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Abstract
In the Internet of Things (IoT) networks, the data traffic would be very bursty and unpredictable.
It is therefore very difficult to analyze and guarantee the delay performance for delay-sensitive
IoT applications in fog networks, such as emergency monitoring, intelligent manufacturing, and
autonomous driving. To address this challenging problem, a Bursty Elastic Task Scheduling (BETS)
algorithm is developed to best accommodate bursty task arrivals and various requirements in IoT
networks, thus optimizing service experience for delay-sensitive applications with only limited com-
munication resources in time-varying and competing environments. To better describe the stability
and consistence of Quality of Service (QoS) in realistic scenarios, a new performance metric “Bursty
Service Experience Index (BSEI)” is defined and quantified as delay jitter normalized by the average
delay. Finally, the numeral results shows that the performance of BETS is fully evaluated, which can
achieve 5 − 10 times lower BSEI than traditional task scheduling algorithms, e.g. Proportional Fair
(PF) and the Max Carrier-to-Interference ratio (MCI), under bursty traffic conditions. These results
demonstrate that BETS can effectively smooth down the bursty characteristics in IoT networks,
and provide much predictable and acceptable QoS for delay-sensitive applications.
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1 Introduction

In future Internet of Things (IoT) networks, billions or even trillions of heterogeneous
machines and devices are connected by multiple advanced technologies including the Wireless
Sensor Networks (WSN), Radio Frequency Identification (RFID), cloud-edge/fog caching
and computing [3, 10] and etc. With the acceleration of 5G commercial deployment, a
large proportion of the IoT applications is delay-sensitive, such as emergency monitoring,
intelligent manufacturing, disaster relief, online games and autonomous driving. The internet
traffic of these delay-sensitive applications is bursty and unpredictable at different time scales
[8]. For example, some delay-sensitive applications like interactive multiplayer online games,
the event-driven applications, intelligent manufacturing and autonomous driving require
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stable delay performance with low delay jitter. In such cases, multipath signals need to be
received simultaneously in order to make the next-step control decisions. It is obvious to
observe that the QoS of IoT applications depends greatly on the delay performance of the
traffic data, which will reflect in the economic benefits of different service providers [11].

However, the wireless communication and computing resources in mobile networks are
highly limited, which make difficult to meet the fast growing demands of the booming
IoT applications with heterogeneous delay requirements. Therefore, efficient management
of network resources and flexible task scheduling algorithms play important roles in both
academic researches and industrial applications, especially with bursty task arrivals, dynamic
network topologies [2] and unpredictable terminal behaviors [1], in order to guarantee the
performance in both the average delay and the delay jitter.

To overcome the severe contradiction between the high delay requirements of the massive
traffic generated in the IoT networks and the scarce communication resources, the first thing
is to understand the busty characteristics of the data traffic, wherein terminal tasks arrive
randomly at the terminal buffers with different arrival rate and task sizes. To take full
advantage of the varying characteristic of the wireless channel state in time domain, frequency
domain, code domain, etc., plentiful researches are carried out in 5G and IoT networks
focusing on the system indexes including the mobility [12, 5], packet delay, and the high
frequency transmission [6]. Traditional scheduling algorithms like Proportional Fair (PF) and
Max Carrier-to-Interference ratio (MCI) just try to achieve satisfactory bit-level throughput
performance [5, 7]. Therefore, novel task scheduling algorithms need to be proposed in order
to guarantee the heterogeneous requirements of various delay-sensitive IoT applications with
bursty traffic load and dynamic network environments.

The rest of this paper is organized as follows. The system model for terminal task delay
are provided in Section 2. Section 3 gives the solution of probability distribution of task
delay. The BETS algorithm is proposed in Section 4. Numerical validations are performed
in Section 5. Finally, Section 6 concludes this paper.

