 ¤ 0, and let m � 0 be an integer. When G is
of type Fm (resp. FPm.R/) the homotopical invariant †m.G/ (resp. the homological
invariant †m.GI R/), is a subset of S.G/. In both cases we have †mC1 � †m. We
refer the reader to [7] for the precise definition, confining ourselves here to a brief
recollection:

1.2.1. m D 0. All groups have type F0 and type FP0.R/. By definition †0.G/ D
†0.GI R/ D S.G/. This will only be of interest when we consider subgroups of F

in Section 3.

1.2.2. m D 1. Let X be a finite set of generators of G and let �1 be the corresponding
Cayley graph, with G acting freely on �1 on the left. The vertices of �1 are the
elements of G and there is an edge joining the vertex g to the vertex gx for each
x 2 X .

For any non-zero character � W G ! R, and for any real number i define �1
��i to

be the subgraph of � spanned by the vertices

G��i D fg 2 G j �.g/ � ig:
By definition, Œ�� 2 †1.G/ if and only if �1

��0 is connected. For a detailed treatment
of †1 from a topological point of view, see [17], Section 18.3.

1.2.3. m D 2. Let hX j T i be a finite presentation of G. Choose a G-invariant
orientation for each edge of �1 and then form the corresponding Cayley complex

3Only the rings Z and Q will play a role in this paper.
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�2 by attaching 2-cells equivariantly to �1 using attaching maps indicated by the
relations in T . Define �2

��i to be the subcomplex of �2 consisting of �1
��i together

with all the 2-cells which are attached to it.
By definition, Œ�� 2 †2.G/ if and only if Œ�� 2 †1.G/ and there is a nonpositive

d such that the map
�1.�2

��0/ ! �1.�2
��d /; (1.2)

induced by the inclusion of spaces �2
��0 � �2

��d
is zero (and �1

��0 is connected).

See, for example, [28]. Note that �2 is the 2-skeleton of the universal cover of a
K.G; 1/-complex which has finite 2-skeleton.

1.2.4. m > 2. The higher †m.G/ are defined similarly, for groups of type Fm,
using the m-skeleton, �m, of the universal cover of a K.G; 1/-complex having finite
m-skeleton. See [7].

1.2.5. The homological case. For a commutative ring R, the homological Sigma
invariants †m.GI R/ are defined similarly when the group G is of type FPm.R/,
using a free resolution of the trivial (left) RG-module R which is finitely generated
in dimensions � m; see [7] for details. Among the basic facts to be used below, which
hold for all rings R, are: †1.G/ D †1.GI R/; and †m.G/ � †m.GI R/ when both
are defined (i.e., when G has type Fm). If G is finitely presented then “type Fm” and
“type FPm.Z/” coincide. In that case, †m.GI Z/ can also be understood from the
above topological definition of †m.G/, replacing statements about homotopy groups
by the analogous statements about reduced Z-homology groups; more precisely, one
requires

zHk�1.�k
��0/ ! zHk�1.�k

��d /; (1.3)

to be trivial for all k � m.

Remark. The definition of †1 given here agrees with the now-established conven-
tions followed, for example, in [7] and in [2]. It differs by a sign from the †1-invariant
defined in [6]. This arises from our convention that RG-modules are left modules,
while in [6] they are right modules.

1.3. Some facts about Sigma invariants. It is convenient to write “Œ�� 2 †1” as
an abbreviation for “Œ�� 2 †m for all m”.

Among the principal results of †-theory for a group G of type Fm (resp. type
FPm.R/) are: (1) †m.G/ (resp. †m.GI R/) is an open subset of the character sphere
S.G/, and (2) †m.G/ (resp. †m.GI R/) classifies all normal subgroups N of G

containing the commutator subgroup G0 by their finiteness properties in the following
sense:

Theorem 1.1 ([7], [27], [28]). Let G be a group of type Fm (resp. type FPm.R/) with
a normal subgroup N such that G=N is abelian. Then N is of type Fm (resp. FPm)
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if and only if for every non-zero character � of G such that �.N / D 0 we have
Œ�� 2 †m.G/ (resp. Œ�� 2 †m.GI R/).

A non-zero character is discrete if its image in R is an infinite cyclic subgroup. A
special case of Theorem 1.1 (the only one we will use) is:

Corollary 1.2. If the non-zero character � is discrete then its kernel has type Fm

(resp. type FPm.R/) if and only if Œ�� and Œ��� lie in †m.G/ (resp. †m.GI R/).

