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Improved Vectorial Finite-Element BPM Analysis for
Transverse Anisotropic Media

José Patrocinio da Silva, Hugo E. Hernandez-Figye3eaior Member, IEEEand Antonio Manoel Ferreira Frasson

Abstract—An efficient finite-element vector beam propagation and hard boundary conditions (perfect electric or magnetic
formulation for dielectric media with transverse anisotropy is walls) and paraxial propagation were adopted.
thoroughly presented. This formulation is expressed in terms of In [6], the formulation and simplifications adopted make un-

the magnetic field's transverse components and includes perfectly | the introducti f the wid | mat H
matched layers at the truncated boundaries and the wide-angle clear the introauction ot the wide-angie approximation. Here,

Padé approach. Several key examples demonstrate the usefulnes§he vector operators are manipulated and presented in such a
and effectiveness of the present scheme. way that, after a well-accepted simplification, Padé approxi-

Index Terms—DPielectric waveguides, finite elements, optical mant.S can be_Stra'ght.forwardly introduced. .
propagation, transverse anisotropy, vector beam propagation  This paper is organized as follows: In Section Il, the FE for-
method (BPM). mulation is presented in detail; the results are shown in Sec-

tion 1ll, and the conclusions are presented in Section IV. The
formulation presented in [6] is reproduced and discussed in the
appendix.

VER THE LAST decade, a considerable effort has been

done to simulate in an efficient and accurate manner Il. FORMULATION
the electromagnetic propagatlon along optlca_l Wa.vegu'd(.as'Starting from Maxwell equations, the double-curl Helmholtz
One of the most powerful numerical tools used in this field 'Bquation for the magnetic fielff is readily obtained as follows:
the beam propagation method (BPM). Among the numerica 9 y '
methods available to discretize the waveguides’ cross section, V X (Ev X ﬁ) — k§ H=0 (1)
the superior performance achieved when the finite-element
method (FEM) is adopted is quite well established by nowherek = 1/, with € being the relative permittivity tensor.
So far, a number of scalar, semivectorial, and vectorial fEonsidering dielectric media with transverse anisotropy, and
nite-element (FE) BPM schemes have been reported in ihefining the unit vectors,, i,, andi., associated with, y, and
literature [1]-[3]. For dielectric media, it is quite clear that hight directions, respectively, writes as = &r + ¢.. 4.1, where
accuracy and flexibility is attained by choosing the magneti; is an arbitrary transverse tensor givengy = ¢, ., i, +
field as the wave equation’s unknown, due to its continuity,, i, ., + .1, @, + &,,,7,. Consequently
over the dielectric interfaces. This permits the use of nodal -

. INTRODUCTION

elements, which exhibit simpler expressions than the edge k=kp+ k... @
ones, especially for high order. For this situation, spurious ET _ [km kxy] _=! 3)
solutions can be efficiently suppressed by forcing the diver- kye  kyy T

gence condition into the formulation, which will allow us, as an k.., = 52—21, 4)

additional advantage, to eliminate the axial field component. . )
As a consequence, a highly efficient scheme, which solvg‘é_add't'f)”’ko is the free-space wavenumber, and the operator
the magnetic field’s transverse components, is obtained. Al 1S defined as ‘ ‘
this ha}s bgen widely 'and t.horoughly reported in the' literaturey; _ iy Oy — + ayayi . — = Vg + azazi (5)
especially in connection with the so-called modal (eigenvalue) Ox oy 0z 0z
analysis [4], [5]. For the BPM situation, this approach waghere o, oy, and e, are parameters linked to the PML or
recently exploited by Obayyat al. [3] and Pinheiroet al. virtual lossy media. Since the waves are assumed to propagate
[6]. In the former, isotropic media was considered, includinglong thez direction, the parameter., is set to unity, while the
the perfectly matched layer (PML) and the wide-angle Padgher PML parameters have to be determined in such a way that
approach; while in the latter, transverse anisotropy was treatgttk wave impedance is continuous across the interfaces formed
between the inner computational domain and the PML. This
ensures perfect wave matching over such interfaces, allowing
Manuscript received March 29, 2002; revised October 4, 2002. This wofke undesired radiation to leave the effective computational do-
was supported in part by the Brazilian Agency CAPES, CNPq (Project Ng _. . . .
301209/94-4) . main freely without any reflection. Following [7] and [8], the
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Electrical and Co_mputer~ Engineering, _Univers_ity of Campinas (UNI(_ZAMP)S =1 - j(36/2w07zd)(/}/d)2 ln(l/R), wherew is the an-
13083-970 Campinas Sao Paulo, Brazil (e-mail: patroc@dmo.fee.unlcamp.blrj'I f is the thick f the PM is th
hugo@dmo.fee.unicamp.br; frasson@dmo.fee.unicamp.br). gular frequency is the thickness of the Ly Is the re-
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TABLE |
VALUES OF a, AND

