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Ordered quantization and the Ehrenfest time scale
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We propose a prescription to quantize classical monomials in terms of symmetric and ordered expansions of
noncommuting operators of a bosonic theory. As a direct application of such quantization rules, we quantize a
classically time evolved functio®(q,p,t), and calculate its expectation value in coherent states. The result
can be expressed in terms of the application of a classical operator that perf@aussian smoothingf the
original functionO evaluated at the center of the coherent state. This scheme produces a natural semiclassical
expansion for the quantum expectation values at a short time scale. Moreover, since the classical Liouville
evolution of a Gaussian probability density gives the same form for the classical statistical mean value, we can
calculate the first-order correctiontnentirely from the associated classical time evolved function. This allows
us to write a general expression for the Ehrenfest time in terms of the departure of the centroid of the quantum
distribution from the classical trajectory, provided we start with an initially coherent state for each subsystem.
In order to illustrate this approach, we have calculated analytically the Ehrenfest time of a model with
N-coupled nonlinear oscillators with nonlinearity of even order.
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[. INTRODUCTION value in coherent states at each time. The final result, which
is shown to be analytically identical to the statistical average
Since the earliest days of the quantum theory, the invessalculated through the classical Liouville formalism, is writ-
tigation of the differences between the probabilistic conceptéen in terms of a certain differential operator acting on the
in classical Liouville and quantum dynamics has been ar®riginal classical function. Since this is just a compact form
important issue. There have been many studies, in the laSf €xpressing the action of the corresponding power series in
two decades, concerning the semiclassical regime of systerffg OUr recipe automatically leads to a semiclassical expan-
whose classical counterparts exhibit chfis The question  SiON around the time evolved classical function. Notice that
of estimating how long the classical and quantum evolutiondn€ €quality between quantum and statistical centroids guar-
stay close has been one of the main questions in semiclas@ntees that we are working within a classical time scale. This
cal analysis. For classically chaotic flows, the break time 0|_a”0WS us to d_ef_lne mathemaﬂcally the Eh_renfest SC‘"%"e using
Ehrenfest time t) was found in Refs[2,3] and then rigor- just the LIOUVI||I§.FI Gaussian average, without solving the
. . . : quantum dynamical problem.
ously proved in Refl4] to diverge logarithmically with:. In

the classicall lar fi i ted in BBT that As an example, we present an explicit calculation of the
€ classically regu'ar flow, it was ,3“99§5 edin R ]'. al " Ehrenfest time foN-coupled nonlinear oscillators, with non-
the behavior ot with 7 is algebraic £~ °), but no univer-

: linearity of order X, an even integer. This model, to which
sal nature of such behavior has been shown yet.

i , we will address the quantum-classical departure issue can be
According to the famous Ehrenfest's wji], for quan-  5ssociated to several nonlinearly interacting fields via Kerr-

tum states that are localized enough, the time variation of thgype[g, 10] and cross-Kerr-type interactiofsl] known to be
mean quantum momentum must be equal to the local forcgelevant in quantum optidsl?], and also for two quantized
This statement is exact for quadratic Hamiltonians, but itsjibrational modes of a single trapped ipt3]. It is an inte-
validity is restricted to a short-time scale, the Ehrenfest scalegrable model where the role of nonlinearity can be studied
for more general nonlinear systems. Mathematically, theanalytically for several quantities and, in particular, fér
Ehrenfest theorem allows us to writé(X))=0O((X)) for =~ =k=2 the quantum-classicaireak timehas been deter-
times smaller than the Ehrenfest time. In this situation, thenined[14] based on physical properties of the exact quan-
initial dynamics is described essentially by a mean field aptum states. Although the emphasis of studying the break
proximation, where we have a localized packet obeying clastimes in the literature has been on “chaotic statg819),
sical equations of motion. Then, it is reasonable to expect Aere we are concerned with integrable cases, where we are
rather good agreement between quantum and classical Lio@ble to derive an analytical expression for the Ehrenfest time.
villian centroids and the classical trajectory. In fact, this sce-
nario has already been reported in literatLifg

