
Routing Using Safe Reinforcement Learning
Gautham Nayak Seetanadi
Department of Automatic Control, Lund University, Sweden
gautham@control.lth.se

Karl-Erik Årzén
Department of Automatic Control, Lund University, Sweden
karlerik@control.lth.se

Abstract
The ever increasing number of connected devices has lead to a metoric rise in the amount data to
be processed. This has caused computation to be moved to the edge of the cloud increasing the
importance of efficiency in the whole of cloud. The use of this fog computing for time-critical control
applications is on the rise and requires robust guarantees on transmission times of the packets in the
network while reducing total transmission times of the various packets.

We consider networks in which the transmission times that may vary due to mobility of devices,
congestion and similar artifacts. We assume knowledge of the worst case tranmssion times over
each link and evaluate the typical tranmssion times through exploration. We present the use of
reinforcement learning to find optimal paths through the network while never violating preset
deadlines. We show that with appropriate domain knowledge, using popular reinforcement learning
techniques is a promising prospect even in time-critical applications.

2012 ACM Subject Classification Computing methodologies → Reinforcement learning; Networks
→ Packet scheduling

Keywords and phrases Real time routing, safe exploration, safe reinforcement learning, time-critical
systems, dynamic routing

Digital Object Identifier 10.4230/OASIcs.Fog-IoT.2020.6

Funding The authors are members of the LCCC Linnaeus Center and the ELLIIT Strategic Research
Area at Lund University. This work was supported by the Swedish Research Council through the
project “Feedback Computing”, VR 621-2014-6256.

1 Introduction

Consider a network of devices in a smart factory. Many of the devices are mobile and
communicate with each other on a regular basis. As their proximity to the other devices
change, the communcation delays experienced by the device also change. Using static routing
for such time-critical communications leads to pessimistic delay bounds and underutilization
of network infrastructure.

Recent work [2] proposes an alternate model for representing delays in such time-critical
networks. Each link in a network has delays that can be characterised by a conservative
upper bound on the delay and the typical delay on the link. This dual representation of
delay allows for capturing the communication behavior of different types of devices.

For example, a communication link between two stationary devices can be said to have
equal typical and worst case delays. A device moving on a constant path near another
stationary device can be represented using a truncated normal distribution. Adaptive routing
techniques are capable of achieving smaller typical delays in such scenarios compared to
static routing.

© Gautham Nayak Seetanadi and Karl-Erik Årzén;
licensed under Creative Commons License CC-BY

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020).
Editors: Anton Cervin and Yang Yang; Article No. 6; pp. 6:1–6:8

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/296708942?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-6491-4344
mailto:gautham@control.lth.se
https://orcid.org/0000-0002-3159-0563
mailto:karlerik@control.lth.se
https://doi.org/10.4230/OASIcs.Fog-IoT.2020.6
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


6:2 Routing Using Safe Reinforcement Learning

x y
4,10,15

4 : Typical transmission time, cTxy
10 : Worst case transmission time, cWxy
15 : Worst case time to destination, cxt

Figure 1 Each link with attributes.

The adaptive routing technique described from [2] uses both delay information (typical and
worst case) to construct routing tables. Routing is then accomplished using the tables which
consider typical delays to be deterministic. This is however not the case as described above.

We propose using Reinforcement Learning (RL) [8, 12] for routing packets. RL is a
model-free machine learning algorithm that has found prominence in the field of AI given its
light computation and promising results [5, 9]. RL agents learn by exploring the environment
around them and then obtaining a reward at the end of one iteration denoted one episode.

RL has been proven to be very powerful but it has some inherit drawbacks when considering
its application to time-critical control applications. RL requires running a large number of
epsiodes for an agent to learn. This leads to the possibility of deadline violations during
exploration. Another drawback is the large state-space used for learning in classical RL
methods that leads to complications in storage and search.

In this paper, we augment classical reinforcement learning with safe exploration to
perform safe reinforcement learning. We use a simple (Dijkstras[4]) algorithm to perform
safe exploration and then use the obtained information for safe learning. Using methodology
described in Section 4 we show that safety can be guaranteed during the exploration phase.
Using safe RL also restricts the state-space reducing its size. Our decentralised algorithm
allows each agent/node in the network to make independent decisions further reducing the
state space. Safe reinforcement learning explores the environment to dynamically sample
typical transmission times and then reduce delays for future packet transmissions. Our
Decentralised approach allows each node to make independent and safe routing decisions
irrespective of future delays that might be experienced by the packet.

2 System Architecture

Consider a network of nodes, where each link e : (x→ y) between node x and y is described
by delays as shown in Figure 1.

