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Improved Vectorial Finite-Element BPM Analysis for
Transverse Anisotropic Media
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Abstract—An efficient finite-element vector beam propagation
formulation for dielectric media with transverse anisotropy is
thoroughly presented. This formulation is expressed in terms of
the magnetic field’s transverse components and includes perfectly
matched layers at the truncated boundaries and the wide-angle
Padé approach. Several key examples demonstrate the usefulness
and effectiveness of the present scheme.

Index Terms—Dielectric waveguides, finite elements, optical
propagation, transverse anisotropy, vector beam propagation
method (BPM).

I. INTRODUCTION

OVER THE LAST decade, a considerable effort has been
done to simulate in an efficient and accurate manner

the electromagnetic propagation along optical waveguides.
One of the most powerful numerical tools used in this field is
the beam propagation method (BPM). Among the numerical
methods available to discretize the waveguides’ cross section,
the superior performance achieved when the finite-element
method (FEM) is adopted is quite well established by now.
So far, a number of scalar, semivectorial, and vectorial fi-
nite-element (FE) BPM schemes have been reported in the
literature [1]–[3]. For dielectric media, it is quite clear that high
accuracy and flexibility is attained by choosing the magnetic
field as the wave equation’s unknown, due to its continuity
over the dielectric interfaces. This permits the use of nodal
elements, which exhibit simpler expressions than the edge
ones, especially for high order. For this situation, spurious
solutions can be efficiently suppressed by forcing the diver-
gence condition into the formulation, which will allow us, as an
additional advantage, to eliminate the axial field component.
As a consequence, a highly efficient scheme, which solves
the magnetic field’s transverse components, is obtained. All
this has been widely and thoroughly reported in the literature,
especially in connection with the so-called modal (eigenvalue)
analysis [4], [5]. For the BPM situation, this approach was
recently exploited by Obayyaet al. [3] and Pinheiroet al.
[6]. In the former, isotropic media was considered, including
the perfectly matched layer (PML) and the wide-angle Padé
approach; while in the latter, transverse anisotropy was treated,
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and hard boundary conditions (perfect electric or magnetic
walls) and paraxial propagation were adopted.

In [6], the formulation and simplifications adopted make un-
clear the introduction of the wide-angle approximation. Here,
the vector operators are manipulated and presented in such a
way that, after a well-accepted simplification, Padé approxi-
mants can be straightforwardly introduced.

This paper is organized as follows: In Section II, the FE for-
mulation is presented in detail; the results are shown in Sec-
tion III, and the conclusions are presented in Section IV. The
formulation presented in [6] is reproduced and discussed in the
appendix.

II. FORMULATION

Starting from Maxwell equations, the double-curl Helmholtz
equation for the magnetic field is readily obtained as follows:

(1)

where , with being the relative permittivity tensor.
Considering dielectric media with transverse anisotropy, and
defining the unit vectors , , and associated with, , and

directions, respectively,writes as , where
is an arbitrary transverse tensor given by

. Consequently

(2)

(3)

(4)

In addition, is the free-space wavenumber, and the operator
is defined as

(5)

where , , and , are parameters linked to the PML or
virtual lossy media. Since the waves are assumed to propagate
along the direction, the parameter is set to unity, while the
other PML parameters have to be determined in such a way that
the wave impedance is continuous across the interfaces formed
between the inner computational domain and the PML. This
ensures perfect wave matching over such interfaces, allowing
the undesired radiation to leave the effective computational do-
main freely without any reflection. Following [7] and [8], the
PML parameters are specified from the parametergiven by

, where is the an-
gular frequency, is the thickness of the PML, is the re-
fraction index of the adjacent medium,is the distance from
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TABLE I
VALUES OF� AND �

inner PML’s interface, is the reflection coefficient, and is
the free-space speed of light. Table I describes the parameters

and .
For regions outside the PML, i.e., inside the inner or effec-

tive computational domain, the parameters are set to unity.
Next, the magnetic field’s rapid variation is removed by writing

, where is the reference ef-
fective index, and is the
magnetic field’s envelope or slow variation portion. Here,

and represent the magnetic fields’
(slow) transverse and axial components, respectively. Using, in
addition, the magnetic field divergence condition ,
which produces