In this work, we propose a simple analytical scheme to Il. ORDERED QUANTIZATION
calculate the Ehrenfest time for integrable systems. Our start-
ing point is to propose a classical Liouvillian operator that
makes explicit the symmetric form of the usual quantization Let us start by presenting a convenient quantization
rules. Using such an operator, we are able to take a generd¢heme for a single degree of freedom system, which will be
classical function® that expresses the time evolution of a €asily generalized to degrée Consider two noncommuting
physical quantity, quantize it, and evaluate its expectatioroperatorsA andB whose commutator is@number, denoted

A. Definition
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by ¢ ([A,B]=c). Then, a given classical monomialb™, taking expectation values in the Weyl-Heisenberg coherent

wherea andb are canonically conjugated classical variablesStates. We start by expressing such a polynomial in terms of

[16], will be quantized in asymmetricand ordered form  bosonic creation and annihilation operators

through the prescriptions P [T
g p p SQ,ﬁQn pm= g~ (112)357p@npm

a"o™— S a(A"B™), ) 2 2. . ...

’ =z, €M% % (@a+ah"a-ah™,  (4)

where superoperat@; 5 is given b
berop ABIST Y wherez, = (—1)"(¥A/2)"*™. Now, using

- 3[AB])X n
—_—FF 0

Ki E\alé (2) (é.i éT)n:kZO (il)nk( E)e(l/Z)(?a&é‘r(éTnkék), (5)

Sha= e~ (12ABI7 - 3
' k=0

The above indexf(\,é) corresponds to the ordering wifh we can re-express E¢4) as

on the left andB on the right. Since[da,dg]=[da,B] nom

=[A,d5]=0, ShB a_ndé_‘gA areclassicalunitary differential Sg sO"PM= 2 2 (—1)™ Iz, m( n)
superoperators satisfyinfa gSg A=Sg ASAs=1. The pre- ’ k=0 =0 Tk
scription defined in expressiofl) leads to different order-

ings (depending on which variable is chosen tosber b) for % m e(1/4)((9§7 ﬁgf)e(llz)aézﬁéie(lIZ)%‘td;‘sf

the same original classical function and, therefore, the asso- I

ciated symmetric operators must be the same. From this con- . A .

sideration, we deduce the following ordering formulas: X(aI”*kaEaém*'aL ' (6)
AnémzsgB ABmAn= e+AB] TATBBMAN with the subindexes that we introduced, to indicate where the

action of the differentiation should take place. At the end of

oA PN A B 92 A nA calculation we must erase all these subindexes. Using rela-
BmAnzS/% éAan:e_[A'B]HAaBAan' 3 tion (3), we get ’
Using a classical displacement operagfxf(x)=f(x+a), o n o m n
which can be used to write e “2%A%AMB™=[A Sé,ﬁQ”PmZIZO IZEO (_1)m_lzn,m< k)

—(c/2)dg]"B™, one can show that these results reproduce

those in the textbooksésee, e.g., Louisel[17]). A simple m 2 2 o e
’ N . 1/4) (9= — - 1/2)97 05t a(112)d3 3t ada. daf

example shows that our quantization scheme leads to the 1 (M e e(V2)0a, Tal g 11202 aieda, ]

usual quantization rules, but in an automatically ordered

form. Consider the following product of classical canonical x(éln—kagm—'égég). (7)

phase space variableg?p. According to the usual rules, this

is transformed into @otally symmetricoperator[18] of the ~ This is the normal- ordered expressi@in the creation and
form 1(O2P+PO2+OPQ), and using commutation rela- annihilation operatojsfor the original QP-ordered mono-
tion [O,P]=1#, rewritten asd)2P —140. But this is exactly mial. Now, it is a simple matter to calculate its expectation
the result produced by the expression in E.with choice value.
(a,b)=(q,p), just by making some derivatives. We finally