Worst case delay (cW
xy): The delay that can be guarateed by the network over each

link. This is never violated even under maximum load.
Typical delay (cT

xy): The delay that is encountered when transmitting over the link
and varies for each packet. We assume this information to be hidden from the algorithm
and evaluated by sampling the environment.
Worst case delay to destination (cxt): The delay that can be guaranteed from node
x to destination t. Obatined after the pre-processing described in Section 4.1.

A network of devices and communication links can be simplified as a Directed Acyclic
Graph as shown in Figure 2. The nodes denote the different devices in the network and the
links denote the connections between the different devices. For simplicity we only assume
one-way communication and consider a scenario of transmitting a packet from an edge
device i to a server, t at a location far away from it.



G.N. Seetanadi and K.-E. Årzén 6:3

i

x y

z

t

4,10

3,10

3,10

12,25

10,10

1,15

1,15

i

x y

z

t

20

20

10

25

10

30

15

Figure 2 Example of graph and corresponding state space for the reinforcement learning problem
formulation.

As seen from the graph, many paths exist from the source i to t destination that can be
utilised depending upon the deadline DF of the packet.

The values of cT
xy and cW

xy are shown in blue and red respectively for each link e(x→ y).
We also show the value of cxt in green obtained after the pre-processing stage described in
the following section.

3 Reinforcement Learning

Reinforcement Learning is the area of machine learning dealing with teaching agents to learn
by performing actions to maximise a reward obtained [8] RL generally learns the environment
by performing actions (safe actions) and evaluating the reward obtained at the end of the
episode. We use Temporal-Difference (TD) methods for estimating state values and discover
optimal paths for packet transmission.

We model our problem of transmitting packets from source i to destination t as a Markov
Decision Process (MDP) as is the standard in RL. An MDP is a 4-tuple (S,A, P,R), where
S is a set of finite states, A is a set of actions, P : (s, a, s′) → {p ∈ R | 0 ≤ p ≤ 1} is a
function that encodes the probability of transitioning from state s to state s′ as a result of
an action a, and R : (s, a, s′)→ N is a function that encodes the reward received when the
choice of action a determines a transition from state s to state s′. We use actions to encode
the selection of an outgoing edge from a vertex.

Fog- IoT 2020



6:4 Routing Using Safe Reinforcement Learning

3.1 TD Learning
TD learning [8] is a popular reinforcement learning algorithm that gained popularity due to
it expert level in playing backgammon [9]. This model-free learning uses both state s and
action a information to perform actions from the state given by the Q-value, Q(s, a). TD
learning is only a method to evaluate the value of being in the particular state. It is generally
coupled with an exploration policy to form the strategy for an agent. We use a special TD
learning called one step TD learning that allows for decentralised learning and allows for
each node to make independent routing decisions. The value update policy is given by

Q(s, a) = Q(s, a) + α · (R+ max(γ Q(s′, a′))−Q(s, a)) (1)

3.2 Exploration Policy
ε-greedy exploration algorithm ensures that the optimal edge is chosen for most of the packet
transmissions while at the same time other edges are explored in search of a path with higher
reward. The chosen action a ∈ A is either one that has the max value V or is a random
action that explores the state space. The policy explores the state space with a probability ε
and the most optimal action is taken with the probability (1− ε). Generally the value of
ε is small such that the algorithm exploits the obtained knowledge for most of the packet
transmissions. To ensure that the deadline DF is never violated, we modify the exploration
phase to ensure safety and perform safe reinforcement learning.

4 Algorithm

We split our algorithm into two distinct phases. A pre-processing phase tha gives us the
initial safe bounds required to perform safe exploraion. A run-time phase then routes packets
through the network.

At each node, the algorithm explores feasible paths. During the inital transmissions
the typical tranmssion times are evaluated after packet transmission. During the following
transmissions, the path with the least delay is chosen more frequently while also exploring
new feasible paths for lower delays. All transmissions using our algorithm are guaranteed to
never violate any deadlines as we use safe exploration.

4.1 Pre-processing Phase
The pre-processing phase determines the safe bound for the worst case delay to destination t
from every edge e : (x → y) in the network. The algorithm used by our algorithm is very
similar to the one in [2]. This is crucial to ensure that there are no deadline violations during
exploration in the run-time phase and is necessary irrespective of the run-time algorithm
used. Dijkstras shortest path algorithm [7, 4] is used to obtain these values as shown in
Algorithm 1.

4.2 Run-time Phase
The run-time algorithm is run at each node on the arrival of a packet. It determines
e : (x→ y) the edge on which the packet is transmitted from the node x to node y. Then
the node y executes the run-time algorithm till the packet reaches the destination.



G.N. Seetanadi and K.-E. Årzén 6:5

Algorithm 1 Pre-Processing.

1: for each node u do
2: for each edge (u→ v) do
3: // Delay bounds as described in Section 4.1
4: cuv = cW

uv + min(cvt)
5: // Initialise the Q values to 0
6: Q(u, v) = 0

Algorithm 2 Node Logic (u).

