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MATHEMATICS OF COMPUTATION 
VOLUME 59, NUMBER 200 
OCTOBER 1992, PAGES 457-481 

ON THE RELATION BETWEEN 
TWO LOCAL CONVERGENCE THEORIES 

OF LEAST-CHANGE SECANT UPDATE METHODS 

JOSI! MARIO MARTINEZ 

ABSTRACT. In this paper, we show that the main results of the local convergence 
theory for least-change secant update methods of Dennis and Walker (SIAM J. 
Numer. Anal. 18 (1981), 949-987) can be proved using the theory introduced 
recently by Martinez (Math. Comp. 55 (1990), 143-167). In addition, we 
exhibit two generalizations of well-known methods whose local convergence can 
be easily proved using Martinez's theory. 

1. INTRODUCTION 

Quasi-Newton (q-N) methods have been widely used for a long time to 
solve systems of nonlinear equations (see [14]). Given the system F(x) = 0, 
F: Rn -+ Rn', these methods iterate according to 

Xk+1 = Xk - BkjF(Xk), 

where Bk+1 is obtained from Bk using simple procedures which, usually, do not 
involve computation of derivatives of F. Sometimes it is also easy to obtain 
BA-+l (or a factorization of Bk) in a nonexpensive way, so that a great deal of 
computational work is saved. 

Much research has been done on investigating the local convergence of quasi- 
Newton methods (see [2, 3, 4, 9, 12, 14, 15, 20, 21, 28], etc.). Local convergence 
theorems assume that a solution x* of the system exists and, usually, that the 
Jacobian J(x) satisfies a Holder condition, and that J(x.) is nonsingular. 
Under these hypotheses it is usually proved that Xk converges to x* if x0 and 
Bo are close to x* and J(x.), respectively. Often, superlinear convergence (or 
convergence at some "ideal" linear rate) can also be proved. 

Different quasi-Newton methods differ in the way in which Bk+1 is ob- 
tained. However, most practical quasi-Newton algorithms share the charac- 
teristics of being "least-change secant update" (LCSU) methods (see [13, 14, 
19, 15]). This means that Bk+1 satisfies a "secant equation" which guarantees 
that Bk+I (Xk+I - Xk) J J(Xk-l )(Xk41 - Xk) with a minimum variation property 
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458 J. M. MARTINEZ 

relative to some norm on the matrix space. By the minimum variation require- 
ment and the secant equation, the sequence of matrices exhibit a phenomenon 
known as "Bounded Deterioration" [9, 4, 12, 14]. This property guarantees that 
the matrices Bk stay in a given neighborhood of J(x.), providing the essen- 
tial arguments for proving local convergence at a linear rate. In view of the 
secant equation, it is possible to apply the necessary and sufficient condition for 
superlinear convergence of Dennis and More [12]. 

Prior to the work of Dennis and Walker [15], a new proof was required for 
each different algorithm. The Dennis-Walker theory had the merit of unifying 
most of them. So, the first and second methods of Broyden [1], the Sparse 
Broyden (or Schubert) method [3, 32], the PSB method [31], the method of 
Greenstadt [19], the DFP method [8, 17], the BFGS method [2, 16, 18, 33], the 
sparse symmetric method of Marwil [29] and Toint [34], etc. are all algorithms 
for which local and superlinear convergence can be proved using the Dennis- 
Walker theory. 

Dennis and Walker also considered methods where the iteration formula is 
given by 

(1.1) Xk+1 = Xk-( C(Xk) + Ak)1F(Xk) 

or 

(1.2) Xk+1 = Xk-(C(Xk) + Ak)F(xk) 

and established sufficient convergence conditions for them. In (1.1) (resp. (1.2)) 
C(Xk) is a "computed part" of J(xk) (resp. J(xk)-1) and J(xk) - C(xk) 
(resp. J(xk)-l - C(xk)) is difficult to compute. So, Ak is intended to be an 
approximation of J(Xk)-C(xk) (resp. J(Xk)1 -C(Xk)). The main application 
of algorithms of the form (1.1) or (1.2) are secant augmentations of the Gauss- 
Newton method for nonlinear least squares problems (see [14, 10]). 

In the decade of the 80's some new methods appeared which preserve the 
structure of the true Jacobian in a way not covered by the Dennis-Walker theory. 
We have mainly in mind the family of Partitioned Quasi-Newton methods [20, 
21, 22, 23, 35], the family of superlinear methods with direct secant updates 
of matrix factorizations [25, 5, 27], and the Secant Finite Difference method of 
Dennis and Li [11]. 

The Dennis-Walker theory does not apply to Partitioned q-N methods or to 
methods based on direct updating of factorizations because in these methods 
the matrices Bk are not directly updated using variational principles. Instead, 
minimum variation is applied to underlying parameters which lie in a different 
space. The reasons why the Dennis-Li method is not covered by the Dennis- 
Walker theory are to be explained later in the present paper. 

Motivated by the desirability of looking at all these methods under a common 
framework, Martinez [28] developed a new convergence theory which includes 
the new methods developed in the 80's, as well as all the classical methods 
covered by the Dennis-Walker theory. Martinez's theory is fairly simple, and the 
sufficient conditions it states for local convergence are easy to verify in practical 
situations. However, by the time Martinez's paper appeared, it was not clear if 
this theory was in fact more general than the theory of Dennis and Walker or if, 
on the contrary, there could exist algorithms whose convergence behavior could 
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LOCAL CONVERGENCE THEORIES FOR SECANT METHODS 459 

be explained by the Dennis-Walker theory but not by the Martinez theory. In 
this paper we answer this question. 