note that superoperatof, g have already appeared in litera-

ture in the case of the canonical phase space operators Since we are interested in the connection between quan-
(A,B)=(Q,P), in slightly different context$19]. tum and classical mechanics, the coherent state basis appears
as the most appropriated one. In particular, it will be of in-
terest for us to evaluate the expectation value in coherent

states of some operator products like the one treated in pre-

As an immediate application of the formulas presentecteding section. Then, we first calculate the matrix elements
above, we will express the totally symmetric ordered expresin the coherent state basis of the operator function given in
sion Sg pQ"P™ in a form more suitable for our purpose of Eq. (7)

C. Coherent states representation

B. Normal ordering in bosonic operators

(1] S5,Q"P"az) _
(i az)

Zn,me(lm)("i{"i{) e&a"’de(llz)"agbe(1’2)‘9C‘9d[ \/g (a+b)

" h(c—d)]™
[\[EI—} }aCaz- (8)

b:d:ai‘
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Setting nowa; = a,=ag=(qo+ 1Py )/ 2% and performing  Coefficientsc, (t) contain all the time dependence. Now,
adequate variable transformations, we finally get applying the operator of ordered quantizatifg » and tak-
ing the average in coherent states we obtain
ol Ss pQ"P™M @ =e(”"4)V3q”pm, (9) a A a
e Sa Qo) i (| O(Q.P.1)|ag) = "e0(do,po 1), (19

where where we have used res@®). In order to estimate how long
V2= 2 4 2 result(14) could be trusted, we present the calculation of the
0" " " “Po’ classical statisticatbounterpart of the problem. In the classi-
cal Liouvillian formalism, the following mean value is de-
(Go.Po) = ({ ol Ql o) (ol Pl o)) (10 fined in the phase space,):
The expectation value given in E() must be calculated (O(do,Po.)) :f dqdpe(q,p,H)O(q,p,0), (15
through the series expansion of the classical operator Res ” R

2

(14)V i i i i L s
eh o, which 9“163 a nlatural exp?nsm_n 'ﬂ polwer_sfnlfl_ _where o, po) stands for the center of the initial distribution
showing its semiclassical nature. In fact, in the classical limit, " '0)” " Then. since p(q.p.t)=e“p(q.p.0) and

i—0, the quantum expectation value of the operator func—O(q p,H)=e £'0(q,p,0), taking into account the fact that

tion reduces to a purely classical function calculated at th"?he volume in the phase space is preserved, we can rewrite

center of the coherent packet located @4, o). __the previous equation in a Heisenberg-like form
Another interesting relation can be obtained from a simi-

lar calculation:
<O(qo,po,t)>cs=f dqdpo(q,p,00(q,p,t). (16

(QP™) = e Ve e DlaTnglpl), (1) | S
Consider now a Gaussian initial distribution with widdh
which implies that and centered at poingjf,po). Performing the variable trans-
formations ¢—qg) =X and (—py) =Yy and using the clas-

7 (sin(ﬁ/Z) Jgop, sical displacement operator again, we can rewrite(Eg). as

1 AN DM\ — 2
E<[Q vP ]>—eX ZVO

hil2 oro - e—Xz/a' e—yz/o
(12 (O0)es= f dxdy——= ——=¢€"e¥»O(q,p,t). (17

\NTO \NTO
It is important to note that the term within the parentheses inN tice that function® inside the int | | q q
Eq. (1) is exactly the Weyl transform of operat@"P™ 0 'ﬁe hat functio '.”Sgle €n egrﬁ no onlger epends
HaYY? on the integration variables. Hence, by completing squares
[19]. The extra operator fact@™¥%o is what makes refer- and performing formally the integration, we finally obtain
ence to the width of the coherent packet, as we shall see later.

