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We consider here the decay of unstable particles in geodesic circular motion around compact objects.

For the neutron, in particular, strong and weak decay are calculated by means of a semiclassical approach.

Noticeable effects are expected to occur as one approaches the photonic circular orbit of realistic black

holes. We argue that, in such a limit, the quasithermal spectrum inherent to extremely relativistic

observers in circular motion plays a role similar to the Unruh radiation for uniformly accelerated

observers.
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I. INTRODUCTION

The possible decay of inertially stable particles due to
strong gravitational fields has been considered recently. In
particular, the proton decay, by weak and strong interac-
tions, in uniformly accelerated trajectories [1–3] and in
circular motion around compact objects [4], has been
considered in great detail. The astrophysical implications
of these results are now under investigation. The possible
decay of accelerated protons, however, is not a new issue. It
can be traced back to the works of Ginzburg and Zharkov
[5] in the sixties, where processes of the type pþ!an0�þ
were considered. At the same time, Zharkov [6] investi-
gated the weak and strong decay of protons accelerated by
an external electromagnetic field. (See [7] for a review.)
Clearly, none of these processes would be allowed in the
absence of external forces. We notice, however, that there
are subtle differences between processes involving un-
charged particles where the accelerations have gravita-
tional and electromagnetic origins, see [4] for further
details.

In this paper, we consider the decay and the lifetime of
unstable particles in geodesic circular motion around
spherically symmetrical compact objects. We evaluate, in
particular, decay rates and lifetime for neutrons in relativ-
istic circular motion according to the semiclassical ap-
proach introduced in [4]. Both the weak

n0!a pþe� ��e (1)

and the (inertially forbidden) strong

n0!a pþ�� (2)

channels are considered. Our results are compared to sev-
eral ones obtained previously in the literature for the
related processes pþ!an0eþ�e and pþ!an0�þ. As we
will see, for realistic black holes, noticeable effects are
expected to occur for circular geodesics close to the pho-

tonic orbit r ¼ 3GM=rc2. Observers in these (unstable)
circular orbits are necessarily in extremely relativistic
motion (v2 � c2), and it is well known that they indeed
realize the inertial vacuum as a quasithermal distribution of
particles characterized by a temperature T in the range
[8,9]

@a

4
ffiffiffi
3

p
c
� kT � @a

2
ffiffiffi
3

p
c
; (3)

where a stands for the effective Minkowskian centripetal
acceleration for relativistic circular orbits. Our results sug-
gest that the temperature (3) have in the present case the
same central role played by Unruh temperature [10] in the
analysis of uniformly accelerated particles as seen from
Rindler observers [3]. (See [9] for a recent review.) Similar
conclusions hold also for other unstable particles.

II. CIRCULAR GEODESICS AROUND COMPACT
OBJECTS

The line element corresponding to a spherically sym-
metrical object of mass M is given by the Schwarzschild
metric

ds2 ¼ �ð1� 2M=rÞdt2 þ ð1� 2M=rÞ�1dr2 þ r2d�2;

(4)

where d�2 ¼ d�2 þ sin�d�2. Natural unities are adopted
hereafter. In this coordinate system [11], a particle of mass
m in a circular timelike geodesic at radius r on the equa-
torial plane have energy per mass ratio given by

E =m ¼ ð1� 2M=rÞ _t ¼ ð1� 2M=rÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=r

p
; (5)

with the dot standing for s-derivative. Its angular momen-

tum L ¼ r2 _� can be calculated directly from the definition
of a timelike circular geodesic parametrized by the proper
time s, leading finally to the following expression for the
worldline of a timelike circular equatorial geodesic in
Schwarzschild coordinates
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xaðsÞ ¼
�

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3M=r

p ; r; �=2; s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=r3

1� 3M=r

s �
: (6)

Clearly, since the trajectory (6) is a geodesic, its accelera-
tion ab ¼ _xcrc _x

b calculated with respect to the metric (4)
vanishes identically. However, we will proceed here in a
different manner. In the next section, we will consider
quantum effects as realized by observers with circular
trajectories as (6) in the Minkowski spacetime. An ob-
server following the worldline (6) in Minkowski spacetime
experiences a centripetal acceleration

a ¼
ffiffiffiffiffiffiffiffiffiffi
aba

b
q

¼ M=r2

1� 3M=r
: (7)