oA a, PML’s location

S 1 Normal to x direction
1 S Normal to y direction
S S On a corner

inner PML’s interface R is the reflection coefficient, andis P
the free-space speed of light. Table | describes the parameters P
oy anda,.

For regions outside the PML, i.e., inside the inner or effec- w’
tive computational domain, the parameters, are set to unity.
Next, the magnetic field’s rapid variation is removed by ertln%g 1. Anisotropic waveguide optical axes exhibiting an angular displacement
H(z,y,2) = h(x T,y z)e” Jkonoz wheren, is the reference ef- «
fective index, andi(z, y, 2) = ho(z,y, 2) + ha(z,y, 2) is the

magnetic field’s envelope or slow variation portion. Hérg,= 1,0 — .
hytiy + hyt, andh, = h.4, represent the magnetic fields’ \ ,
(slow) transverse and axial components, respectively. Using, | / N\
addition, the magnetic field divergence condition H = 0, ] / \
which produces © \ / \ /
el \ / \ ’
E \\ // \\ //
Vr-hr + 5= 8h = N/ 3 S
NS e component  \ /
h. = 6 £ o5 /  comp \
v < ’// o h, component ! \\
wherey = jkong, after some algebraic manipulations, the axial %
field can be effectively eliminated from (1), obtaining the fol- £ / \
lowing vectorial wave equation, in terms of the (slow) transvers(# / \
component / \ / N\
p // \\ // \\
- 82hT - 8hT = - 0,0 T T T T T T - T T T T T e
a gz T 27k, 5, " kyNV T (VT : hT) 0 5 10 15 20 25 30 35
z[pm]

- vT X kzsz X }_{T + (Ec + sza) }_iT

= o = Fig. 2. Variation ofh,’s and h,’s normalized amplitudes along the
Ok Ohy  _ Oka_ Oh, : ’ P g

direction.

9. 02 77 oz VT %
The transverse tensors in (7) are defined as Thus, using (10) in (7), the present formulation is obtained and

B L L writes as
[ f ] B o

¢ _km k:rz - 82h = Oh = -

g Fa'sg = 29ka 5 — KoV (Vo - hir)

— ok — 0z 0z
ky= v 122 -k (8b) 7 = Z\r

b= 5 ~ka ~Vg % Vi X g + (k + 72/{@) hr =0. (11)
. ks
ke= kI-~7t a0 (8c)  The paraxial approximation of (11) is readily obtained by ne-

glecting the first term. The previous formulation given in [6]
Following the main BPM’s hypothesis, i.e., that the media angd reproduced in the appendix [see (49) and (50)]. However, its
fields vary very slowly along the propagation coordinate, wgresentation and interpretation were greatly improved by using
may assume that the present notation, as can be observed by comparing (49) and
(50) with the expressions in [6]. It becomes clear that (50) is
) structurally different from its paraxial counterpart obtained from
(11); moreover, the effective introduction of Padé approximants
in (50), taking into account (49), is not quite transparent, as it is
From (9), itbecomes clear that the last two terms of (7) are mugh(11) [see (35) and (36)]. This drawback in fact motivated the
smaller than the first one, which is supposed to be smaller thgfesent work.
the remaining terms of (7). This may be expressed as Next, applying the conventional FEM to the transverse varia-
tion of (11), the cross-sectional domdiris divided inNel tri-
(10) angles, producin@fp unknown; over the corr(_asponding nqdes.
Introducing a set of basis functions (Lagrangian polynomials of

0z

Ohr
0z

oh.