(6)

where , after some algebraic manipulations, the axial
field can be effectively eliminated from (1), obtaining the fol-
lowing vectorial wave equation, in terms of the (slow) transverse
component

(7)

The transverse tensors in (7) are defined as

(8a)

(8b)

(8c)

Following the main BPM’s hypothesis, i.e., that the media and
fields vary very slowly along the propagation coordinate, we
may assume that

(9)

From (9), it becomes clear that the last two terms of (7) are much
smaller than the first one, which is supposed to be smaller than
the remaining terms of (7). This may be expressed as

(10)

Fig. 1. Anisotropic waveguide optical axes exhibiting an angular displacement
�.

Fig. 2. Variation of h ’s and h ’s normalized amplitudes along thez
direction.

Thus, using (10) in (7), the present formulation is obtained and
writes as

(11)

The paraxial approximation of (11) is readily obtained by ne-
glecting the first term. The previous formulation given in [6]
is reproduced in the appendix [see (49) and (50)]. However, its
presentation and interpretation were greatly improved by using
the present notation, as can be observed by comparing (49) and
(50) with the expressions in [6]. It becomes clear that (50) is
structurally different from its paraxial counterpart obtained from
(11); moreover, the effective introduction of Padé approximants
in (50), taking into account (49), is not quite transparent, as it is
in (11) [see (35) and (36)]. This drawback in fact motivated the
present work.

Next, applying the conventional FEM to the transverse varia-
tion of (11), the cross-sectional domainis divided in tri-
angles, producing unknowns over the corresponding nodes.
Introducing a set of basis functions (Lagrangian polynomials of
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Fig. 3. Modulus ofh (left column) and modulus ofh (right column) at (a)z = 0 �m, (b)z = 17.5�m, and (c)z = 35�m.

first or second order) , and , then
is expressed as

(12)

where the coefficients and represent the unknown field
values on the partition’s nodes. This expansion, which defines

the so-called FE discretization process, leads to the matrix
problem

(13)
where represents a column vector containing the un-
knowns and , is the null column vector, and
and are the so-called global matrices, defined by

(14)
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and

(15)

Here, denotes the transpose operation, and

(16)

for (17)

for (18)

In (14) and (15), represents all boundaries over the cross-
sectional domain , and is the outward normal unit vector
linked to those boundaries. Namely, includes all interfaces

and the external boundary . The latter corre-
sponds to the truncated boundary, assumed here to be of rect-
angular shape, which separates the PML and the infinitely ex-
tended region. Since all radiation is supposed to be absorbed
inside the PML, can be chosen to be a perfect electric
conductor (PEC) or perfect magnetic conductor (PMC). Here,
we choose the former. As observed in previous publications [4],
[5], the line integral in (14) vanishes over PEC walls but not over
interfaces, where the media exhibits step discontinuity. There-
fore, here, such line integral needs to be computed only over

. Matrices and can also be expressed as a sum-
mation of element matrices linked to theand coordinates,
over all elements, as follows:

(19)

(20)

These element matrices can be readily obtained by particular-
izing the global expressions (14) and (15) over an elementof
the partition. They are written as

(21)

(22)

(23)

(24)

(25)

(26)

Fig. 4. Magnetooptic optical Isolator.

Fig. 5. Normalized intensity variations alongz direction.

(27)

(28)

Here, , , and denote, respectively, the average
value of components , , and over the element .
Considering that subindexes represent the coordinate pair

, and sub-index represents or , those components are
linked to the tensors previously defined in (2), (8), and (9). The
auxiliary element matrices and are given by

(29)

(30)

(31)

(32)



DA SILVA et al.: IMPROVED VECTORIAL FINITE-ELEMENT BPM ANALYSIS FOR TRANSVERSE ANISOTROPIC MEDIA 571

(a)

(b)

(c)

(d)

Fig. 6. Modulus ofh (left side) andh (right side) at (a)z = 0 �m, (b) z = 1000 �m, (c) z = 2000 �m, (d) z = 3000 �m, (e)z = 4000 �m, (f)
z = 5000 �m, (g)z = 6000 �m, and (h)z = 7000 �m.