2 System Model

2.1 System Overview
In the traffic layer, an IoT cluster with delay sensitive applications is considered. As shown
in Fig. 1, N terminals are randomly distributed in the coverage area of the central server. In
the MAC layer, each Time Slot (TS) with duration time of ∆t, and the entire system radio
resources are divided into M orthogonal parts, i.e. M Resource Blocks (RBs). At the start
of each TS, the central scheduler allocates these M RBs to the terminals according to the
metric Hjm defined by a certain task scheduling algorithm, and the RB will be allocated to
the terminal who has the highest scheduling metric on it, which can be formulated as

(j∗,m∗) = arg max
j,m

Hjm. (1)

The task delay in this layer is mainly reflected by the sensing and allocation of the ratio
resources.

In the physical layer, the instantaneous data rate of terminal j on RB m, i.e. rjm, is set
to be Gaussian distributed denoted by N(E[rjm], σ2

jm), according to the research on capacity
approximation in a Rayleigh fading environment. The data rates of the same terminal on
different RBs are assumed to be i.i.d distributed, and the distribution parameters are related
to the terminal’s position in this cluster [4]. The Probability Distribution Function (PDF) of
rjm is frjm

(x). The task delay in this layer is mainly reflected by the transmission delay of
the terminal data.
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Figure 1 Task scheduling in an IoT cluster with bursty traffic load. The randomly generated
terminal tasks are offloaded to the central server through wireless link.

The tasks generated at terminal j follow a Poisson arrival process with arrival rate λj

and random task size Sj , which arrive at the terminal buffer and need to be offloaded to the
central server to be processed. processing delays in the terminal device and the cloud server.

In order to obtain the statistical result of terminal task delay, the offloading processes
of the two consecutive tasks of the same terminal and the related parameters are modeled
in Fig. 2, where the blue and red lines represent the bustsy timelines of the previous and
current tasks respectively. The current task has to wait in the buffer before the delivery
of the previous task. The busty nature of the traffic and the varying channel state bring
challenge to the analysis, which has to take all the traffic layer, MAC layer and physical
layer into consideration.

Taking the discreteness of the scheduling process in each TS into consideration and
omitting the terminal mark, the time durations in Fig. 2 are defined as follows:

ta = na ·∆t: the arrival interval, i.e. the time duration between the arrivals of this two
tasks;
tw= nw ·∆t: the waiting time, i.e. the time duration between the current task’s arrival
and its start of transmission;
tt = nt ·∆t: the communication delay, i.e. the time duration between the current task’s
start of transmission and its delivery;
td = nd ·∆t: the task delay of the current task, i.e. the time duration between the arrival
and the delivery of the task;
t′d = n′d ·∆t: the task delay of the previous task.

The time durations described above are all discrete, and the parameters with the form of “n?”
are nonnegative integers which represent the TS amounts of corresponding time durations.
In real systems, the task delay cannot be infinitely large. Thus a threshold nd,max is defined

Fog- IoT 2020



10:4 Fog Network Task Scheduling for IoT Applications

Time

td
tttw

ta

td 
,

Figure 2 The offloading processes of two consecutive tasks of a same terminal.

for nd, and the probability Pr(nd > nd,max) is small enough to be neglected. Therefore, the
ranges of these integers are 1 ≤ nd, n

′
d ≤ nd,max, 0 ≤ nw ≤ (nd,max − 1), 1 ≤ nt ≤ nd,max,

and na ≥ 0. It is obvious that the probability of the time duration t? is equivalent to the
probability distribution of the corresponding TS amount n?. Thus we concentrate on the
PDF of the delay TS amount nd when carrying out latter analyses.

3 Problem Solution

To obtain the probability distribution of task delay is equivalent to solving the equation set
proposed in the following theorem.

I Theorem 1. The theoretical task offloading delay distribution can be calculated through
the following equation set.