<<az

Oka O | 1 0ka . Oh.
0z 0Oz i 0z oz

0? hT

k@z
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Fig. 3. Modulus of:,. (left column) and modulus df, (right column) at (ay = 0um, (b)z = 17.5pxm, and (c)z = 35um.

first or second ordedjy}, 7 = 1,...,andNp, thenﬁT(z,y,z) the so-called FE discretization process, leads to the matrix

is expressed as problem
Npz 2 7 N
Fr(e.0.9) = 3 b5 0 20} a2 ) 4 2 ) = (0}

(13)
where {hr} represents a column vector containing the un-
+ Z hyj(2)¢;(z,y)4, (12) knownsh,; andh,;, {0} is the null column vector, anfi\/]
j=Npz+1 and[K] are the so-called global matrices, defined by

where the coefficients,.; andh,; represent the unknown field
values on the partition’s nodes. This expansion, which defines

(M), = /Q Fuls - 22 (14)
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and
(K] = — /Q (kszT x 1/7]») : (vT x 1/71») dQ) -
[ (70 5) o (R7) i o [z | pivicmd
_ é ) (vT @J) (EZJ) - hde tj 218 },T > Bi:YIG [e,]
el ¥ yttrium iron garnet
+ /Q Rty - . (15) GGG

Here,()” denotes the transpose operation, and gadolinium gallium garnet

n~=1.94

7/1j = 1/’3'@ (16) Fig. 4. Magnetooptic optical Isolator.
U =1,, forj=1,..., Npx a7 0
@ =1,, forj=Npz+1,...,Np. (18) N

In (14) and (15)052 represents all boundaries over the cross-
sectional domainf2, and# is the outward normal unit vector
linked to those boundaries. Namedf) includes all interfaces
(0Qinterr) @and the external boundafyQ..). The latter corre-
sponds to the truncated boundary, assumed here to be of rect-
angular shape, which separates the PML and the infinitely ex-
tended region. Since all radiation is supposed to be absorbed
inside the PML,0€).+ can be chosen to be a perfect electric
conductor (PEC) or perfect magnetic conductor (PMC). Here,
we choose the former. As observed in previous publications [4], 00 ' , . .
[5], the line integral in (14) vanishes over PEC walls but not over 0 2000 4000 6000 8000
interfaces, where the media exhibits step discontinuity. There- z [um]

fore, here, such line integral needs to be computed only over

O intort- Matrices[M] and[K] can also be expressed asa Sun4|:_ig. 5. Normalized intensity variations aloagirection.

mation of element matrices linked to thkeandy coordinates,

over all elementg, as follows:

— h_component
0,54 :
,,,,,,,,, /1, component

Normalized Intensity

€ [M:re:r] [M;’y] [K';a:] = k;zayam[SZ]T - aiklfym [SS]
=3 [ ] 19 — Qi 53]
© € € - Bz ke'lz ; kem f L]
(K] :Z {[sz] [Kﬂéy]} . (20) oze ( bJe ng + kiyy,ny) [Li]
[Kyz] [Kyy] + kcyz [Sl] (27)
e 1 __ e 2rqe e eT
These element matrices can be readily obtained by particular- (K] = = k2.0z[S5] — ayawk, [Si]
izing the global expressions (14) and (15) over an eleraeft - aikfyy [S5]
the partition. They are written as —ay (k‘zfywn; + kiyyn;‘) [L5]
[Mz,] = kg, [57] (21) + Koy 151] (28)
[ME,] = — k°,[S¢] (22) Here, k2., k., and k;., denote, respectively, the average
Y yel™1 value of component$.., k.., and k;,, over the element.
[My,] = — kg, [S7] (23) Considering that subindexés s) represent the coordinate pair
M1 — ke [Se o4 (z,y), and sub-indeX represent$ or ¢, those components are
[My,] = K [S7] (24) linked to the tensors previously defined in (2), (8), and (9). The
K¢, = — k;zai [SS] — a2k, [S5] auxiliary element matricel$y , 5 4] and[L] ,] are given by
— QY ke’l"l S e e e\t
inlSl [Si1= | {¥Hy ) a0 (29)
— Qg (kba:mnm + kbzyny) [Ll] Qe . o
+ ko 57] (25) [55] = / HIF O g (30)
[K;y] = - k;zOéxOéy[SZ] - ayaxkgmm[SZ]T ‘ a{’lzje} 5{1;}7
27.e e e] _
- Oéy (kb$$n$ + kbwyny) [LQ] [Se] :/ a{l/}S} 8{’¢E}T dQ (32)
+ k;zry [S;] (26) 4 e 87; ox
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Fig. 6. Modulus ofr, (left side) andh.. (right side) at (a)y = 0 pgm, (b) z = 1000 gm, (c) z = 2000 pm, (d) z = 3000 um, (€)z = 4000 pm, (f)
z = 5000 pm, (g)z = 6000 zm, and (h)z = 7000 pm.

