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Multivariate curve resolution of pH gradient flow injection mixture analysis
with correction of the Schlieren effect
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Multivariate curve resolution using alternating least squares (MCR-ALS) was used to quantify
ascorbic (AA) and acetylsalicylic (ASA) acids in four pharmaceutical samples using a flow
injection analysis (FIA) system with pH gradient and a diode array (DAD) spectrometer as a
detector. Four different pharmaceutical drugs were analyzed, giving a data array of dimensions
51 × 291 × 61, corresponding respectively to number of samples, FIA times and spectral
wavelengths. MCR-ALS was applied to these large data sets using different constraints to have
optimal resolution and optimal quantitative estimations of the two analytes (AA and ASA). Since
both analytes give an acid–basic pair of species contributing to the UV recorded signal, at least
four components sholuld be proposed to model AA and ASA in synthetic mixture samples.
Moreover, one additional component was needed to resolve accurately the Schlieren effect and
another additional component was also needed to model the presence of possible interferences
(like caffeine) in the commercial drugs tablets, giving therefore a total number of 6 independent
components needed. The best quantification relative errors were around 2% compared to the
reference values obtained by HPLC and by the oxidation–reduction titrimetric method, for ASA
and AA respectively. In this work, the application of MCR-ALS allowed for the first time the full
resolution of the FIA diffusion profile due to the Schlieren effect as an independent signal
contribution, suggesting that the proposed MCR-ALS method allows for its accurate correction
in FIA-DAD systems.

1. Introduction

The application of flow injection analysis (FIA) to the develop-
ment of analytical methods has became a common procedure
due their known advantages of simplicity, feasibility, repro-
ducibility, low reagent consumption, high degree of automation
and sampling frequency.1 When the signal of a FIA system
is monitored by a spectrophotometer with a multiwavelength
diode array detection (DAD) or an infrared equipment with
a Fourier transform (FT-IR) configuration, a large amount of
data ordered in a data table or matrix is acquired in a simple and
fast way, as spectra can be obtained as a function of time.

The data acquired in these FIA systems can be used in the
study of several chemical systems. However, when a mixture
of compounds are present in the sample, interferences between
compounds can make the direct study or analysis difficult or
impossible. In addition, the occurrence of the Schlieren effect,
which is a consequence of the light refraction in regions where
refractive index gradients are present,2 and that it has been
already described in FIA systems by Krug et al.,3 constitutes
a source of variation that may influence the signal-to-noise
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ratio and the measurement repeatability, therefore producing
an increase of errors in the estimates of the concentration of the
analyte.

Whenever a data matrix is measured for each individual sam-
ple by FIA, second-order calibration methods can be applied,
which allow for the determination of the concentration of the
analyte in a mixture or complex sample, even in the presence
of unknown interferences. This is known in the chemometrics
literature as the second-order advantage.4 The multivariate curve
resolution-alternating least squares method (MCR-ALS) can be
used as a second-order calibration method, since it can provide
both qualitative and quantitative information about the analytes
in the sample, in the presence of unknown interferents. Moreover
MCR-ALS works adequately with analytes presenting several
equilibrium species where deviations of the expected bilinear
structure of the data do not occur if the proper number of
components selected for the analysis equals the real number
of species at equilibrium.5–10 Their successful application to FIA
systems was already proved in previous papers, such as in the
determination of mixtures of diprotic organic acids by FT-IR,5,6

in the quantitative determination of mixtures of amino acids,7,8

of nucleic acids9,10 and in the estimation of the pKa values11 of a
mixture of nucleic acids by UV absorption spectrophotometry.

In this article, the application of MCR-ALS for the simul-
taneous determination of acetylsalicylic (ASA) and ascorbic
acids (AA) in pharmaceutical tablet samples by FIA with pH
gradient and DAD in the UV region is described. Moreover the
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influence of the Schlieren effect is investigated and resolved in
the determination of these two analytes, and special attention
is paid to the constraints necessary to achieve an optimal
resolution among the acid and basic forms of the two analytes,
the Schlieren effect and the sample interferences. Four different
pharmaceutical drugs were analyzed, and their quantification
for the two analytes, ASA and AA, was compared with
appropriated reference methods using HPLC and an oxidation–
reduction titrimetric method.

2. Experimental

2.1. Reagents

Calibrated volumetric flashes and ultrapure water (Milli-Q,
Millipore) were used for all solutions. Acid carrier solution
(H3PO4, 0.01 mol L−1) was prepared from 85% (w/w) phos-
phoric acid solution (Synth) and the basic solution (Na2HPO4,
0.05 mol L−1) from a 99.0% sodium hydrogen phosphate (Fluka).
Standard solutions for calibration and validation were prepared
from analytical grade ascorbic acid (AA) 99.75% (Fluka),
acetylsalicylic acid (ASA) 99.9% (Synth) and caffeine 99.9%
(Synth).