The invariants †m.G/ and †m.GI R/ have been calculated for only a few families
of groups G, even fewer when m > 1. For metabelian groups G of type Fm there is
the still-open †m-Conjecture: †m.G/c D †m.GI Z/c D conv�m †1.G/c , where4

conv�m denotes the union of the (spherical) convex hulls of all � m-tuples; this is
known for m D 2 [19] but only for larger m under strong restrictions on G [20],
[24]. A complete description of †m.G/ and †m.GI Z/ for any right angled Artin
group G is given in [23]. Recently the homotopical invariant †m.G/ has been
generalized to an invariant of group actions on proper CAT(0) metric spaces [2];
the corresponding invariants for the natural action of SLn.R/ on its symmetric space
have been calculated: for n D 2 (action by Möbius transformations on the hyperbolic
plane) in [3], and for n > 2 in [26]. A similar generalization of the homological case,
†m.GI R/, to the CAT(0) setting will appear in [5].

1.4. Sigma invariants of F . In this paper we calculate the Sigma invariants †m.F /

and †m.F I R/ of the group F . For x 2 F and i D 0 or 1 let �i .x/ ´ log2x0.i/,
i.e., the (right) derivative of the map x at 0 is 2�0.x/ and the (left) derivative of x

at 1 is 2�1.x/. In terms of the presentation (1.1) �0.x0/ D �1 and �0.xi / D 0 for
i � 1, while �1.xi / D 1 for all i � 0. These two characters are linearly independent.
Thus Œ�0� and Œ�1� are not antipodal points of the circle S.F /. From (1.1) we see
that the real vector space Hom.F; R/ has dimension 2, so these two characters span
Hom.F; R/. It follows that the convex sum of Œ�0� and Œ�1� is a well-defined interval
in the circle S.F /; its members are the points fŒa�0 C b�1� j a; b > 0g. We call it
the “shorter interval”. We call �0 and �1 the “special” characters.

There is a useful automorphism � of F which is most easily expressed when F

is regarded as a group of PL homeomorphisms as above: it is conjugation by the
homeomorphism t 7! .1 � t /; if one draws the graph of the PL homeomorphism
x 2 F in the square Œ0; 1� � Œ0; 1� then the graph of �.x/ is obtained by rotating
that square through the angle � . This � induces an automorphism of Hom.F; R/

and consequently an automorphism of S.F / which permutes the elements of †m.F /

(resp. †m.F I R/). In particular, it swaps the points Œ�0� and Œ�1�. We refer to this as
“�-symmetry” of the Sigma invariants.

The theorems of this paper can now be stated:

4It is customary to use the notation Ac for the complement of the set A in a character sphere; e.g.
†m.G/c or †m.GI R/c .
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Theorem A. †1.F / consists of all points of S.F / except Œ�0� and Œ�1�. The points
of S.F / lying in the open convex hull of Œ�0� and Œ�1�, i.e., in the shorter interval,
are in †1.F / but are not in †2.F /. The other (longer) open interval between Œ�0�

and Œ�1� is the set †1.F /. The sets †m.F I R/ and †m.F / coincide for all m and
any ring R.

One part of this is not new: †1.F / was computed in [6].

Theorem B. For every m � 1; F contains subgroups of type Fm�1 which are not of
type FPm.Z/ (thus certainly not of type Fm).

TheoremA is proved in Section 2, andTheorem B is proved (using [4]) in Section 3.

Acknowledgment. We thank Dan Farley who asked about the possibility of em-
bedding powers of F in F to get non-normal subgroups of F with more interesting
finiteness properties than can be found among the kernels of characters on F itself.
His question led to the writing of the paper [4] and thus to our Theorem B.

2. Proof of Theorem A

2.1. †0 and †1. By an ascending HNN extension we mean a group presented by
hH; t j t�1ht D �.h/ for h 2 H i where � W H ! H is a monomorphism. Such a
group is denoted by H��;t .

We begin by citing:

Theorem 2.1. Let G decompose as an ascendingHNNextension H��;t . Let � W G !
R be the character given by �.H/ D 0 and �.t/ D 1.

(1) If H is of type Fm (resp. FPm.R/) then Œ�� 2 †m.G/ (resp. Œ�� 2 †m.GI R/).
(2) If H is finitely generated and � is not onto H then Œ��� 2 †1.G/c .

Proof. The homological case of (1) for all m is [24], Proposition 4.2, and the homo-
topical case for m D 2 is a special case of [25], Theorem 4.3. The homotopical case
of (1) for all m then follows.

(2) is elementary: we recall the argument. Let N be the kernel of �. By (1) and
Corollary 1.2, (2) is equivalent to claiming that the group N is not finitely generated.
The hypothesis that � is not onto implies t�1Ht is a proper subgroup of H . Thus
N D S

n�1 tnHt�n is a proper ascending union, so it cannot be finitely generated.

Applying Theorem 2.1 together with “�-symmetry” to the group F , i.e., G D F ,
t D x0, H D F.1/, and � D ��0, we get part of Theorem A:

Corollary 2.2. fŒ��0�; Œ��1�g � †1.F / and fŒ�0�; Œ�1�g � †1.F /c .
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Theorem 8.1 of [6] is the assertion that the complement of the two-point set
fŒ�0�; Œ�1�g is precisely5 †1.F /.