e ey Oy}’ The paraxial equation is easily obtained from (35) by replacing
[Li] = {ot—5—dt (33) e . o :
90 ox the matrixM by [M]. Finally, thef-finite-difference marching
(L5] = 729 {we}a{éu} m (34) scheme, applied to (35), is written as

Here, {4} represents a column vector containing the corréfM (z)] + OAZ[K (2)])){hr(z + Az)}
sponding shape functionQ¢ ando® denote, respectively, the
element’s area and boundary, respectively, arjdandn;, are,

respectively, the andy components of the outward normal unit
vector linked too2¢. Following [8], the Padé (1,1) approxima-

tion [9] can be straightforwardly applied to (13), producing theshere Az is the step’s size along the propagation coordinate,
matrix equation andf(0 < 6 < 1) is introduced to control the stability of

- the method. Extensive tests have shown that stability is ensured
[M] dihr} + [K]{ET} = {0} (35) When0.5 < ¢ < 1. For¢ = 0.5, (37) corresponds to the
dz well-known Crank—Nicholson algorithm. However, according
with to our experience, the best results are obtained fer 0.55.
~ 1 9 This empirical value was adopted for all examples presented in
[M] = [M] - 4_72([[(] +7[M]). (36) this work. In order to improve the scheme’s accuracy, the re-

= ([M(2)] = (1 = O)A=[K ()] {hr(2)}  (37)
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Fig. 6. (Continued.) Modulus ofh, (left side) and:.. (rightside) at (a} = 0 gm, (b)z = 1000 um, (c)z =
(f) z = 5000 gm, (g) z = 6000 um and (h)z = 7000 gm.

2000 gm, (d)z =

fractive index is renewed at each propagation step following thed expanding in terms of the local modes
prescription given in [10], as follows:

- {hr(2)} = > &) {hre(z
02(2) — e | PrOVEEIEE) | - o) Z
kg{hT(z)}T[M(z)]{hT(z)} (39) is written as
Here,} denotes complex conjugate and transpose. Equation (38) ) Ny )
can be interpreted as a measurement of the mode spectral com- ng(2) =Re | Y G(2)ni(2)
position of{hr(2)}. Let us call{hr((z)} andn,(z) the corre- =1

3000 um, (€)z =

4000 pm,

(41)

(42)

sponding local modes and local mode effective indexes, respatere the positive coefficients,(z), defined as(,(z) =

tively, which satisfy the modal eigenvalue problem

[6e(2)[2) nE [€m ()2,

may be called “mode spectral

weights.” From (42), the interpretation given for (38) becomes

[K(2)[{hre(2)} = kini (2)[M(2)[{hre(2)}.  (39) clear. In fact, (42) represents a mode spectral weighted average
of the mode effective indexes, linked to the modal composition
By normalizing the local modes of {hr(z)}. Also, using the quantum mechanics jargon, (42)
. . can be viewed as representing the effective index expectation
{Rrm(H WM @) Fre(2)} = bem (40) value.



DA SILVA et al: IMPROVED VECTORIAL FINITE-ELEMENT BPM ANALYSIS FOR TRANSVERSE ANISOTROPIC MEDIA 573

Ill. RESULTS

To validate our numerical technique we first considered ¢
anisotropic planar waveguide with transverse dimensioms
as shown in Fig. 1¢ = b = 1 um. The channel is embedded
in an isotropic dielectric media with index equaly®.05, sur-
rounded by a PML with thickness = 1.0 um. The channel's
ordinary and extraordinary refractive indexes &f@.19 and

Vv/2.31 [11], respectivele/.