1: for Every packet do
2: if u = source node i then
3: Du = DF // Initialise the deadline
4: δit = 0 // Initialise total delay for packet = 0
5: for each edge (u→ v) do
6: if cuv > Du then // Edge is infeasible
7: P (u|v) = 0
8: else if Q(u, v) = max(Q(u, a ∈ A)) then
9: P (u|v) = (1− ε)
10: else
11: P (u|v) = ε/(size(F − 1))
12: Choose edge (u→ v) with P
13: Observe δuv

14: δit += δuv

15: Dv = Du − δuv

16: R = Environment Reward Function(v, δit)
17: Q(u, v) = Value iteration from Equation (1)
18: if v = t then
19: DONE

The edge chosen can be one of two actions:
Exploitation action: An action that chooses the path with the least transmission time
out of all known feasible paths. If no information is known on all the edges, then an edge
is chosen at rondom.
Exploration action: An action where a sub-optimal node is chosen to transmit the
packet. This action uses the knowledge about cxy obtained during the pre-prcocesing
phase to ensure that the exploration is safe. This action ensure that the algorithm is
dynamic by ensuring that if there exists a path with lower transmission delay, it will be
explored and chosen more during future transmissions. Exploration also optimises for a
previously congested edge that could be decongested at a later time.

Algorithm 2 shows the pseudo code for the run-time phase. The computation is computa-
tionally light and can be run on mobile IoT devices.

4.3 Environment Reward
The reward R is awarded as shown in Algorithm 3. After each traversal of the edge, the
actual time taken δ is recorded and added to the total time traversed for the packet, δit+ = δ.
The reward is then awarded at the end of each episode and it is equal to the amount of time
saved for the packet, R = DF − δit.

Fog- IoT 2020



6:6 Routing Using Safe Reinforcement Learning

Algorithm 3 Environment Reward Function(v, δit).

1: Assigns the reward at the end of transmission
2: if v = t then
3: R = DF − δit

4: else
5: R = 0

0
10
20
30
40

Deadline DF = 20

0
10
20
30
40

Deadline DF = 25

0
10
20
30
40

Tr
an

sm
iss

io
n

T
im

e

Deadline DF = 30

0
10
20
30
40

Deadline DF = 35

0 100 200 300 400 5000
10
20
30
40

Packet / Episode No.

Deadline DF = 40

0 100 200 300 400 500
Packet / Episode No.

Figure 3 Smoothed Total Delay for Experiment with (a) Constant delays and (b) Congestion at
packet 40.

5 Evaluation

In this section, we will evaluate the performance of our algorithm. We apply it to the
network shown in Figure 2. The network is built using Python and the NetworkX package [6]
package. The package allows us to build Directed Acyclic Graphs (DAGs) with custom
delays. Each link e : (x→ y) in the network has the constant worst case link delay cW

xy visible
to the algorithm but the value of cT

xy although present is not visible to our algorithm. The
pre-processing algorithm and calculates the value of cxt. This is done only once initially and
then Algorithms 2 and 3 are run for every packet that is transmitted and records the actual
transmission time δit.

Figure 3 shows the total transmission times when the actual transmission times δ and
typical transmission times cT are equal. We route 500 packets through the network for
deadine DF ∈ (20, 25, 30, 35, 40). For DF = 20, the only safe path is (i→ x→ t) and so has
a constant δit for all packets. For the remaning deadlines, the transmission times vary as



G.N. Seetanadi and K.-E. Årzén 6:7

new paths are taken during exploration. The deadlines are never violated for any packets
irrespective of the deadline. Table 1 shows the optimal paths and the average transmission
times compared to the algorithm from [2].

Figure 3 shows the capability of our algorithm in adapting to congestions in the network.
Congestion is added on the link (i→ x) after the transmission of 40 packets. The tranmission
time over the edge increases from 4 to 10 time units and is kept congested for the rest of
the packet transmissions. The algorithm adapts to the congestion by exploring other paths
that might now have lower total transmission times δit. In all cases other than DF = 20, the
algorithm converges to the path (i→ t) with δit = 12. When DF = 20, (i→ x→ t) is the
only feasible path.

6 Practical Considerations

In this section we will discuss some of the practical aspects when implementing the algorithms
described in Section 4.

6.1 Compuational Overhead
The computational compexity of running our algorithm mainly arises in the pre-processing
stage. This complexity is dependent on the number of nodes in the network. Dijkstras
algorithm has been widely studied and have efficient implementations that reduce computation.
The pre-processing has to be run only once for all networks given that there are no structural
changes.

6.2 Multiple sources
The presence of multiple sources and thus multiple packets on the same link can be seen as
an increase in the typical delays on the link. This holds true given that the worst case delay
cW

xy over each link is properly determined and guaranteed.