2.2. Flow injection analysis system

Data acquisition was accomplished with a FIA system that
was composed of three solenoid valves (N-Research), a power
source, a peristaltic pump (Ismatec IPC), tygon tubes of various
inner diameters, polytetrafluoroetilene tubes of 0.80 mm inner
diameter, T-junctions and a mixture chamber of 0.950 mL. The
output of the system was connected to a flow cell with
10 mm of pathlength placed in a Hewlett-Packard HP8452
spectrophotometer equipped with a diode array detector (DAD)
with a resolution of 2 nm and adjusted to acquire one spectra
per second.

Samples were pumped continuously, and after mixing with
water and H3PO4 acid carrier, the concentration was approxi-
mately 11 times lower than in the original sample, with a flow
rate of 0.90 mL min−1. A pH gradient covering approximately
from pH 2.0 to pH 7.5 was obtained by injection of 160 lL of a
K2HPO4 basic solution into the system.

2.3. Synthethic mixtures for calibration and validation

Calibration and validation synthetic mixtures were prepared
daily from 400.0 mg L−1 solution of ASA, 240.0 mg L−1 of
AA and 50.0 mg L−1 of caffeine (used as interferent only in
synthetic validation mixtures). Due to the high decomposition
presented by AA, the solutions (of standards and samples) were
prepared in Ultrapure water saturated with nitrogen gas and
maintained at approximately 10 ◦C until their analysis, and
measured immediately after preparing.

The calibration samples were composed of 11 sample so-
lutions, formed by 9 synthetic mixture samples of ASA and
AA, following a composite central design, and by 2 additional
samples containing just one of the two analytes (although each
of these two analytes gives two acid–base species, both of them
are spectrophotometrically active, see later). Three independent
replicates of these 11 samples were analyzed, therefore giving

a total number of 33 samples for the calibration. The total
concentration ranges of the two analytes were established based
on their absorption in the ultraviolet region and varied between
0 and 136.4 mg L−1 for ASA and between 0 and 82.0 mg L−1 for
AA.

The validation samples were composed of 5 synthetic mixtures
of ASA and AA, in which caffeine was added as interference at a
constant concentration of 5.00 mg L−1. This concentration level
of caffeine was chosen based on its usual concentration present
in the commercial pharmaceutical drug named Doril R©. Three
replicates of them were also analyzed, giving a total number of
15 validation samples.

2.4. Pharmaceutical samples

Pharmaceutical products analyzed were: Aspirina R© +C (Bayer
S.A.), Melhoral R© C (DM Indústria Farmacêutica LTDA),
Doril R© (DM Indústria Farmacêutica LTDA) and Sandoz R©

(Novartis Biociências S.A.). The first two pharmaceutical
products contained the two analytes as active compounds and
other possibly excipient interferences. Doril R© contains ASA and
caffeine as active compounds, while Sandoz R© presents just AA
as active compound and possible excipient interferences.

For the preparation of these pharmaceutical samples, 10 units
of each of the four pharmaceutical products were mixed,
weighted and grounded. Then, a specific weight of these
pharmaceutical product mixtures was dissolved in 500.0 mL
volumetric flash and 50.00 mL of this solution were diluted
up to 100.00 mL in a volumetric flash. Additionally, with the
aim to perform a recovery study, ASA and/or AA were added
at three distinct levels to each one of the previously prepared
pharmaceutical sample solutions that contained ASA and/or
AA. In total, six different samples were prepared for each
pharmaceutical product (3 without and 3 with the addition
of these two analytes) and all these samples were analyzed in
triplicate in the FIA system, producing 18 matrices for each one
of the four pharmaceutical products investigated in this work
and a total number of 72 (18 × 4) pharmaceutical samples were
analyzed by FIA.

2.5. Reference methods

Reference methods used for validation of the MCR-ALS
determinations of ASA and AA by FIA were performed
by HPLC and iodimetric titration, respectively. The sample
preparation was the same as described in the previous section
and the determinations were performed in triplicate (for each
pharmaceutical product).

For ASA determination, a Shimadzo Prominence high perfor-
mance liquid chromatography equipped with an APD-M20A
diode array detector, a SL20A autosampler and a Microsorb
MV C18 5 l column (250 mm × 4.6 mm) from Varian
were used. Separations were carried out with 15 : 85 (v/v)
acetonitrile : water as mobile phase, the water was acidified to
pH 3.0 with phosphoric acid and a flow rate of 1.0 mL min −1

was used. Analytical curves were established with six standards
and the chromatograms acquired at 232 nm.

For AA determination, the standard method suggested by the
United States Pharmacopoeia12 was used, which consists of the

This journal is © The Royal Society of Chemistry 2008 Analyst, 2008, 133, 774–783 | 775

Pu
bl

is
he

d 
on

 1
3 

M
ar

ch
 2

00
8.

 D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
D

A
D

 E
ST

A
D

U
A

L
 D

E
 C

A
M

PI
N

A
S 

on
 3

1/
07

/2
01

3 
14

:2
2:

51
. 

View Article Online

http://dx.doi.org/10.1039/b719245b


titration of AA in an acidified solution with an iodine standard
solution and starch as the indicator.