V
nd,max×1
d =And,max×nd,max

t A
nd,max×nd,max
a V

nd,max×1
d (2a)

[1 1 · · · 1]nd,max×1
V

nd,max×1
d = 1. (2b)

In the above expressions, Vd with dimension nd,max×1 is the probability distribution vector for
the task delay TS amount nd. At and Aa with dimension nd,max × nd,max are the parameter
arrays, whose elements are the probability that the task delay is td = nd ·∆t on condition that
the task waiting time is tw = nw ·∆t, i.e. Pr(nd|nw), and the probability that the task waiting
time is tw = nw ·∆t on condition that the task delay of the previous task is t′d = n′d ·∆t, i.e.
Pr(nw|n′d), respectively.

Proof. By using the law of total probability twice, the probability for terminal task delay to
be nd TSs, i.e. Pr(nd), can be expanded as

Pr(nd) =
nd,max−1∑

nw=0
Pr(nd|nw) · Pr(nw)

=
nd,max−1∑

nw=0
Pr(nd|nw) ·

nd,max∑
n′

d=1

Pr(nw|n′d) · Pr(n′d),

nd = 1, 2, · · · , nd,max. (3)

We also have

Pr(nd) = Pr(n′d), nd = n′d = 1, 2, · · · , nd,max, (4)

which comes from the fact that for the same terminal, the task delays of all the tasks follow
the same statistical probability distribution. For the probability distribution of task delay,
i.e. Pr(nd), the normalized constraint shown below also needs to be satisfied.
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nd,max∑
nd=1

Pr(nd) = 1. (5)

The vectorial and array representation of the formulas (3) (4) is the formula (2a), and the
vectorial representation of the formula (5) is the formula (2b). This completes the proof of
the Theorem 1. J

4 BETS Algorithm

The traffic load of the terminal in IoT networks is normally a series of tasks, which have
dynamic task sizes and randomly generated at the transmitter [9]. The traditional algorithm
like PF scheduling tries to pursue satisfactory bit-level throughput, while the QoS of delay
sensitive IoT applications draws more concern. All these new features call for newly designed
task scheduling policies, which should take into the following considerations.

Task delay rather than the terminal throughput should become the main scheduling
purpose.
The bursty and heterogeneous characteristics of different applications should be smoothed
to provide consistent terminal experience.

Therefore, we introduce the Bursty Elastic Task Scheduling (BETS) algorithm to cope
with the bursty nature of IoT traffic.

In a system adopting the BETS algorithm, scheduling decisions are made for all the RBs
at the start of TS n. The scheduling metric of terminal j on RB m is defined as

Hjm = rjm

Rj/Sj
, (6)

where Rj is the historical average throughput of terminal j. The detailed execution steps of
BETS are described in Algorithm 1, and (9) is the updating formula of Rj . The parameter
k in the update formula (9) is the average window length, and R′j is the updated historical
average throughput of terminal j. Ijm is the indicator variable, the function of Ijm is
defined as

Ijm =
{

1, if RB m is allocated to terminal j,
0, otherwise. (7)

In the scheduling metric of BETS algorithm 1, the terminal with larger task size will
have a higher scheduling metric and vice versa, thus a smaller delay jitter can be obtained
through BETS. Besides, the BETS is equivalent to the PF scheduling algorithm in the cases
that all terminals have the same task size. For comparison, the scheduling metric of PF
scheduling algorithm is defined as

Hjm = rjm

Rj
. (10)

As for the MCI scheduling algorithm, it directly takes the instantaneous data rate rjm as
the scheduling metric and always tries to maximize the system throughput. The execution
steps of PF and MCI scheduling algorithms are similar to that of BETS algorithm except for
the calculation of the scheduling metric matrix H.

Fog- IoT 2020
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Algorithm 1 BETS Algorithm.