These results also point to the existence of an asymptotic (O(do,Po.t)) ze(gm)vgo(qo Po.b). (18)
classical limit ¢z—0) for such expectation values in coher- ERes Ho
ent states. Now, we have proved that the effect of applying operator

(@75 is exactly that of smoothing functio® through a
. SHORT TIME QUANTIZATION Gaussian mean, wheteis related to the width of the Gauss-
The usual quantization rules are defined in the Heisenber@?S ?)Isgrlgtl:)ﬁor?aéoal?eeagiel)degw tjhsee;:gog)t(g'rggs'@%;zgggly’
picture, where the solutions for Ham|l_ton’s e_quauons,as the Gaussian smoothing of the Wigner funcfi2. It is
RECHY AandApﬁ‘(q’p’t)’ AareAtrzinsformed |r1to He|§enberg important to notice that this result is exact for Gaussian sta-
operatorsQ(Q,P.t) andPy(Q,P,t), whereQ andP de- isiical averages, i.e., it was derived from first principles
note Schrdinger operators. On the other hand, since theinout any approximation. The only implicit assumption

Heisenberg and Schdger pictures coincide at=0, any  ysed in the calculation was the existence of the derivatives in
scheme of quantization based on the Sdhrger picture all orders for function®.

would describe reasonably the quantum world for very short ¢ comparison between expressighd) and (18), with
times. However, as long as we are interested in analyzing thg— z  confirms the fact that our proposal of a Safirger
quantum operator evolution only during a classiG@ean 4 antization for classical function should be adequate either
field) time scale, this would suffic¢for the first order ¢ 4 short-time scale or in cases in which the classical func-

correction see Ref3]). _ _ tion depends linearly on the phase space coordinate®§)
In this context, consider a classically time evolved func—(e_g_’ harmonic oscillator Results(14) and (18) can easily
tion O that has the following well defined expansion: be extended for higher degrees of freedom.
B At this point one might formulate a question. First we
; ; 7l4)v2 lassical func-
O(q.p.t)= c (H)a"p™ 13 interpret the action of operatef™’#Vo on any classical func
(@p.t n,;:o nm(DA7P A3 tion as an exact factorization of the effect of a Gaussian

016206-3



ANGELO, SANZ, AND FURUYA PHYSICAL REVIEW E68, 016206 (2003

wave packet contribution. In fact, for completely localized 10’ .
distribution ¢ =0) there are no corrections. Then, one may

ask: is it possible, in the particular case of coherent separabl

initial states, to express the exact quantum centrdR{})) 10°
—((O(t),P(t))) in terms of smoothed forme™4¥" (1),
wherer(t) =(g.(t),pc(t)) is a certain classical dynamical
vector in phase space? The answer will be positive if we are=
able to calculate the inverse of the Gaussian smoothing opE
eration on the quantum centroid vector in the phase space A

\

LWl

=10

/

2 4

.
107 L A

[l<R(t)>-
\

re(t) =€~ Oo( ag| R(1)] ag). (19
Functionr(t) will then be acoherent quantum trajectoryn 0y o7
the sense that it will carry all quantum dynamical informa- /
tion possible to put in a trajectory, except the contribution 10° , ‘
due to a Gaussian smoothing effect. For the trivial cadd of 10 10° 10"
noninteracting harmonic oscillators and the case of a bilineal ot
coupling between two harmonic oscillators, the quantum-
coherent and -classical trajectories coincidg.(t),p.(t))

=(9o(1).Po(1))), as expected.