3. Method

3.1. Data matrix arrangements

Every sample analyzed by the FIA-DAD gives a data matrix, D,
in which the successive DAD spectra acquired at different times
during the FIA process are arranged in the rows of this data
matrix. The columns of this data matrix describe the time
evolution of the absorbance measurements at the different
wavelengths. Therefore, the dimensions of each matrix are
291 times and 61 wavelengths, D(291,61). In Fig. 1a and 1b,
two different data matrix arrangements used in this work for
the simultaneous analysis of the different type of samples is
summarized. These new data matrix arrangements are called
column-wise data matrix augmentation. These new augmented
data matrices (Dcal and [Dcal;Dpred] in Fig. 1a and 1b, respectively)
will have the same number of columns (J wavelengths) than the
single sample data matrices, but they will have a larger number of
rows, equal to the number of individual data matrices included
in the simultaneous analysis (e.g. 33 matrices for calibration
set) times the number of FIA acquisition times considered in
the analysis of each individual sample or FIA run. Therefore
the dimensions of these new augmented data matrices will be
D(33 × 291,61) for calibration set, shown in Fig. 1a.

3.2. Multivariate curve resolution-alternating least squares
(MCR-ALS) method

MCR-ALS is used in this paper as a second-order resolution and
calibration method, since a data matrix per sample is analyzed
to provide both qualitative and quantitative information about
the analytes under study in the presence of uncalibrated
interferences.5–11,13 The main goal of the MCR-ALS method is
the mathematical resolution of the mixture of signals present in
the experimental data matrix D into the pure contributions of
all significant components and species, according to a bilinear
model expressed by the equation:13,14

D = CST + E (1)

where D (I , J) is the experimental data matrix that contains
absorbance measurements at J (61) wavelengths during the
I (291) discrete times that the flow analysis process lasts, C
is the (I , NC) matrix with the concentration profiles of the
NC significant components, contributions or species, ST is
the (J, NC) transpose matrix of the pure spectra profiles of
these components, and E is the (I , J) matrix of the residuals
not explained by the modeled components. For the successful
application of MCR-ALS, the following are required: (1) an
estimation of the number of significant compounds (NC); (2) an
initial estimation of either the concentration or spectral profiles
of these components; (3) the selection of appropriate constraints
for the ALS minimization; (4) the ALS optimization itself;
and (5) the extraction and interpretation of the qualitative and
quantitative information present from the resolved profiles in C
and S matrices.5,6,14 MCR-ALS has been discussed in previous
references,5–14 thus only a brief description of how these steps
were performed in this work is presented here.

Fig. 1 MCR-ALS analysis of: (a) the calibration column-wise aug-
mented data matrix Dcal composed of 33 synthetic standard calibration
samples and (b) the column-wise augmented data matrix [Dcal;Dpred] com-
posed of the calibration augmented data matrix (Dcal) and the prediction
(validation or pharmaceutical samples) column-wise augmented data
matrix Dpred composed of 18 prediction samples. Ccal and Cpred, are the
corresponding column-wise augmented concentration profiles matrices,
ST

cal and ST
pred the spectra profiles matrices, and Ecal and Epred are the

column-wise augmented errors matrices and the subscripts “cal” and
“pred” mean calibration and prediction (either from validation or from
pharmaceutical samples), respectively. Below each figure, the bilinear
model equation applied to each case is given.

3.2.1. Determination of the number of components (NC)

Essentially, the number of components for MCR-ALS analysis
can be initially estimated in two ways: from the previous
knowledge of the investigated system or from the results
obtained by singular value decomposition (SVD) of the data
matrix of the investigated system. In the first approach, the
number of components is estimated from the number of chemical
species expected to be present in the sample. For instance in this
work, for the simultaneous determination of the mixtures of
ASA and AA, a four component model could be proposed,
since each analyte produces two species in their acid–base
equilibrium. However, at least two additional components would
be necessary, since one additional component will be needed
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to model the Schlieren effect (in both standards and samples)
and another additional component will be needed to model the
presence of possible interferences when a pharmaceutical sample
is analyzed. SVD analysis can confirm this preliminary knowl-
edge of the system unless rank deficiencies10,15 and additional
interferents are present. It is assumed that in the absence of rank
deficiency problems, significant components (either physical or
chemical) should give rise to larger singular values than those
related to data noise.

3.2.2. Initial estimates

Initial estimates for either the concentration or spectral modes
for the previously selected number of components for the
MCR-ALS analysis can be obtained by evolving factor analysis
(EFA)16 from methods based on the detection of purest variables
in the data set17 or from evolutionary algorithms (EA).18–20 In the
present work initial estimates were obtained from the spectral
profiles estimated by the purest variables detection approach17

3.2.3. ALS optimization

The ALS algorithm starts the optimization using either eqn
(2) or (3) depending on whether the initial estimates for the
concentration C = Cinic, or for spectral profiles ST = ST

inic, were
used.13,14

ST = C+D* (2)

C = D*(ST)+ (3)

where D* is the data matrix estimated with the selected number
of components and “+” indicates the pseudoinverse operation.21