2.2. The “longer” interval. The following is proved by combining two theorems
of H. Meinert, namely [24], Proposition 4.1, and [25], Theorem B:

Theorem 2.3. Let G decompose as an ascendingHNNextension H��;t . Let � W G !
R be a character such that �jH ¤ 0. If H is of type F1 and if Œ�jH� 2 †1.H/

then Œ�� 2 †1.G/.

We use this to show that whenever � W F ! R is such that �.x1/ < 0 we always
have Œ�� 2 †1.F /. Recall that F is an HNN extension with base group F.1/ D
hx1; x2; : : :i, associated subgroups F.1/ and F.2/ and with stable letter x0, where
F.i/ D hxi ; xiC1; : : :i. As fxigi�1 are conjugate in F we see that �.x1/ D �.xi / < 0

for all i � 1. Let Q� be the restriction of � to F.1/. If we identify F.1/ with F via the
isomorphism that sends xi to xi�1 for i � 1 , then Q� gets identified with ��1 and,
by Corollary 2.2, Œ��1� 2 †1.F /. Thus we have:

Corollary 2.4.
fŒ�� 2 S.F / j �.x1/ < 0g � †1.F /: (2.1)

This shows that the open interval in the circle S.F / from Œ�0� to Œ��0� which
contains Œ��1� lies in †1.F /. By �-symmetry its image under � has the same
property, and this enlarges the interval in question to cover the whole “long” open
interval between Œ�0� and Œ�1�. In summary:

Proposition 2.5. All of S.F / except possibly the closed convex sum of the points
Œ�0� and Œ�1� lies in †1.F /.

2.3. The “shorter” interval. For the homotopical version of Theorem A we could
simply apply the following:

Theorem 2.6. [21] Let G be a finitely presented group which has no free non-abelian
subgroup. Then6 conv�2 †1.G/c � †2.G/c .

However, the homological version of Theorem 2.6 is only known under restrictive
conditions, so we proceed in a manner which handles the homotopical and homolog-
ical versions at the same time. We begin by citing:

Theorem 2.7. Let G have no non-abelian free subgroups and have type FP2.R/. Let
Q� W G ! R be a non-zero discrete character. Then G decomposes as an ascending
HNN extension H��;t where H is a finitely generated subgroup of ker. Q�/, and Q�.t/

generates the image of Q�.
5But note the change of conventions explained in the remark at the end of Section 1.2.
6See Section 1.3 for the definition of conv�2.
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This is an immediate consequence of [8], Theorem A. That theorem yields an
HNN extension, and the hypothesis about free subgroups ensures it is an ascending
HNN extension.7

We apply Theorem 2.7 to understand †2.F I R/. Consider the non-zero character
a�0 C b�1 where a; b 2 Q. Let G ´ ker.a�0 C b�1/. Since F=F 0 is a free abelian
group of rank 2, it is not hard to see that G D hF 0; ti for some t 2 F . For the
same reason, there is a non-zero discrete character Q� W G ! R whose kernel is F 0
such that Q�.t/ generates im. Q�/. We assume that G has type FP2.R/ and we consider
what this implies. By Theorem 2.7 the existence of Q� implies that G decomposes
as H��;t where H is a finitely generated subgroup of F 0. The group F 0 consists
of all PL homeomorphisms whose left and right slopes are 1. Since H is finitely
generated, there must exist � > 0 such that all elements of H are supported in the
interval Œ�; 1 � ��. We may assume � is so small that the PL homeomorphism t is
linear on Œ0; �� and on Œ1 � �; 1�.

The character Q� expresses G as a semidirect product of F 0 and Z. Thus we have
F 0 D S

n�1 tnHt�n. So for each x 2 F 0 there is some n > 0 such that t�nxtn 2 H ,
and hence the support of t�nxtn lies in Œ�; 1 � ��.

This implies that the support of x lies in Œtn.�/; tn.1 � �/�, and hence these end
points have subsequences converging to 0 and 1 respectively as x varies in F 0. If
t has slope � 1 on Œ0; �� then t .�/ � � so tn.�/ � � for all n > 0. Therefore
t must have slope < 1 near 0. Similarly t must have slope < 1 near 1. Since
a�0.t/ C b�1.t/ D 0 it follows that (still assuming G has type FP2.R/) ab < 0.
Expressing the contrapositive, we have

Proposition 2.8. If ab > 0 then ker.a�0 C b�1/ does not have type FP2.R/.

Now assume a and b are positive and rational. Write � D a�0 C b�1; thus �

is discrete. By Corollary 1.2, ker.�/ has type FP2.R/ if and only if both Œ�� and
Œ��� lie in †2.F I R/. But by Proposition 2.5 Œ��� 2 †2.F I R/. So Œ�� cannot lie in
†2.F I R/.