On the other hand, in Minkowski spacetime the worldline
of a particle in a uniform circular motion on the equatorial
plane with angular velocity � is given by

xað~sÞ ¼ ðt; r; �=2;�tÞ; (8)

from which one has immediately _xa ¼ �ð1; 0; 0;�Þ and

a ¼ ffiffiffiffiffiffiffiffiffiffi
aba

b
p ¼ r�2�2, where the constant � ¼ dt=d~s ¼

ð1� r2�2Þ�1=2 corresponds to the Lorentz factor. The
angular velocity � is to be determined by imposing the
centripetal acceleration (7) for the trajectory (8), yielding

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M=r3

1� 2M=r

s
(9)

and the following Lorentz factor

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

1� 3M=r

s
: (10)

The treatment of the quantum effects realized by ob-
servers in the circular geodesic (6) of Schwarzchild space-
time by means of an effective Minkowskian circular
trajectory is, of course, only an approximation. It is shown
in [12], nevertheless, that the results obtained in a semi-
classical approach assuming a Schwarzschild spacetime
and a flat spacetime with external ‘‘Newtonian’’ attraction
forces such that (7) and (9) hold differ by no more than
30%, if we restrict ourselves to the circular orbits with r >
3M. Since Schwarzschild spacetime is asymptotically flat,
it is indeed natural that the emitted powers calculated in
Minkowski and Schwarzschild spacetime agree when one
considers circular motions with large r. In fact, as it is
shown in [4,12], the power emitted by a particle in circular
motion with radius r in Minkowski spacetime with
angular velocity (9) is very close to that one emitted by a
particle in a circular geodesic with the same radius r in a
Schwarzschild spacetime, provided that r > 6M. This is in
agreement with the well-known fact that processes involv-
ing wavelengths with the same order of magnitude of the
Schwarzschild radius need necessarily to be analyzed us-
ing fully curved spacetime calculations. Moreover, the

acceleration defined in (7) has the additional desirable
feature of being divergent at r ¼ 3M, in accordance with
previous works on geodesic emission [13], which estab-
lished that near the photonic orbit the emitted power di-
verges. The angular velocity (9) mimics the main
qualitative properties of the real Schwarzschild circular
geodesics, justifying our assumption of circular trajectories
in a flat spacetime with centripetal acceleration (7).

III. EMISSION RATES AND LIFETIMES

The semiclassical current formalism employed in [4] to
the proton decay case consists basically in considering the
proton and the neutron as distinct energy eigenstates jpi
and jni of a two-level system such that Ĥ0jpi ¼ mpjpi and
Ĥ0jni ¼ mnjni, where Ĥ0 is the proper Hamiltonian of the
system, mp and mn are, respectively, the proton and neu-

tron masses. The weak channel (1) is implemented by
considering a vector current associated to the two-level
system coupled to a quantized fermionic field (correspond-
ing to the electron e� and to the antineutrino ��e) by means
of the effective coupling constant Gw, which is about the
order of the Fermi coupling constant GF � 1:166�
10�5 GeV�2, whereas the strong channel (2) involves a
scalar current coupled to a quantized bosonic field (the
pion ��) by means of the effective coupling constant Gs,
of the order of the pion-nucleon-nucleon strong coupling
g2�NN=4� � 14 [14]. The currents are then specialized to
the case of uniform circular trajectories with radius r and
angular velocity � (and centripetal acceleration a ¼
r�2�2) in Minkowski spacetime.
The proper decay rates corresponding to the weak (1)

and to the strong (2) channels are given, respectively, by

�w
n!p ¼ �G2a5

8�4

I
d�ei�

AðbcÞZbZc

ðZaZ
aÞ2

�
�

16

�4ðZaZ
aÞ2 þ 4

�2

�2ZaZ
a

�
(11)

and

�s
n!p ¼ �G2a

4�2

I
d�

ei�

�2ZaZ
a
; (12)

where �2 ¼ ðm2
e þm2

�Þ=a2, me, and m� being, respec-
tively, the electron and neutrino masses, and � ¼ ðmn �
mpÞ=a. We assume here m� ¼ 0. The rates (11) and (12)

are obtained, respectively, from Eqs. (3.31) and (3.16)
of [4], where all the relevant details can be found. In
particular, we have Za ¼ ð��þ i	; 0;�ð2ra=�Þ�
sinð���=2aÞ; 0Þ, where 0< 	 � 1 is a regulator. For
the relativistic case (� � 1), the terms involved in the
integrations (11) and (12) are [4]