The optimization procedure iterates the two steps desctibed
by eqn (2) and (3) using the previously estimated values in
an alternating least squares way under constraints (see below)
trying to minimize the residual matrix E until convergence.
In MCR-ALS, the convergence criterion is reached when the
relative change in the lack of fit between two consecutive
iterations is lower than a threshold value. The lack of fit (LOF)
is defined as13,14

(4)

where di,j is the ith time and jth wavelength experimental data
value in matrix D, is its counterpart data value estimated
by ALS, and ei,j is its associated residual. If the ALS does not
converge, a maximum number of iterations criterion can be used
as a stop criterion. In this work 0.1% and 50 iterations were
used as a LOF threshold value and as a maximum number
of iterations convergence criteria, respectively. These values
are usually employed in many applications of MCR-ALS to
spectroscopic data (see previous work5–11) and they have been
shown to be adequate to provide an appropriate fit to the
experimental data and residual matrices with intensities close
to the noise level.

Fig. 1a illustrates the extension of the MCR bilinear model
for the simultaneous analysis of a set of calibration samples
giving data matrices numbered k = 1, 2, . . .33, arranged in
the augmented column-wise data matrix Dcal(33 × I ,J). Results

of bilinear MCR-ALS decomposition produces the augmented
concentration matrix Ccal((33 × I ,NC), the pure spectra matrix
ST

cal(NC,J) and the residuals matrix Ecal. Fig. 1b illustrates the
same extension of the MCR bilinear model for the simultaneous
analysis of calibration Dcal, and validation or prediction phar-
maceutical drug samples Dpred. Results of bilinear MCR-ALS
decomposition now produces the new column-wise augmented
concentration matrix [Ccal;Cpred](51 × I ,J), the new spectra
matrix ST

pred(NC,J) (which contains some common spectra with
ST

cal, see below) and the new residuals matrix [Ecal;Epred]. In both
cases, a column-wise augmented data matrix (Dcal in Fig. 1a and
[Dcal;Dpred] in Fig. 1b) is set up and a column-wise augmented
concentration matrix (Ccal in Fig. 1a and [Ccal;Cpred] in Fig. 1b) are
obtained where the concentration profiles of each of the resolved
components in each sample data matrix are estimated, as well as
the matrix of pure spectra profiles of these resolved components,
ST

cal in Fig. 1a and ST
pred in Fig. 1b. It can be observed that

in the later case, and different to the concentration matrix,
only one pure spectra matrix is obtained, in which every row
defines a single common spectrum profile for every component
in the different individual data matrices simultaneously analyzed
in the augmented data matrix. Additionally the corresponding
unmodelled parts of experimental data are in matrices Ecal and
[Ecal;Epred] respectively, which can be used to evaluate the lack of
fit and explained variance parameters for different numbers of
components.

3.2.4. Constraints

During the ALS optimization, to have physically meaningful
solutions and to minimize rotation ambiguities,13,14 the iterative
calculation of C and ST matrices (by eqn (2) and (3)) is
subjected to constraints, which can be imposed based either
on previous chemical knowledge of the system or on natural
restrictions of experimental systems like non-negativity. In
this work non-negativity constraints were applied in all cases
for both concentration and spectra profiles. Also to avoid
scale indeterminacies during ALS optimization, spectra of the
resolved components were normalized to norm equal to one for
all of them. This constraint does not change the fit and only
fixes the scale and avoids computation instabilities. However
quantitative interpretation of results should take into account
this fact, especially if one data matrix is analyzed. See ref. 5,
6, 13 and 14 for a more detailed description of constraints in
MCR-ALS.

When the data set to be analyzed is an augmented data matrix
including more than one experiment (see Fig. 1), additional
constraints can be included: (1) The pure spectra of the
common components (i.e. chemical species), present in different
standards or samples are equal. As has already been shown
(Fig. 1a and 1b) this constraint is already implicit in the bilinear
model of the column-wise augmented data matrices; (2) if an
analyte, interferent or component is known to be absent in one
or more of the individual data matrices simultaneously analyzed
and included in the augmented data matrix, this component
is considered not to be present during the ALS optimization
and its concentration profile is set to be equal to zero. This
is especially useful in these cases where some interferents or
new components are only present in some of the simultaneously
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analyzed data matrices and it is achieved algorithmically in the
MCR-ALS program;22,23 (3) the concentration profiles (their
shapes) of the same component or factor in the different
individual data matrices included in the augmented data matrix
can be forced to be invariant, to have exactly the same shape
in all of them (not their intensity or scale, which a change in
the different individual concentration matrices). The application
of this constraint is closely related with the extension of the
bilinear model to the trilinear model for the analysis of three-way
data5,6,13,14 Due to the high reproducibility of the FIA systems
and to the nature of the acid–base equilibrium systems under
study in this work, the trilinearity constraint is expected to be
fulfilled rather well by the experimental data of this work. (4) A
final constraint has been used in this work which is especially
useful for calibration purposes and quantitative estimations (see
below). This constraint is called the ‘fixing calibration profiles’
constraint and implies that a particular concentration profile or
a part of it is fixed to previously known values during the ALS
optimizations.