(33)

(34)

Here, represents a column vector containing the corre-
sponding shape functions; and denote, respectively, the
element ’s area and boundary, respectively, andand are,
respectively, the and components of the outward normal unit
vector linked to . Following [8], the Padé (1,1) approxima-
tion [9] can be straightforwardly applied to (13), producing the
matrix equation

(35)

with

(36)

The paraxial equation is easily obtained from (35) by replacing
the matrix by . Finally, the -finite-difference marching
scheme, applied to (35), is written as

(37)

where is the step’s size along the propagation coordinate,
and is introduced to control the stability of
the method. Extensive tests have shown that stability is ensured
when . For , (37) corresponds to the
well-known Crank–Nicholson algorithm. However, according
to our experience, the best results are obtained for .55.
This empirical value was adopted for all examples presented in
this work. In order to improve the scheme’s accuracy, the re-
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(e)

(f)

(g)

(h)

Fig. 6. (Continued.) Modulus ofh (left side) andh (right side) at (a)z = 0 �m, (b)z = 1000�m, (c)z = 2000�m, (d)z = 3000�m, (e)z = 4000�m,
(f) z = 5000 �m, (g) z = 6000 �m, and (h)z = 7000 �m.

fractive index is renewed at each propagation step following the
prescription given in [10], as follows:

(38)

Here, denotes complex conjugate and transpose. Equation (38)
can be interpreted as a measurement of the mode spectral com-
position of . Let us call and the corre-
sponding local modes and local mode effective indexes, respec-
tively, which satisfy the modal eigenvalue problem

(39)

By normalizing the local modes

(40)

and expanding in terms of the local modes

(41)

(39) is written as

(42)

where the positive coefficients , defined as
, may be called “mode spectral

weights.” From (42), the interpretation given for (38) becomes
clear. In fact, (42) represents a mode spectral weighted average
of the mode effective indexes, linked to the modal composition
of . Also, using the quantum mechanics jargon, (42)
can be viewed as representing the effective index expectation
value.
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III. RESULTS

To validate our numerical technique we first considered an
anisotropic planar waveguide with transverse dimensions
as shown in Fig. 1, 1 m. The channel is embedded
in an isotropic dielectric media with index equal to , sur-
rounded by a PML with thickness 1.0 m. The channel’s
ordinary and extraordinary refractive indexes are and

[11], respectively.
Here, , , and are the terms of the diagonal tensor
when the optical axes are aligned with coordinatesand .

In this simulation, we considered a computational window of 8
m ( direction) 8 m ( direction) covered by 3814 linear

elements, while in [11], we used a computational window of 34
m 34 m covered by 4784 linear elements; the wavelength

was 0.86 m and 45 . The permittivity tensor terms
are [12]

(43)

(44)

(45)

(46)

where is the rotation angle of the main tensor axes related to
the and coordinates. The waveguide was excited at
with the fundamental quasi-TM mode , with , and its
corresponding effective propagation constant , obtained
using a modal eingenvalue method. Fig. 2 shows the normalized
intensity variations of and components for a propagation
step of 0.1 m. The switching to a quasi-TE beam oc-
curred at 17.5 m, showing perfect agreement with [11].

As we can see in Figs. 2 and 3, the field assumes the
initial configuration again at 35 m, which is in
agreement with the value obtained through the relation

[13], where is the beating length,
and and are the effective propagation constants of
the modes and , respectively. Through modal analysis
[5], we found and ;
therefore, the beating length was 34.910 767 0m, which is in
good agreement with the value obtained by the present BPM.
Recently, several magnetooptic waveguides have been analyzed
in order to obtain very efficient optical isolators. The isolation
effect is based on the nonreciprocal behavior of the waveguide
with respect to the field propagation direction.

Next, we considered a magnetooptic rib waveguide, as shown
in Fig. 4 [14]. The relative permittivity tensor of the Bi:YIG
layers is given by

(47)

where , , and are the permittivity tensor terms in the
, , and direction, respectively, and represents the first-

order magnetooptic effect, which is related to the nonreciprocal
Faraday rotation effect.