Proposition 2.9. No point in the open convex sum of Œ�0� and Œ�1� (i.e., the shorter
open interval) lies in †2.F I R/.

Proof. We have just shown that a dense subset of the open convex sum lies in
†2.F I R/c , and since †2.F I R/ is open in S.F / this is enough.

The proof of Theorem A is completed by recalling that for any ring R

(1) †1.F I R/ D †1.F /, and
(2) †m.F / � †m.F I R/:

7The equivalence of “almost finitely presented” with respect to R, the term actually used in [8], and
FP2.R/ is well known: see, for example, Exercise 3 of [11], VIII 5.
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3. Subgroups of F with different finiteness properties

As before, we denote the complement of any subset A of a sphere by Ac . The Direct
Product Formula for homological Sigma invariants (which is not always true) reads
as follows:

†n.G � H I R/c D
nS

pD0

†p.GI R/c � †n�p.H I R/c :

Here, � refers to “join” of subsets of the spheres S.G/ and S.H/ which are
considered to be subspheres of the sphere S.G � H/. In particular, when p D 0

or n one of these sets is empty, and then the join is treated in the usual way: e.g.,
A � ; D A.

It has been known for many years that one inclusion of the Direct Product Formula
is always true:

Theorem 3.1 (Meinert’s inequality).

†n.G � H I R/c �
nS

pD0

†p.GI R/c � †n�p.H I R/c

and

†n.G � H/c �
nS

pD0

†p.G/c � †n�p.H/c :

Meinert did not publish this, but a proof can be found in [16], Section 9. The
paper [1] also contains a proof of the homotopy version.

It is proved in [4] that the Direct Product Formula holds when R is a field. On
the other hand, an example in [29] shows that the formula does not always hold when
R D Z. However, it is shown in [4] that when †n.GI Z/ D †n.GI Q/ for all n then
the Direct Product Formula does hold when R D Z. Writing F r for the r-fold direct
product of copies of F , one concludes (by induction on r) that the formula holds for
F r when R D Z. More precisely, we have:

Theorem 3.2. Let r � 2. Then, for all n,

†n.F r I Z/c D
nS

pD0

†p.F I Z/c � †n�p.F r�1I Z/c

and †n.F r/ D †n.F r I Z/.

Proof. Only the last sentence requires some explanation. It follows from Mei-
nert’s Inequality (Theorem 3.1) together with the fact that for any group G we have
†m.G/ � †m.GI R/.
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Theorem A implies that †m.F /c is a (spherical) 1-simplex if m � 2, is the 0-
skeleton of that 1-simplex when m D 1, and is empty (i.e., the (-1)-skeleton of the
1-simplex) when m D 0. And that 1-simplex has the property that it is disjoint from
its negative. It follows from Theorem 3.2 that †m.F r/c is the .m � 1/-skeleton of a
spherical .2r � 1/-simplex in the .2r � 1/-sphere S.F r/, a simplex which is disjoint
from its negative.

We now prove Theorem B. Consider Œ�� in S.F r/ which lies in the .m�1/-skeleton
but not in the .m � 2/-skeleton of the .2r � 1/-simplex. Since the discrete characters
are dense we can always choose � discrete. Then Œ�� lies in †m.F r/c \ †m�1.F r/

while Œ��� lies in †m.F r/. Thus, by Corollary 1.2, the kernel of � has type Fm�1

but not type FPm.Z/ when m < 2r � 1. Now, F contains copies of F r for all r ; for
example, let 0 < t1 < � � � < tr�1 < 1 be a subdivison of Œ0; 1� into r segments where
the subdivision points are dyadic rationals. The subgroup of F which fixes all the
points ti is a copy of F r . Thus Theorem B is proved.

Example. Here is an explicitly described subgroup Gr � F which has type F2r�1

but does not have type FP2r.Z/. Fix a dyadic subdivision of Œ0; 1� into r subintervals
as above. Let Gr denote the subgroup of F consisting of all elements x for which
the product of the numbers in the following set Dr equals 1. The members of Dr

are: the left and right derivatives of x at the .r � 1/ subdivision points ti , the right
derivative of x at 0, and the left derivative of x at 1. This subgroup of F (we consider
F r embedded in F as above) corresponds to the barycenter of the .2r � 1/-simplex,
and thus has the claimed properties.

Remark3.3. This example is “structurally stable” in the following sense: The interior
of the .2r � 1/-simplex is open in the sphere S.F r/. Thus all the points in that open
set which correspond to discrete characters on F r (they are dense) give rise to groups
zGr with exactly the finiteness properties possessed by Gr . These groups zGr should
be thought of as all the normal subgroups of F r “near” Gr which have infinite cyclic
quotients.
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