3.3. Extraction and interpretation of quantitative information

After MCR-ALS analysis, relative quantitative information can
be directly estimated from the resolved concentration profiles
obtained when a set of data matrices from calibration and
unknown (prediction) samples are simultaneously analyzed by
MCR-ALS (Fig. 1b). Once the concentration profile of a par-
ticular component has been properly resolved, the calibration
procedure for its quantitative determination can be directly
performed in a similar way to the classical univariate way, i.e.
based on the linear regression between the known concentration
of a set of calibration standards of the analyte and the peak areas
or heights of their corresponding concentration profiles. After
this calibration step, the concentration of the same analyte in
unknown samples is predicted by inverse regression of either
its peak area or height in the calibration equation previously
obtained for the calibration samples. In this work, for this
particular application, the concentration of both analytes has
been better estimated (more robust) using peak heights of the
concentration profiles of the acidic species of the analytes.

Since this calibration procedure used to obtain quantitative
information after MCR-ALS analysis is essentially univariate
(peak heights of the resolved concentration profiles versus
concentration of calibration standards), well established fig-
ures of merit for calibration procedures were used.24 In the
chemometrics literature a commonly used parameter used for
the quantitative agreement between reference and estimated
concentration values is based on root mean square error of
prediction (RMSEP), defined as:

(5)

where yref,i is the reference concentration value for each of the
N samples. Apart from this parameter, it is also good to have a
relative measure of the error of prediction (REP) independent

of the units, which can be obtained as:25

(6)

To achieve the best resolution and quantification of the
analytes in the analysis of the validation samples and of the
commercial drugs, MCR-ALS was executed repeatedly using
three different strategies (quantification results of analytes using
these three strategies will be compared in Table 1 and commented
on in the Results section):

1. In a first strategy, only non-negativity and spectra normal-
ization constraints were applied directly as it is shown in Fig. 1b,
using the augmented data matrix including both calibration and
prediction (validation or pharmaceutical samples) data sets.

2. In a second strategy, non-negativity and spectra normal-
ization constraints were applied together with the trilinearity
constraint (see ref. 12 and 13).

3. In a third strategy, after achieving the optimal resolution
of the calibration data set as in Fig. 1a, in the sense that the
spectra and concentration profiles of the analytes were correctly
resolved, the matrix of calibration samples (Dcal) was further
augmented with the matrix of prediction samples (Dpred) to give
the new augmented data matrix [Dcal;Dpred] and MCR-ALS was
executed again, as shown in Fig. 1b. When prediction samples
(including validation samples or pharmaceutical tablets) were
included in the analysis, the presence of unknown interferents
not present in the calibration samples disturbed the optimal
resolution of the different components previously achieved
for the calibration samples, producing poorer qualitative and
quantitative results. In order to prevent this inaccuracy error, the
best concentration and spectral profiles (Ccal and Scal) previously
obtained for the analytes in the analysis of the calibration
samples were fixed during the MCR-ALS resolution of the
new augmented data matrix which now includes validation or
pharmaceutical prediction samples. According to this strategy,
only concentration profiles of the components in the prediction
samples (Cpred) and spectra of new interferences were allowed
to change during the MCR-ALS optimization. This strategy
is called ‘fixing calibration profiles’ constraint in this work.
The implementation of this constraint was achieved by using
appropriate ‘masking’ matrices C and ST, that update at each
ALS iteration the selected matrix elements of C and ST matrices
to be equal to the fixed values obtained during the calibration
process.

3.4. Software

All the calculations were performed in a MATLAB environment
(version 7.0) and the MCR-ALS method was already described
in previous references,10,11,13,14 implemented and downloaded as
a toolbox in a set of MATLAB functions available on the
Internet22,23

4. Results and discussion

4.1. MCR-ALS analysis of FIA-DAD synthetic calibration
mixtures of ASA and AA

In Fig. 2 a 3D-plot of the FIA analysis of a standard calibration
sample containing 80 and 47 mg L−1 of ASA and AA,
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Fig. 2 3D plot of the pH gradient FIA-DAD response of a standard
calibration sample containing 80 and 47 mg L−1 of ASA and AA
respectively.

Table 1 MCR-ALS figures of merit for the results obtained in the
analysis of calibration, validation and pharmaceutical samples using
different optimization strategies