AðbcÞZbZc � �2

�4

�
�4

72
þ �2

12
þ 1

�
; (13)
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A�Þð�� i

ffiffiffi
3
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� ð�� i
ffiffiffi
3

p
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where A� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2	=

ffiffiffi
3

pq
, B� ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2	=

ffiffiffi
3

pq
,

see Fig. 1.
In contrast to the case considered in [4], since mn > mp,

one needs here to perform the complex integrations (11)
and (12) along the path depicted in Fig. 1. We get, after
taking the limit 	 ! 0,

�w
n!p ¼ �w

p!n þG2
wa

5�

90�3
ð20þ 15�2 þ 3�4

� 15�2ð1þ �2ÞÞ (15)

and

�s
n!p ¼ �s

p!n þG2
sa�

2�
; (16)

where �w
p!n and �s

p!n correspond, respectively, to the

proper decay rates associated to the inverse processes
considered in [4],

�w
p!n ¼ G2

wa
5e�2

ffiffi
3

p
�

1728�3
½49 ffiffiffi

3
p þ 102�þ 30

ffiffiffi
3

p
�2 þ 12�3

��2ð39 ffiffiffi
3

p þ 90�þ 36
ffiffiffi
3

p
�2Þ� (17)

and

�s
p!n ¼ G2

sae
�2

ffiffi
3

p
�=ð8 ffiffiffi

3
p

�Þ: (18)

The approximations involved in the derivation of the
expressions (11) and (12) require, respectively, that the
centripetal acceleration a obeys me < a<mp and m� <

a <mp, wherem� stands for the pion �� mass. We notice

that, for accelerations a � mp, the no-recoil hypothesis is

violated [4] and, hence, our approximation breaks down.
The neutron proper lifetime associated with the decay rates
(15) and (16) are given simply by 
wn ¼ 1=�w

n!p and 
sn ¼
1=�s

n!p. Our results assume a particularly simple form if

one considers the proton and neutron lifetime ratio, namely


sp=

s
n ¼ 1þ 12�e2

ffiffi
3

p
�; (19)

and


wp=

w
n ¼ 1þ 96

5
�e2

ffiffi
3

p
� Pð�;�Þ
Qð�;�Þ ; (20)

where Pð�;�Þ and Qð�;�Þ are polynomials easily ob-
tained from (15) and (17). It is clear that for large a, both
ratios obey


p=
n � 1þOða�1Þ: (21)

The strong channel is expected to be the dominant decay
mode for neutrons with centripetal accelerations a such
that m� < a<mp. Taking into account that m� �
139:57 MeV, mn � 939:56 MeV, and that mp �
938:27 MeV, we have that the proton and the neutron
lifetimes differ by no more than 1% to 10% in the range
of accelerations where the strong channel dominates. The
weak channel, on the other hand, dominates for smaller
accelerations me < a <m�. (We remind that me �
0:51 MeV.) From (19) and (20), it is clear that for

a � ac ¼ mn �mp � 1:29 MeV (22)

the asymptotic expression (21) holds accurately. The
meaning of the ‘‘critical’’ acceleration ac will be discussed
in the last section. Here, we mention only that ac belongs to
the range where the weak channel dominates. In fact, for
me < a < ac, a significative difference between the proton
and the neutron lifetime is observed.
A proper acceleration of the order of 1 MeV is extremely

high. For sake of comparison, protons in the CERN Large
Hadron Collider have proper acceleration a � 10�8 MeV
[4]. In order to compare ac with centripetal accelerations
induced by realistic black holes, we cast (7) in the form