To analyze this structure, the wavelength used was
1.485 m, and the structure parameters are 3.1 m,

3.4 m, 0.5 m, 8.0 m, 2.19,
2.18, 1.94. Here, is the Faraday rotation angle

Fig. 7. Rib waveguideY junction.

Fig. 8. Fundamental mode’sh component atz = 0 �m.

given by , with the off-diagonal elements
computed assuming 133 cm, where ,
is the effective refractive index. To simulate this effect, the
device geometric birefringence [5]
where and
were computed using modal analysis. The magnetooptic
permittivities used for the propagation analysis were thus
defined as , ,

, and . The
structure was excited by the-polarized fundamental mode,
obtained through modal analysis. We used a computational
window of 30 m ( direction) 30 m ( direction), covered
by 5533 linear elements, and propagation step 0.1 m.
By contrast, the computational window needed using the
previous paraxial approach [6] was of 200m ( direction)

100 m ( direction), covered by 10 365 linear elements.
Fig. 5 shows the normalized intensity related to and
components, along the propagation direction. Almost perfect
mode conversion from the component to the component
is achieved at m, in excellent agreement with [1].

Fig. 6, shows the field patterns from 0 to 7000 m,
with intervals of 1000 m. The polarization conversion from
to the , along the propagation direction, can be clearly seen.
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Fig. 9. Variation of the main component of the fundamental mode, plotted from top to bottom. The left column shows the nonparaxial case. The right column
shows the paraxial case. (a)z = 20�m, (b)z = 50�m, (c)z = 175�m, and (d)z = 250.
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Finally, we considered a rib waveguidejunction as shown
in Fig. 7, [16], [17]. This example shows the capability of the
new formulation to analyze waveguides varying along the prop-
agation direction and the PML performance. The bifurcation of
the waveguide’s center follows the curves defined by

m
(48)

for 40 m. The rib waveguide parameters are 2.0 m,
1.1 m, and 0.2 m, the refractive index of the

guiding region is 3.44, the substrate refractive index is
3.34, and the refractive index of the medium over of

the waveguide is 1.0. The junction was excited by the
fundamental mode, obtained through modal analysis [5] for
1.55 m (see Fig. 8). The PML parameters are given in Table I,
the thicknessbeing 1.0 m.Thecomputationalwindowused
in the previous paraxial formulation [11] was 300150 m and
9516 linear elements. By contrast, here we used a computational
windowof12 m ( direction) 10 m ( direction), coveredby
4514 linear elements. Fig. 9 shows the comparison between the
results obtained by our wide-angle and paraxial schemes, using
the same computational window and mesh. As expected, the ra-
diation is treated in a different way by the two approaches.

The wide-angle scheme expels the radiation within a shorter
propagation distance than the paraxial one. The results shown
in the left column of Fig. 9 are in good agreement with other
vector wide-angle BPM schemes reported in the literature [17].
The propagation step was 0.1 m.

IV. CONCLUSION

A vectorial FE BPM for transverse anisotropic media was
presented in detail, which constitutes a substantial improvement
on the scheme published in [6]. The present improved scheme is
based on a practically new formulation, which permits the inser-
tion of wide-angle approximations in a neat and straightforward
manner. Also, PML conditions were included. The present ap-
proach’s efficiency and usefulness were demonstrated through
the analysis of three key examples.

APPENDIX

CONNECTION WITH THE PREVIOUS FORMULATION

The formulation presented in [6] also started from (1) and
made use of the slow variation approximation and the diver-
gence condition (6). Using the present notation, the expression
obtained is given by

(49)

Next, the paraxial approximation reported in [6] was obtained
by neglecting the terms containing , , and

and is written as (see [6,(7)])

(50)

Though (50) is well defined within the paraxial approach re-
strictions, as demonstrated in [6], its extension to a Padé (wide-
angle) scheme is not straightforward, taking into account the
way (49) is presented. On the other hand, our general equa-
tion (7) is obtained from (49) by eliminating its last three terms,
using (6).
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