1: At the start of each TS, calculate the scheduling metric matrix H with element Hjm in
row j and column m as

Hjm = rjm

Rj/Sj
;

The rows corresponding to the terminals with empty buffers are set to be 0;
2: while there are nonzero elements in H, do
3: Find the maximum value in the scheduling metric matrix H as

(j∗,m∗) = arg max
j,m

Hjm; (8)

4: Allocate RB m∗ to terminal j∗;
5: Set the elements in column m∗ to be 0;
6: if Terminal j∗ has got enough radio resource to clear its buffer, then
7: Set the elements in row j∗ to be 0;
8: end if
9: Update the historical average throughput of each terminal as

R′j =
(

1− 1
k

)
Rj + 1

k

M∑
m=1

Ijm × rjm; (9)

10: end while
11: return the scheduling results;

5 Numerical Validations

In this section, the delay performances of BETS, PF, and MCI scheduling algorithms with
varying task size among terminals are investigated in an IoT cluster. In each TS with duration
time of 0.1 ms, there are 50 orthogonal RBs to be allocated to multiple terminals according
to certain task scheduling algorithms including not only the proposed BETS algorithm, but
also the traditional PF and MCI scheduling algorithms. The mean values of the Gaussian
distributed instantaneous data rates of the system terminals range from 500 kbps to 1500
kbps as results of the terminals’ different positions in the IoT cluster. The average window
length of the BETS and PF scheduling algorithms is 500. A total duration of 4 s is set for
the simulation process.

In the cases that the task size of the terminals follows Pareto or exponential distributions
with mean value of 1 bits, the mean task delays for different task sizes are provided in Fig. 3.

As shown from the numerical results, the BETS achieves a higher fairness for delay
performance with varying task size among terminals than those achieved by PF and MCI
scheduling algorithms.

For IoT applications with varying task size, it’s important to achieve an equalizing
delay performance for different task sizes. In the following definition, the the bursty service
experience index (BSEI) is introduced to evaluate the delay experience among the system
terminals.
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(a) Pareto distributed task size with mean value
1 kbits.
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(b) Exponential distributed task size with mean
value 1 kbits.

Figure 3 Terminal mean task delay for varying task size. The theoretical estimation errors are
also provided.
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Figure 4 Delay jitter comparisons of the three task scheduling algorithms.

I Definition 2. The BSEI of task delay is represented by the following performance index.

Qd = σ(td)
E(td) , (11)

where σ(td) and E(td) are the standard deviation and average value of the task delay respect-
ively.

The standard deviation σ(td) and the BSEI Qd represent the absolute and relative jitters
of the task delay respectively. A smaller Qd indicates lower jitter and better BSEI for task
delay in the system.

The jitter and the BSEI of terminal task delay are shown in Fig. 4 and Fig. 5, respectively,
and the BSEI is the ratio of the delay jitter and the average delay as shown in (11). The
results in these two figures further validate the superiority of BETS algorithm for achieving
better SE and a more consistent performance for terminal task delay, while the other two
algorithms achieves much large delay jitter and thus a poor experience for delay-sensitive
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Figure 5 BSEI comparisons of the three task scheduling algorithms.

tasks. As shown in Fig. 5, the proposed BETS algorithm can significantly reduce the BSEI,
e.g. at a typical task arrival rate of 500, BETS can achieve about 5 times and 10 times
more consistant service experience than MCI and PF, respectively, for delay sensitive IoT
applications. It’s because the introducing of the task size Sj to the scheduling metric of
the BETS algorithm. Terminals with higher traffic load have higher scheduling metric as
shown in (6).

6 Conclusions

In this paper, the problem of theoretical performance analysis of terminal task delay in IoT
networks was investigated. In order to cope with the bursty nature of the traffic statistics in
various IoT applications, a novel traffic scheduling algorithm named BETS was introduced,
which takes the terminal task size into consideration when making scheduling decisions.
Moreover, a new performance metric “Bursty Service Experience Index (BSEI)” is defined
and quantified as delay jitter normalized by the average delay to better describe the stability
and consistence of Quality of Service (QoS) in realistic scenarios. The numeral results show
that the task delay performance of BETS is better than PF and MCI scheduling algorithms.
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