6.3 Network changes
Node Addition: During the addition of a new node the pre-processing stage has to
be run in a constrained space. The propagation of new information to the preceeding
nodes is only necessary if it affects the value of cxt over the affected links. The size of the
network affected has to be investigated furthur.
Node Deletion: In the event of node deletion during the presence of a packet at the
deleted node, the packet is lost and leads to deadline violation. However no further
packages will be transmitted over the link as the reward R is 0. Similar to the case of
node addition, the pre-processing algorithm requires furthur investigations.

Table 1 Optimal Path for Different Deadlines.

DF Optimal Path Delays [2] Average Delays (1000 episodes)

15 Infeasible – –
20 {i,x,t} 14 14
25 {i,x,y,t} 10 10.24
30 {i,x,y,t} 10 10.22
35 {i,x,z,t} 6 6.64
40 {i,x,z,t} 6 6.55

Fog- IoT 2020



6:8 Routing Using Safe Reinforcement Learning

7 Conclusion and Future Work

In this paper we use safe reinforcement learning to routing networks with variable transmission
times. A once used pre-processing algorithm is used to determine safe bounds. Then a safe
reinforcement learning algorithm uses this domain knowledge to route packets in minimal
time with deadline guarantees. We have considered only two scenrios in this paper but we
believe that the algorithm will be able to adapt with highly variable transmission times and
network failures. The use of low complexity RL algorithm makes it suitable for use on small,
mobile platforms.

Although we show stochastic convergence in our results with no deadline violations, our
current work lacks formal guarantees. Recent work has been published trying to address
analytical safety guarantees of safe reinforcement learning algorithms [10, 11]. In [10], the
authors perform safe Bayesian optimization with assumptions on Lipschitz continuity of
function. While [10] estimates the safety of only one function, our algorithm is dependent on
the continuity of multiple functions and requires more investigation.

The network implementation and evaluation using NetworkX in this paper have shown that
using safe RL is a promising technique. An extension of this work would be implementation
on a network emulator. Using network emulators (for example CORE [1], Mininet [3]) would
allow us to evaluate the performance of our algorithm on a full internet protocal stack.
Using an emulator allows for implementation of multiple flows between multiple sources and
destinations.

References
1 Jeff Ahrenholz. Comparison of core network emulation platforms. In 2010-Milcom 2010

Military Communications Conference, pages 166–171. IEEE, 2010.
2 Sanjoy Baruah. Rapid routing with guaranteed delay bounds. In 2018 IEEE Real-Time

Systems Symposium (RTSS), pages 13–22, December 2018.
3 Rogério Leão Santos De Oliveira, Christiane Marie Schweitzer, Ailton Akira Shinoda, and

Ligia Rodrigues Prete. Using mininet for emulation and prototyping software-defined networks.
In 2014 IEEE Colombian Conference on Communications and Computing (COLCOM), pages
1–6. Ieee, 2014.

4 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1(1):269–271, December 1959. doi:10.1007/BF01386390.

5 Arthur Guez, Mehdi Mirza, Karol Gregor, Rishabh Kabra, Sébastien Racanière, Théophane
Weber, David Raposo, Adam Santoro, Laurent Orseau, Tom Eccles, et al. An investigation of
model-free planning. arXiv preprint, 2019. arXiv:1901.03559.

6 Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux, Travis Vaught, and Jarrod Millman, editors,
Proceedings of the 7th Python in Science Conference, pages 11–15, Pasadena, CA USA, 2008.

7 Kurt Mehlhorn and Peter Sanders. Algorithms and Data Structures: The Basic Toolbox.
Springer Publishing Company, Incorporated, 1 edition, 2008.

8 Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An Introduction. Adaptive
computation and machine learning. MIT Press, 2018.

9 Gerald Tesauro. Temporal difference learning and td-gammon. Commun. ACM, 38(3):58–68,
March 1995. doi:10.1145/203330.203343.

10 Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration for interactive
machine learning. In Proc. Neural Information Processing Systems (NeurIPS), December 2019.

11 Kim P Wabersich and Melanie N Zeilinger. Safe exploration of nonlinear dynamical systems:
A predictive safety filter for reinforcement learning. arXiv preprint, 2018. arXiv:1812.05506.

12 Marco Wiering and Martijn Van Otterlo. Reinforcement learning. Adaptation, learning, and
optimization, 12:3, 2012.

https://doi.org/10.1007/BF01386390
http://arxiv.org/abs/1901.03559
https://doi.org/10.1145/203330.203343
http://arxiv.org/abs/1812.05506

	Introduction
	System Architecture
	Reinforcement Learning
	TD Learning
	Exploration Policy

	Algorithm
	Pre-processing Phase
	Run-time Phase
	Environment Reward

	Evaluation
	Practical Considerations
	Compuational Overhead
	Multiple sources
	Network changes

	Conclusion and Future Work

