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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 61, Number 4, Dec. 1996 

CAUCHY COMPLETENESS IN ELEMENTARY LOGIC 

J. C. CIFUENTES, A. M. SETTE, AND D. MUNDICI 

Abstract. The inverse of the distance between two structures A? 0 .q of finite type z is naturally 
measured by the smallest integer q such that a sentence of quantifier rank q - 1 is satisfied by W but not 

by A. In this way the space StrT of structures of type z is equipped with a pseudometric. The induced 

topology coincides with the elementary topology of StrT. Using the rudiments of the theory of uniform 
spaces, in this elementary note we prove the convergence of every Cauchy net of structures, for any type T. 

?1. Introduction. For all topological notions used in this paper we refer to [7]. 
We let L,,,, be elementary logic and L".0 be the set of all first-order sentences of 
type -r. Following Tarski, the elementary topology of StrT is given by the following 
closure operator C: for any K C StrT, 

C(K)= n{Mod(9p) I o E L , and K C Mod()}. 

Two structures v and R of type z are elementarily equivalent, in symbols, 
-=_ if and only if C({f}) = C({f}). As shown by Tarski [10], the family 

of equivalence classes Str7/= is a totally disconnected compact Hausdorff space: a 
base is given by the collection 7T = { Mod(W) I p E LT co } of elementary classes. 

While members of StrT/- are proper classes, StrT/- itself can be indexed by the 
set of complete theories in LT,, and g7T can be indexed by the set of sentences 
of L'.. Classes indexed by sets are known as small classes, and are frequently 
used in topological abstract model theory (see, e.g., [1], [5], [9] and [2]). From the 
foundational viewpoint, large topological spaces endowed with small topologies are 
no more problematic than sets. One can naturally speak of interior, closure, com- 
pactness, convergence and Cauchy completeness (of spaces with small uniformity 
bases) without burdening notation and terminology 

As is well known, the compactness of LO,, is the following property: Whenever 
z is a type and Z is a subset of L" ce such that for every finite subset A C A, 

Mod(A) = n Mod((p) 7 0, 

then 
Mod(z) = n Mod((p) 7 0. 
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1154 J. C. CIFUENTES, A. M. SETTE, AND D. MUNDICI 

For a proof one can use Los's theorem, to the effect that for every set {f }i E 
StrT, every sentence p E LC C, and every ultrafilter U over I, the ultraproduct Hlu Vi 
satisfies the condition 

(*) fl Eod(W) i= E I {i i E Mod(9p)} E U 
u 

Following [5, p. 216], for each A E 9,3 (E) = set of finite subsets of A, one now 
chooses a model -A E Mod(A), and shows that flu -A E Mod(S), for a certain 
ultrafilter U over g,) (Z). 

In the above formula (*), the ultraproduct of the Wi's can be replaced by more 
general constructions: 

DEFINITION 1. Let {f }i.E be a set of structures of the same type T. Let U be an 
ultrafilter over I. Then limu Hi C StrT is defined by 

limui = n{Mod(fp) I{ i E I I Wi E Mod(p) } E U}. 

To the best of our knowledge, limu was first introduced in [5, p. 223 ff] for Boolean 
spaces, and in [3, p. 11 ff] for more general spaces. 

Consider the following abstract form of Los's Theorem: 

ALT For every type z, every set {f }iIE in StrT and every ultrafil- 
ter U over I, limu#i 54 0. 

Trivially, ALT is equivalent to compactness in every small logic, i.e., in any model- 
theoretic logic L such that the collection of sentences in L of any type z is a set. 

To conclude this section, let us mention that in [8, p. 255], one can find another 
proof of the compactness theorem related to (though without explicit mention of) 
Los's theorem. In fact, it is shown that for every family of structures K = Ii EI, 
the cluster points of K coincide with the elements of 

{ I if I U is an ultrafilter over I}. 
u 

?2. The uniformity of StrT. Fraisse [4, p. 129] first observed that for any finite 
type z the elementary topology of StrT is uniformizable; using partial isomorphisms, 
he explicitly introduced a uniformity base. 

Following Karp [6], we shall instead use n-equivalence, -. Recall that two 
structures are called n-equivalent if and only if they satisfy the same sentences of 
quantifier rank < n. 

Omitting unnecessary -superscripts, for every finite type z, we define the unifor- 
mity base ?4i for StrT by qJS = {n InbEw, where for each n E co, 

Wn = {f( 
i EqS) e Str' x StrW I v _n i I. 

Given a (possibly infinite) type z and a finite set of sentences ( C L',01 let us 
write v _= P if and only if the structures v and P satisfy the same sentences 
of D. Letting now 

2o = {(X, 1) E StrT x StrT I v 
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CAUCHY COMPLETENESS IN ELEMENTARY LOGIC 1155 

we define the uniformity base Liz by 

Liz = { to 1 D a finite set of sentences of type z 

Let z be a finite type. Since for each n there exist only finitely many pairwise 
inequivalent sentences of quantifier rank < n, the bases qjz and ?4H are uniformly 
equivalent, in the sense that for each n E co there exists a finite set of sentences 1 C 

LC such that to C We, and vice versa. 
As an immediate consequence of the definition of a,, for every type z and 

sentence o E LI we have 

-{Mod (~p) if WIk ~ 
A{ [?]= { l (a ) E A{ - } } { Mod(--so ), if X Y i. 

Thus jiz generates the elementary topology of StrT, and the resulting uniform 
space is totally bounded. 