-1

FIG. 1. Dimensionless quantity which measures the departure
between quantum and classical centroids as a function of the dimen-
sionless parametapt for the bidimensional quartic oscillatoiN(
=2k=2). These calculations were analytically performed vgth

IV. THE EHRENFEST TIME =pi=1 (A=2), w;=w=1, andg=0.1, and% =1 (solid line), %

=0.1 (dashed ling and #=0.01 (dot-dashed line The Ehrenfest

time scale(25) for each value of: is represented by a vertical line
Now, we have all the necessary tools to undertake thén the corresponding style.

problem of estimating the Ehrenfest time in the case of an
initially separable coherent Gaussian wave packet. Assuminglassical dynamics. However, since that is indeed the first
that the break instant occurs when the first-order correctiomanifestation of short-time quantum effef#g, our proposal

in 2 becomes as important as the original vector, we applynust be enough to give a good estimate fpr In what

the smoothing process to the phase space classical trajectdeflows, we will calculate the above defined break time for
vector of a system withN degrees of freedonr(t)  the system oN-coupled nonlinear oscillators.

=(q41(1),p1(1), . . . ,an(t),pn(t)). Expanding the smoothing
operator up to the first order ifi, we obtain

A. Formal definition

B. Application to a nonlinear system

. V2 hi_, Consider the following classical Hamiltonian:
(R(1))y=e" V7 (t)=r(t)+ - V2r (1), (20
4 N2y g2 N 242\ 16
I I I I
whereV2=3N V2 is theN-dimensional Laplacian operator. H_;l e igl ( 2 ) (23

Now, we formally define Ehrenfest tintg as being the in-

stant at which the magnitude of the difference between thevherek=1 is integer andy is the only coupling constant of
guantum centroid and the corresponding classical vector ithe system, and from which we define the characteristic clas-
phase space becomes equal to the magnitude of the initiglcal actionA=3] ,[(p?+q?)/2] [21]. The equations of
classical vector. Mathematically this condition can be ex-motion can be solved by noticing that itself is a constant

pressed as follows: of motion. The result reads
[I(R(te)) —r(te)ll _ ai(t) cosO(t)  sin®;(t) || q;
ot & {pim}: ~siney(t) cos&(t)”pj’ 24

This is similar to the definition fote given in Ref[3]. Now, \here @, ,p;) are the initial conditions of théth oscillator
using Eq.(20), we obtain the prescription for the analytical and®,(t) = w;t+ gtkAX L is a rotation angle in phase space.
calculation of the Ehrenfest time: Finally, using Eqs(22) and (24), we get for the Ehrenfest
time of this system

h||Var(t
VGl o
It is remarkable that we doot need to solve the quantum Tl k(k—1)gak-tl 7 8A )’

equations of motion to findz . This is the main difference
with the approach used in Ref,22]. In fact, our scheme where we kept only the first-order termsfn For case K
takes into account only the wave packet correction to the=1k=2), our estimate gives the same scale as the exact
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calculation given in Ref[22], te=(1/u)l,/#% (identifying  evolved dynamical functions of the canonical variables in
A and g with 1, and u, respectively. Also, case K=2k phase space, and showed that such a procedure is adequate
=2) reproduces the results in R¢R3]. Trivial limits are  during the Ehrenfest time scale for separable coherent initial
also contemplated by the above result, namely, the cases ofséates. This allowed us to propose a formal definition for the
harmonic systemg=0, k=0 ork=1), for whichtg—o0. Ehrenfest time in terms of the phase space Laplacian opera-
Moreover, our result is in accordance with some conjecturetor acting on the classical solutions of the equations of mo-
predicting the general form (@) (S/#)? for the break time tion. This makes our calculation much simpler than other
of classically integrable systeni8,24], where Q=1[k(k  approaches. We performed an explicit calculation for a sys-
—1)gA* 1] and S=2A are, respectively, the typical fre- tem of N-coupled nonlinear (th ordep oscillators and cal-
quency and classical action of the system in consideratiorfulated the Ehrenfest time for genef#=1 andk=1. The

We illustrate in Fig. 1 the Ehrenfest scale predicted by exfesults are shown to agree with the results known in the
pression(25) for case N=2k=2), where we can see an literature for some particular cases.

algebraic (~t?) short-time departure. We also note that the

first-order correction to the Ehrenfest time scale seems to

indicate a more appropriated parameter to measure the clas- ACKNOWLEDGMENTS
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