Here,c(", 61(2,), and='? are the terms of the diagonal tenso
¢ when the optical axes are aligned with coordinateendy.
In this simulation, we considered a computational window of
pm (z direction) x 8 um (y direction) covered by 3814 linear
elements, while in [11], we used a computational window of &
um x 34 um covered by 4784 linear elements; the waveleng
was\ = 0.86um anda = 45°. The permittivity tensor terms

are [12]

Fig. 7. Rib waveguid&” junction.

— 2 2 2 2.2
Ezz = M CO8~ o + M2 sin” « (43)
2 2 2 .2
Eyy =N COs” o + njsin” o (44) P
e 0 S
2 ] e
; =
€22 =1 (45) —
2z 0 P e N
oy = Eyx = (M — M, ) COSaSINQ (46) E =z N
SR s
. s et
whereq is the rotation angle of the main tensor axes related 3 s :f/[ “\ S N
; ; : SEssmee . ‘“ N
thez andy coordinates. The waveguide was excited at 0 seemas e A\ e
with the fundamental quasi-TM modgf;, with « = 0, andits Mot o g /[ ”‘ \\r';:;:'};‘:é:%i:e%:?é:o,’;»:;«:;;:o,,"f&
. . . ) PSSl l “. e A N
corresponding effective propagation constahtk), obtained = = “‘;l‘m@%@%ﬁiﬁf’“ T
! b, ‘ s
. : ) . e e e ]
5 e O s
using a modal eingenvalue method. Fig. 2 shows the normaliz : MMM@W
i i inti H Bl
intensity variations oh, andh, components for a propagation = g
. . . - B I S s S RIS A IS
step of Az = 0.1 um. The switching to a quasi-TE beam oc ¥, o = 2
S S IS e
. . SO P &
curred atz = 17.5um, showing perfect agreement with [11]. %%i, TR +

As we can see in Figs. 2 and 3, the field assumes t
initial configuration again atz: = 35 pm, which is in
agreement with the value obtained through the relation
Ly = ()\/|ﬂeﬂl . ﬂeﬂQD [13], whereL 5 is the beating Iength, Fig. 8. Fundamental models, component at = 0 zm.
and B.¢1 and B.g2 are the effective propagation constants of
the modesiy, and EY,, respectively. Through modal analysisgiven by 6 = kod/(2nes), with the off-diagonal elements
[5], we found B = 1.47393494 and Be, = 1.44930071; computed assuming; = 133 /cm, wheren.y = (/ko,
therefore, the beating length was 34.910 76 which is in is the effective refractive index. To simulate this effect, the
good agreement with the value obtained by the present BPfigvice geometric birefringencd, = 1.1278 x 107* [5]
Recently, several magnetooptic waveguides have been analy#8gre n.s = 2.18401754 and§ = 2.396413 x 10~*
in order to obtain very efficient optical isolators. The isolatioMere computed using modal analysis. The magnetooptic
effect is based on the nonreciprocal behavior of the waveguigermittivities used for the propagation analysis were thus
with respect to the field propagation direction. defined asc,,1 = c.21 = (219 — Ay)?, g1 = (2.19)7,

Next, we considered a magnetooptic rib waveguide, as shown2 = €22 = (2.18 — Ay)?, ande,,» = (2.18)%. The
in Fig. 4 [14]. The relative permittivity tensor of the Bi:YIG structure was excited by thg-polarized fundamental mode,

layers is given by obtained through modal analysis. We used a computational
. window of 30um (z direction) x 30 um (y direction), covered
crz j6 0 by 5533 linear elements, and propagation step= 0.1 zm.
[er] = _g 8 g(?;y 60 (47) By contrast, the computational window needed using the

previous paraxial approach [6] was of 2@@n (z direction)
wheree,,, €.y, ande. are the permittivity tensor terms in thex 100 zm (y direction), covered by 10365 linear elements.
z, y, and z direction, respectively, anél represents the first- Fig. 5 shows the normalized intensity related/tp and h,
order magnetooptic effect, which is related to the nonrecipro@amponents, along the propagation direction. Almost perfect