The same conclusion holds for the base qjs, provided the type z isfinite. More- 
over, in this case StrT is pseudo-metrizable. As a matter of fact, letting 

d: Str x Str' >I11 

be defined by 

d (ad, g) = inf{ +1 (a ) E 2n} 

we easily see that d is a nonarchimedean pseudo-metrics, in the sense that 

d (XW, F) < max (d (., A)) d (g) )). 

?3. Cauchy completeness. In every uniform space we have the following well 
known characterization [7, p. 198]: 

Compactness = Cauchy Completeness + Total Boundedness. 

From our previous discussion it follows that the compactness of StrT is equivalent 
to the Cauchy completeness of its underlying uniformity. 

For any finite type z, Fraisse [4, pp. 127-128] proved that StrT is Cauchy complete, 
whence, StrT is sequentially compact. To construct limits of Cauchy sequences, 
Fraisse used inductive limits of certain systems of structures directed by partial 
isomorphisms. We present a simpler proof of the Cauchy completeness of StrT 
for arbitrary z, only using condition ALT. To this purpose, we first generalize 
Definition 1: 

DEFINITION 2. Let {? W0g, be an arbitrary base of a uniformity for the elemen- 
tary topology of StrT. Let {f.}WzEj be a set of structures of type z, and U an 
ultrafilter over I. We denote by limu Wi the collection of structures v E StrT such 
that for everyca o E_, the set { i E I X E W } is a member of U. 

The dependence of limu Wi on {?4, 1} is tacitly understood. In case {?W}a 

coincides with GqH, Definition 2 coincides with Definition 1, and the following 
lemma becomes an equivalent reformulation of condition ALT: 
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LEMMA 1. Let {W2 }E-. be a uniformity base for the elementary topology of StrT. 
Let I be a set, and U an ultrafilter over I. Then for every set {pi }iGI of structures of 
type z, limu u W# 0. 

PROOF. Let v = 1lu i. It is sufficient to prove v E limu d. By way of 
contradiction, suppose that there exists a E _ such that 

{ i E I I GX, Wi ) i C ha }-{ i E I I Pi V ta[v E U. 

Since ?[si] is open in the elementary topology and a? E [si], there exists a 
sentence ov such that W E Mod(^y) C ?4[sV]. It follows that 

{i E I I i wa [.V]I} C { i E I I Hi V Mod (sd)} 

whence { i E I | i - } E U and, by Los' Theorem, a G , a contradic- 
tion. -H 

DEFINITION 3. Let {W2}a- be a uniformity base for the elementary topology 
of StrW, and let (D, <) be a directed set. 

Given a net {i } iED of structures of type z, we define limit Hi to be the collection 
of structures W E StrW such that for every a E _ there exists k E D such that 
(.?, Xi) E ?4 for every i > k. Any such structure a is a limit element, in the sense 
of Cauchy, for the given net. Since StrW is not a Hausdorff space, a is not uniquely 
determined. 

A net {i5 }i ED of structures of type z is said to be a Cauchy net if and only if for 
every a c E there exists k E D such that for every i, j > k, (di, - j) E Ia 

An ultrafilter U over D is said to be free if and only if for each k E D, the 
set Yk = {i E D I i > k} is a member of U. Since the set {Yk}kcD has the 
finite intersection property, free ultrafilters (over directed sets without a maximum 
element) are a generalization of nonprincipal ultrafilters over co. 

LEMMA 2. Let, as above, {f&f 1,E, be a uniformity basefor the elementary topology 
of Strr. Let (D, <) be a directed set and {J'i}iED a Cauchy net. Then limit &R = 
limu Ui, for every free ultrafilter U over D. 

PROOF. The inclusion limit Jqj C limu _V immediately follows by definition. 
Conversely, let q E limu Hi; then for every a E L there exists X, E U such that 

for every i E Xa, (S., qJ) E ?4. Since {fti}iED is a Cauchy net, there exists k, E D 
such that for every i, j > ko, (iSk) E fi. For any a E let fi E _ be such 
that 2, o 2, C ?4, where the symbol o denotes composition. Let Xf and kgl be 
as above. Since U is free, Xf n Ykfl E U. Pick an arbitrary k E Xfl n Ykf; then 
we claim that for every i > k, (S., .ji) E ?,. As a matter of fact, from k E Xf 
we get (A -qk) E hi. From i > k > kg we now get (qk, i) E ?lf, whence 
(S., Hij) E 2?,l o 2?,l C ?4. This settles our claim, and concludes the proof. -H 

REMARK. The above lemma holds, mutatis mutandis, for any small logic. 

THEOREM. Elementary logic is Cauchy complete: for any type T and uniformity 
base {4 W ,E for the elementary topology of StrT, (e.g., the uniformity base Sqz), 
every Cauchy net of structures of type z converges. 
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CAUCHY COMPLETENESS IN ELEMENTARY LOGIC 1157 

PROOF. Let {?4i}iED be a Cauchy net of structures of type z, indexed by some 
directed set D. Choose an arbitrary free ultrafilter U over D. By Lemma 1 there 
exists R E lim u S. By Lemma 2, R is a limit of the given net. -H 

ACKNOWLEDGEMENT. We thank Walter A. Carnielli for his helpful remarks. 

ADDED IN PROOF. Xavier Caicedo (in his paper Continuous Operations on Spaces 
of Structures) independently proved the Cauchy completeness of the spaces StrT. 
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