RMSEPa REPa

Situation LOF expa ASA AA ASA AA

Calibrationb 0.8291 0.82 0.31 1.18 0.64
Calibrationb ,c 1.9481 0.57 0.37 0.73 0.67
Validationb 0.7840 1.95 0.79 3.67 2.03
Validationb ,c 2.2926 1.71 0.36 2.16 1.04
Validationb ,c,d 2.1486 1.00 0.38 1.10 1.11
Melhoralb 0.7323 4.15 1.63 4.98 2.77
Melhoralb ,c 2.7509 6.69 2.10 8.08 3.63
Melhoralb ,c,d 2.5287 6.96 1.91 8.39 3.26
Aspirinab 0.7583 1.10 0.58 1.32 1.09
Aspirinab ,c 2.8773 1.61 1.01 1.99 1.75
Aspirinab ,c,d 2.8312 1.16 0.92 1.41 1.62
Dorilb 0.8573 5.34 — 5.80 —
Dorilb ,c 1.8468 0.41 — 0.41 —
Dorilb ,c,d 1.7547 1.47 — 1.60 —
Sandozb 1.2352 — 1.11 — 2.16
Sandozb ,c 2.7816 — 0.91 — 1.76
Sandozb ,c,d 3.0376 — 1.48 — 2.46

a Figures of merit: LOF—lack of fit of experimental data (see eqn
(4)); RMSEP/mg L−1—root mean square error in prediction for the
MCR-ALS resolved acidic species concentration profile (see eqn (5));
REP (%)—relative error in prediction in percentage for the MCR-ALS
resolved acidic species concentration profile (see eqn (6)). b Constraint
used for MCR-ALS resolution are non-negativity, trilinearity (c) and
fixing calibration profile (d).

respectively, is given. The region where the pH gradient occurs
can be clearly distinguished between approximately 100 and
150 s. Under good mixing conditions, with a large dispersion
of the two analytes (achieved when a mixing chamber is used
in the FIA system) and with an injected sample that does not
present a high concentration difference in relation to the carrier
stream (as in the present work), the Schlieren effect should
give a smooth and relatively low signal.2 Therefore for this
particular FIA system the Schlieren effect was not expected
to have a large contribution to the total signal. To verify
this and resolve the analyte mixtures, MCR-ALS was applied
first to calibration samples composed of the augmented data
matrix containing 33 individual data matrices corresponding to

3 replicates of each of the 11 different analyte compositions. Five
components, two for each analyte (two acid–base equilibrium
species) and one additional component to model the Schlieren
effect were considered. Initial estimates for the spectral profiles
were obtained from the purest FIA times,17 i.e. spectra at
those diffusion FIA times where the different components
predominate. In Table 1 (first two rows and second column),
results of lack of fit for the MCR-ALS analysis of the FIA-DAD
calibration data set in two different cases are given. A first case
(first row) is when only non-negativity and spectra normalization
constraints were applied and a second case (second row) is when
apart from them, also the trilinearity constraint was applied.
Lack of fit values (see eqn (4)) were respectively as low as
0.89% and 1.95% (R2 of explained variances were over 99.9%),
which confirms on one hand that the system could be accurately
described by the model with 5 components and on the other
hand that the system deviates very little from trilinearity. The
presence of the fifth species corresponding to the Schlieren
effect improved the fit from 2.30% (4 components, not shown in
Table 1) to 1.95% (5 components). Although this is only a small
improvement, the fact that the shape of the resolved profile
for the Schlieren effect (Fig. 3a) was also good, confirms the
reliability of the obtained results. This profile shows clearly that
the presence of the Schlieren effect is in the gradient zone of
each analyzed sample—a time always between 50 and 100 s.
It is important to remark here the good resolution of this
profile, in spite of its rather low contribution and in spite of
its strong overlap with the other four concentrations profiles of
the two acid–base forms of the two analytes in the FIA gradient
region.

Also in Fig. 3a, the MCR-ALS resolved FIA concentration
profiles of the acid and basic species of the two analytes, ASA
and AA, are given. The shapes of these resolved concentration
profiles are in good agreement with their expected behaviour
according to the pH gradient of the FIA system, especially in
the transition zones where the composition of the acid–base
system changes drastically. In contrast, the absolute heights
attained for these concentration profiles are dependent on the
spectra normalization constraint used during the MCR-ALS
analysis (see Method section) and they do not give directly
their true relative concentration. Quantitative information will
be derived from the FIA run to run changes when standards
with known concentration are simultaneously analyzed (see
later in section 4.4). In Fig. 3b the estimated spectra profiles
for the two acid–base forms of the two analytes and for
the Schlieren effect are shown. The spectrum profile of the
Schlieren effect presents a region between 310 and 330 nm where
the other components of the system did not absorb, helping
the correct resolution of its concentration (diffusion) profile.
Another important reason why this resolution was achieved in
spite of its intrinsic difficulty, was because of the large number of
data matrices simultaneously analyzed (matrix augmentation in
Fig. 1a) and of the large number of calibration samples and
replicates used in the MCR-ALS analysis (see Experimental
section). In Fig. 3c relative heights at the maximum of the MCR-
ALS resolved concentration profiles are plotted for both the acid
and basic species of the analytes and for the Schlieren effect in
the calibration samples data set. Little variation is observed for
the heights of the Schlieren in all calibration samples and a much
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Fig. 3 MCR-ALS estimated component profiles in the analysis of calibration samples (Dcal data matrix): (a) Concentration profiles Ccal; (b) spectra
profiles ST

cal; (c) heights at the maximum of the MCR-ALS resolved concentration profiles for acid and basic species of the analytes and for the
Schlieren effect in the calibration samples. ASA (dashed), AA (solid), Schlieren effect (thick solid line), basic species (●).

larger variation is observed for the concentration profiles of the
acid and basic species of the analytes in agreement with the
variations of the total analyte concentrations stipulated by the
experimental design conditions (see Experimental section). It
can be observed that the acid–base pair profiles of each analyte
follow exactly the same pH pattern for all FIA runs as it should
be since both were linked by the acid–base reaction and they
both should reach their maximum concentration at the same
pH of the FIA gradient system. Quantitative estimations are
further discussed later in section 4.4.