Faraday rotation effect. mode conversion from thk, component to thé, component
To analyze this structure, the wavelength used wasachieved at = 6700 um, in excellent agreement with [1].
A = 1.485um, and the structure parameters &re= 3.1 um, Fig. 6, shows the field patterns from= 0 to z = 7000um,

ty = 34pm, h = 05pum, w = 8.0 pum, n; = 2.19, withintervals of 100Q:m. The polarization conversion frofx),
ny = 2.18,n, = 1.94. Heref; is the Faraday rotation angleto theh,, along the propagation direction, can be clearly seen.
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Variation of the main component of the fundamental mode, plotted from top to bottom. The left column shows the nonparaxial case. The night colum

Fig. 9.
shows the paraxial case. (@)= 20 um, (b)z = 50 um, (c)z = 175pm, and (d): = 250.
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Finally, we considered a rib waveguidejunction as shown Next, the paraxial approximation reported in [6] was obtained
in Fig. 7, [16], [17]. This example shows the capability of théy neglecting the terms containidh; /022, *h./0z>, and
new formulation to analyze waveguides varying along the prop#. /9z and is written as (see [6,(7)])

agation direction and the PML performance. The bifurcation of
the waveguide’s center follows the curves defined by

x:{iU—Wﬂ%»»sz

+ 2 pm, z>L
for L = 40um. The rib waveguide parameters &fe= 2.0um,
t1 1.1 um, andts 0.2 um, the refractive index of the
guiding region isn., = 3.44, the substrate refractive index is

(48)

Ohr

- - Ok, OF
. - —17. . a T
< 27ka + vy kavT(vT ) + —02 _02 ) —02

— vaT (VT . ET) — VT X k’zsz X ET

+ (EC + 722) i =0. (50)

nub = 3.34, and the refractive index of the medium over ofhough (50) is well defined within the paraxial approach re-
the waveguide i®,. = 1.0. TheY junction was excited by the strictions, as demonstrated in [6], its extension to a Padé (wide-

fundamental mode, obtained through modal analysis [5} fer

angle) scheme is not straightforward, taking into account the

1.55,m (see Fig. 8). The PML parameters are given in Tableway (49) is presented. On the other hand, our general equa-
thethickness being = 1.0pxm. The computational window usedtion (7) is obtained from (49) by eliminating its last three terms,
in the previous paraxial formulation [11] was 3RA50m and  using (6).

9516 linear elements. By contrast, here we used a computational
window of 12um (x direction)x 10um (y direction), covered by
4514 linear elements. Fig. 9 shows the comparison between the
results obtained by our wide-angle and paraxial schemes, usinff!
the same computational window and mesh. As expected, the ra-
diation is treated in a different way by the two approaches. [2]

The wide-angle scheme expels the radiation within a shorter
propagation distance than the paraxial one. The results show
in the left column of Fig. 9 are in good agreement with other
vector wide-angle BPM schemes reported in the literature [17].[4]
The propagation step wasz = 0.1 um.

IV. CONCLUSION 5]

A vectorial FE BPM for transverse anisotropic media was
presented in detail, which constitutes a substantial improvemen& ]
on the scheme published in [6]. The present improved scheme is
based on a practically new formulation, which permits the inser-17]
tion of wide-angle approximations in a neat and straightforward
manner. Also, PML conditions were included. The present ap-[g]
proach’s efficiency and usefulness were demonstrated through
the analysis of three key examples.

[
APPENDIX [10]
CONNECTIONWITH THE PREVIOUS FORMULATION [11]

The formulation presented in [6] also started from (1) and12]
made use of the slow variation approximation and the diver-
gence condition (6). Using the present notation, the expression
obtained is given by [13]

= 9%hy = Ohy

k"’ﬁ — 2”)’]&1@ —kyVr (VT : hT) [14]

- VT X kzsz X l_iT + (Ec + 72ZG) }_l'T

_ B [15]
Ok Ohy | 4 Okag Ohe
dz 0z 0z 1oz
_ 7 _ [16]
%oV | V- Ohr + koVr Oh
0z 0z
[17]
_ 2
R AL (49)

0z2
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