a � 1:34� 10�16

�
M	
M

� ðGM=rc2Þ2
1� 3GM=rc2

; (23)

where a is now measured in MeV and the numerical
constant corresponds to @c3=GM	. Hence, realistic black
holes (M � M	) will induce centripetal accelerations of
the MeV order only for those circular orbits very close to
the photonic orbit r ¼ 3GM=c2. Smaller black holes,
nevertheless, can induce considerably higher centripetal
accelerations for the (unstable) circular orbits located be-
tween the photonic orbit and the last stable circular orbit at
r ¼ 6GM=c2, see Fig. 2. On the other hand, the hypothesis
of an extremely relativistic motion (� � 1) adopted in the
approximations (13) and (14) requires circular trajectories

Re(z)

A

A

B

B

− 

− 

+ 

C

Im(z)

+ 

FIG. 1. Path used in the complex integrations (11) and (12).
Both terms (17) and (18) come from the pole Bþ. They coincide
with the values calculated in [4] by integrating around the pole
Aþ. Notice that, for the processes considered there, the term �
has a different sign. The second terms in (15) and (16) come
from the (degenerated) poles A� and B�.
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close to the photonic orbit, since from (10) one has

rc2

GM
¼ 3�2 � 2

�2 � 1
: (24)

Figure 3 depicts the lifetime for a neutron due to weak
decay in circular orbits with 3GM=c2 < r � 6GM=c2

around small black holes. As expected, the smaller the
black hole is, the larger the reduction in the particle life-
time is. The semiclassical approach used here can be
applied for other unstable particles as well. Particularly
interesting is the muon weak decay ��!ae� ��e��, which

can also be described by a vector current based on a two-
level system coupled to quantized fermions (the neutrinos
��e and ��) by means of a coupling constant of the same

order as GF. Since neutrinos have very small masses, the
rate (15) for the muon weak decay is accurate for accel-
erations in the range 0< a<me � 0:51 MeV. (We re-
mind that m� � 105:7 MeV.) Figure 4 depicts the

lifetime of a muon in geodesic circular orbits of small
black holes such that 3GM=c2 < r � 6GM=c2

IV. DISCUSSION

As Figs. 3 and 4 show, small black holes are necessary in
order to induce sensitive alterations in the proper lifetime
of unstable particles in circular orbits. However, noticeable
effects do occur in the vicinity of the photonic orbit for
realistic black hole. Despite that the analysis presented
here is restricted to the (unstable) circular geodesics close
to r ¼ 3M, it can give some hints about the behavior of
particles in more realistic situations. As Eqs. (19) and (20)
reveal, free protons and neutrons in geodesic circular mo-
tion close to the photonic orbits have comparable proper
lifetime. This situation is completely different from the
inertial one, and its implication to particle physics in the
vicinity of black holes has not been sufficiently studied yet.
A similar conclusion holds for the muon. For accelerations

a � ac ¼ 2
ffiffiffi
3

p ðm� �meÞ ¼ 364:4 MeV, neglecting pos-

sible effects of backreaction [4], the muon and the electron,

(b)

(d)

a lo
g

a
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(
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c 2)log
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g

r
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(c)

(b)
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 0.5  0.55  0.6  0.65  0.7  0.75

 4

 5

 4

 3

 2

 0

FIG. 2. Centripetal acceleration, in MeV, given by Eq. (23), for
circular trajectories such that 3GM=c2 < r � 6GM=c2. The
curves (a) to (d) correspond, respectively, to the ratios M=M	 ¼
10�15, 10�16, 10�17, and 10�18. We recall that, for the neutron
decay, the approximations involved in the derivation of our
results require a < mp � 938:27 MeV (no-recoil hypothesis)

and a > me � 0:51 MeV (weak channel) or a > m� �
139:57 MeV (strong channel). The hypothesis of an extremely
relativistic motion (� � 1), on the other hand, requires orbits
close to the photonic one, see Eq. (24). In the detail, the hatched
area denotes the region of validity of our approximations,
assuming � > 10.