4.2. MCR-ALS analysis of FIA-DAD synthetic validation
mixtures of ASA and AA

For validation analysis, the new column-wise augmented data
matrix was formed using individual data matrices coming from
both calibration and validation data sets. This augmented data
matrix was composed of 48 matrices, where 33 were from the
calibration set and 15 were the new ones from the validation set
(see Experimental section). The procedures and constraints used
in their analysis by MCR-ALS were the same as the one given
below for the commercial pharmaceutical drugs. Due to the ad-
ditional presence of caffeine as interferent, six components were
considered and resolved by MCR-ALS. As shown in Table 1,
using the three different strategies previously described in the
Method section, lack of fit values for the six components models
were in all cases good and within the expected experimental
noise level for UV-VIS absorption spectrophotometric measures
(around 1–3%). Quantitative results of validation samples are
commented on later in section 4.4.

4.3. MCR-ALS analysis of FIA-DAD commercial
pharmaceutical drugs

For the analysis of each pharmaceutical compound, a new aug-
mented data matrix was formed using individual data matrices
coming both from calibration samples and from pharmaceutical
samples as shown in Fig. 1b. This new augmented data matrix
was composed of a total number of 51 matrices, where the
first 33 matrices were the calibration samples (mixtures of
the two analytes at 11 compositions × 3 replicates) and the
other 18 matrices were the tablet drug samples (6 tablets ×
3 replicates) of each of the four analyzed commercial drugs.
Six components were used in this case to model these systems,
where now the extra sixth component was added to model some
possible interferences present in the tablets. As explained before,
in calibration samples this 6th component (interferent) was not
present. In Doril R© and Sandoz R© drugs, AA or ASA were not
present respectively. When a particular component is known to
be absent in a data matrix, its concentration is kept to zero
during the ALS optimization. Initial estimates of the spectral
profiles for the protonated (ASA and AA) and unprotonated
(ASA− and AA−) species and for the Schlieren effect were taken
from the optimal solution obtained in the previous MCR-ALS
analysis of the calibration data set.

In Fig. 4a–c MCR-ALS resolved concentration profiles for
one of the samples of the pharmaceutical drug Melhoral R©,
using different constraints (non-negativity, trilinearity and fixing
calibration profiles) are shown. It is observed in Fig. 4a that
the shapes of the resolved concentration profiles present regular
pulses (which are more easily visualized in the ascent of the basic
species concentration profile), which can be attributed to the
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Fig. 4 MCR-ALS resolved concentration profiles for one of the samples of the pharmaceutical drug Melhoral R©, using three different optimization
strategies: (a) spectra normalization and non-negativity constraints; (b) spectra normalization, non-negativity and trilinearity constraints; (c) spectra
normalization, non-negativity, trilinearity and fixing calibration profiles contraints. ASA (dashed), AA (solid), Schlieren effect (thick solid line),
interferent (thick dashed line), basic species (●).

peristaltic pump pulses. By contrast, these regular pulses were
filtered in the profiles resolved by MCR-ALS when trilinearity
and fixing calibration profiles constraints were applied. This
explains why the lack of fit increased somewhat (see values in
first column of Table 1 for the analysis of this pharmaceutical
compound) when these constraints were applied. When we
compare the concentration profiles resolved by MCR-ALS
under different types of constraint (in Fig. 4a, 4b and 4c,
up to down), it is possible to see that the concentration of
the basic species of ASA decreases while the concentration of
interference increases at the same time. So, the best resolution is
observed when the fixing calibration profile constraint (Fig. 4c)
is applied, especially for the concentration profile of the basic
species of ASA which is expected to be approximately zero before
the pH gradient. The same was observed for all tablets that
contained ASA. Also the concentration profile resolved for the
interferent is practically constant along the FIA experiment,
not changing its concentration as a consequence of the pH
gradient.

Fig. 5a shows the comparison of spectra profiles obtained
experimentally from synthetic samples (containing only one of
the acid–base pairs of ASA, AA and caffeine) and of spectra
profiles recovered by MCR-ALS in the simultaneous analysis
of calibration and pharmaceutical samples for Doril R© drug,
using the constraints of non-negativity, trilinearity and fixing
calibration profiles, as explained above. MCR-ALS resolved
spectrum for caffeine was obtained as the interference spectrum
profile in the Doril R© drug, when the three constraints (non-
negativity, trilinearity and fixing calibration profiles) were used.
All MCR-ALS resolved spectra were in very good agreement

with experimental spectra for both acid and basic species
of the two analytes and for caffeine. Finally, Fig. 5b shows
the concentration profiles obtained for the Doril R© drug. For
clearness, just the basic species of ASA (ASA−), Schlieren effect
and the interferent caffeine has been plotted in the figure.
In this plot, it can be clearly noticed that it is only between
pharmaceutical samples 34 to 51 that the caffeine concentration
profile had a constant signal over time, which is in agreement
with what was expected since caffeine was only present at
constant concentration in these drugs and its concentration
profile should not change with the FIA pH gradient.

4.4. Quantification results

Table 1 (columns 3, 4, 5 and 6) summarizes the quantitative
results obtained by MCR-ALS for the calibration and validation
sets, and for the four pharmaceutical products, with the different
constraints discussed above. The results shown were obtained
considering the maximum height achieved for the acid species
concentration profile of both ASA and AA, which gave the
best RMSEP and REP values (when they were compared
with the concentrations obtained independently by reference
methods, see Experimental section). For calibration synthetic
mixtures, no significant differences were observed in RMSEP
and REP values when non-negativity and trilinearity constraints
were applied (two first rows in Table 1). REP% values did
not increase significantly with values of 0.73% and 0.67%
(with trilinearity constraint), and of 1.18% and 0.64% (without
trilinearity constraint) for five components, for ASA and AA
respectively. This proves that the system fulfills rather well the
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Fig. 5 (a) Comparison of spectra profiles obtained experimentally (dashed) with spectra profiles (solid) recovered by MCR-ALS in the simultaneous
analysis of calibration and pharmaceutical samples for the Doril R© drug, using the constraints of non-negativity, trilinearity and fixing calibration
profiles. (b) MCR-ALS resolved concentration profiles in the simultaneous analysis of calibration and prediction samples [Dcal;Dpred]: basic ASA−

species (solid), Schlieren effect (thick solid line) and caffeine (dashed).

trilinear model (the shape and FIA-pH gradient position of the
concentration profiles of the different components of the system
are practically the same for all the simultaneously analyzed
calibration samples).

For the validation synthetic mixture samples the best results
were obtained when fixing calibration profiles constraint was
applied (REP% values of 1.10% and 1.11% for ASA and AA
respectively in the 3rd and 4th row of Table 1). MCR-ALS
recovered spectra and concentration profiles for caffeine in these
samples were also good and in good agreement with those
obtained for the interferent in the Doril R© drug (already shown
in Fig. 5).

In the case of pharmaceutical tablet samples (rows 6 to 17
in Table 1), in almost all cases results showed some increase
on prediction errors when trilinearity or both trilinearity and
fixing calibration profile constraints were imposed on the model.
This increase can be attributed to some changes in the shape
and/or position of the concentration profiles, which could be
interpreted as a loss of the trilinearity condition. However, based
on a F-test with 18 and 18 degrees of freedom, performed with
RMSEP values, differences in average prediction errors using the
different constraints presented in Table 1 were not significant and
therefore, results were not totally conclusive yet. Results for LOF
(2nd column in Table 1), showed also a small increase when more
constraints were imposed on the model, which can be partially
attributed to the elimination of the pulses from peristaltic pumps
and to small random variations of time/pH relations in the
gradient. However, since these differences were not significant
in the predicted concentration values, and since trilinearity

and fixing calibration profile constraints gave better shapes
of the MCR-ALS resolved concentration profiles estimated
independently for each of the investigated chemical system, this
approach was the one finally considered to be the best one.
Except for ASA in the Melhoral R© drug, in all cases REP% values
were below 5%. In the case of Melhoral R©, REP% values for ASA
increased up to 8.4% (when trilinearity and fixing concentration
profiles were applied). A possible explanation for that is that
Melhoral is a big effervescent tablet and has flavoring and
coloring. It is possible then that these poorer results are due
to the presence of an additional unmodelled interference with
ASA, since for AA good results were obtained. However, no
further investigation was carried out to correct this possible
inaccuracy.

5. Conclusions

MCR-ALS with the fixing calibration profile constraint was
proven to provide good resolutions of the pH gradient FIA
systems used in this work for the determination of AA and ASA
in pharmaceutical tablets. Quantitative results were in good
agreement with independent reference methods. REP errors
were approximately 8% for Melhoral R© with ASA, and lower than
5% for the other three pharmaceutical products, Aspirina R© +C,
Doril R© and Sandoz R©, for both ASA and AA, which confirms
that the proposed pH gradient FIA system combined with
MCR-ALS can be used as a good alternative method for the
simultaneous determination of both analytes in pharmaceutical
samples.
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In this particular application, due to good mixing conditions,
large dispersion properties and compatibility among concen-
trations of reagents and analytes in the sample, the Schlieren
effect only represented a small part of the total signal. However,
even representing just a little part of the FIA signal and being
highly overlapped with the other four concentration profiles
of the acid–basic pairs of ASA and AA, the proposed MCR-
ALS method could resolve adequately the contribution of the
Schlieren effect as an independent component. This suggests
that MCR-ALS can be a good and effective way to model
the contribution of this effect in general and that it allows
for the correction of this physical phenomenon in the FIA-
DAD systems with pH gradient, like the one studied in this
work.
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