(a)

)log
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c 2r
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−10
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−20
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 0.6 0.55 0.5  0.65

FIG. 3. Neutron proper lifetime 
, in seconds, for circular
trajectories such that 3GM=c2 < r � 6GM=c2. The curves (a)
to (d) correspond, respectively, to the ratios M=M	 ¼ 10�16,
10�17, 10�18, and 10�19. The (free) neutron inertial lifetime is
approximately 886 s. The validity region of our approximations
is depicted in Fig. 2.
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FIG. 4. Muon proper lifetime 
, in seconds, for circular
trajectories such that 3GM=c2 < r � 6GM=c2. The curves (a)
to (d) correspond, respectively, to the ratios M=M	 ¼ 10�17,
10�18, 10�19, and 10�20. The muon inertial lifetime is about
2:2� 10�6 s and the branching ratio corresponding to the
inertial process �� ! e� ��e�� is greater than 98%. The validity

region of our approximations is depicted in Fig. 2.

DOUGLAS FREGOLENTE AND ALBERTO SAA PHYSICAL REVIEW D 77, 103010 (2008)

103010-4



which in such a case can indeed decay by the inverse
process e�!a�� ����e, have comparable lifetimes.

In order to grasp the meaning of the temperature (3), let
us consider the case of the weak decay of protons and
neutron in uniformly accelerated motion, where the Unruh
temperature [10] TU ¼ a=2� is known to play a central
role [3,9]. The proton and neutron lifetime ratio for this
case can be obtained from the decay rates (3.13) and (3.17)
of Ref. [2],


wp=

w
n ¼ e2��; (25)

which also has the asymptotic form (21) for large values of
a. Notice that, in this case, we have exactly the same
critical acceleration ac of (22).

In the case of the uniformly accelerated motion, one can
describe the decay of protons and neutrons as seen by
comoving Rindler observers. The key point here is that
Rindler observers realize the inertial vacuum as a thermal
state with temperature TU ¼ a=2�. Heuristically, one can
imagine the two-level system in thermal equilibrium with
the Unruh radiation associated with the quantized fields in
question. For our two-level system in thermal equilibrium
at temperature T, the probability of occupation of the
proton jpi and neutron jni states are, respectively,

Np ¼ e�mp=T

e�mp=T þ e�mn=T
; Nn ¼ e�mn=T

e�mp=T þ e�mn=T
:

(26)

The ratio Np=Nn ¼ eðmn�mpÞ=T diverges for T ! 0, indi-

cating that for low temperatures, the system is likely to be
in its fundamental state. However, for temperatures T �
ðmn �mpÞ the ratio tends to 1, indicating that the system

can be in the states jpi or jni with equal probability. In
other words, the transitions jpi ! jni and jni ! jpi be-
come equally probable for high temperatures, shedding

some light in the expression (25). For linear accelerations
a such that the associate Unruh temperature TU ¼ a=2� is
much higher than the energy gap mn �mp, it is natural to

expect that protons and neutrons have the same lifetime,
since both transitions of the two-level systems are equally
probable. The lifetime ratios (19) and (20) suggest some-
thing similar to the case of uniform circular trajectories.
They can be understood if one considers the two-level
system in equilibrium with the quasithermal radiation
with temperature (3) associated with the quantized fields
in question, confirming the view that observers in relativ-
istic circular motion with centripetal acceleration a do
realize the inertial vacuum as a quasithermal state with
temperature (3) for the extremely relativistic case [8,9]. We
stress that this state is quasithermal in the sense that it can
be described by a temperature that varies slowly with the
energy gap �E of the two-level system, monotonically

from ð�=2 ffiffiffi
3

p ÞTU to ð�= ffiffiffi
3

p ÞTU, corresponding, respec-
tively, to low and to high values of �E=a [9,15,16]. For
the neutron decay, for instance, �E ¼ mn �mp �
1:29 MeV, implying that for circular trajectories close to
the photonic orbit r ¼ 3GM=c2, the quasithermal state is
indeed characterized by a temperature close to the lower
bound of (3). For the muon decay, on the other hand, the
temperature is closer to the upper bound of (3). A definitive
answer to this problem, however, must necessarily face the
subtle issue of quantum thermal distributions for rotating
systems [17].
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