In ?2 of this paper we survey the part of Martinez's theory which is rel- 
evant for the purposes of the present research. The original theory is more 
general because it considers the use of q-N approximations as preconditioners 
for inexact-Newton procedures, but this extension is not relevant for our present 
purposes. Accordingly, we consider essentially algorithms of the form 

(1.3) Xk+I = Xk - (O(Xk, Ek) F(xk), 

where (0 is continuous and Ek E X, a finite-dimensional linear space. Local 
linear convergence of (1.3) depends on three assumptions. Superlinear conver- 
gence (or convergence at an "ideal" rate r.) is achieved if, asymptotically, a 
secant-type equation is satisfied. 

In ?3 we consider the "direct least-change secant update" methods of Dennis 
and Walker, and we prove local "ideal" convergence for these methods, showing 
that they are particular cases of the general algorithm of ?2. In ?4 the same work 
is done with respect to the "inverse least-change secant update" methods. Both 
direct and inverse least-change secant update methods are considered in their 
fixed-scale version and their iterated-scale form. In ? 5 we introduce a potentially 
useful generalization of the Secant-Finite Difference method of Dennis and 
Li, and in ?6 we generalize the method of Hart and Soul for boundary value 
problems, and we prove local superlinear convergence using Martinez's theory. 

Notation. Throughout this paper, I I denotes an arbitrary norm on Rn and its 
subordinate matrix norm. {e,, ..., en } is the canonical basis of Rn. 

2. SURVEY OF MARTINEZ'S LOCAL CONVERGENCE THEORY 

In this section we survey the main results of Martinez's theory [28]. Consid- 
ering the objectives of this paper, we state these results in their quasi-Newton 
version, instead of the inexact-Newton version, which is more general. 

The problem is to solve 

(2.1) F(x) = O 
for x E Q. Q an open and convex set of Rn, F: Q -* Rln, F E C1(Q). We 
denote J(x) _ F'(x) for all x E Q. 

Let X be a finite-dimensional linear space. For all x, z E Q, let 11 IIxz be 
a norm on X, associated with some scalar product (, )XZ , 

The projection operator onto a set F c X with respect to 11 IIXZ will be 
denoted by PF x z 

For all x, z E Q, let V(x, z) c X be a linear manifold. Let D c X be an 
open set. Let (o: Q x D -- Rn x n be a continuous function. 

For arbitrary xo E Q. Eo E D, and Bo = (o(xo, Eo), we consider the 
sequence generated by 

(2.2) Xk+ = Xk- B 'F(xk), 

where 

(2.3) Bk+I E {I (Xk, Ek), (O(Xk+1 , Ek), (0(Xk, Ek+1), (O(Xk+1 , Ek+1)}, 

(2.4) Ek+I = Pk(Ek) , 

and Pk PV(Xk,Xk+l),XkXk+I 
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460 J. M. MARTINEZ 

In [28] only the choice 

(2.5) Bk+1 = (O(Xk+l, Ek+1) 

is considered. This is the choice used in most practical methods. However, we 
will see here that the linear convergence result that is proved in [28] for (2.5) 
extends trivially to (2.3). 

We now state the assumptions that ensure that the sequence generated by 
(2.2)-(2.4) is locally well defined and convergent to some solution of (2.1). The 
sequence generated by (2.2)-(2.4) may not be well defined for three reasons: 
(a) some Xk does not belong to Q, (b) some Ek does not belong to D, or (c) 
(O(Xk, Ek) is singular. 

If xk+1 = xk we must have F(xk) = 0 . In this case we say that the sequence 
stops at Xk, obtaining an exact solution of (2.1). Hence, we are only going to 
consider the case where Xk+1 # Xk for all k = 0, 1, 2, .... 

Assumption 1. Let x. E Q be such that F(x.) = 0 and J(x.) is nonsingular, 
and let L, p > 0 be such that 

(2.6) iJ(x) - J(x*)I < Lix - x*IP 

for all x E Q. This implies (see [4]) that 

(2.7) IF(z) - F(x) - J(x*)(z - x)I < Liz - xli(x, z)P 

for all x, z E Q, where a(x, z) = max{Ix - x*I, Iz - x*i}. 

Assumption 2. Assume that there exists E* E D such that (o (x*, E*) is non- 
singular and 

(2.8) II - ~o(x*, E*)-1J(x*)l < r* < 1. 

Assumption 3. Let be a fixed norm on X, associated with the scalar prod- 
uct ( , ), and let cl > 0 be a constant. Assume that for all x, z e Q, there 
exists E = E(x, z) E V(x, z) such that 

(2.9) IE - E* 11 < cl a(x, z)P . 

Assumption 4. There exist q > 0 and c2 > 0 such that for all x, z E Q, and 
for all E E X, 

(2.10) iiEiixz < [1 + c2u(x, z)']IIE 

and 

(2.11) IIEii < [1 + C2c7(X, Z)q] IIEIgxz- 

Throughout this section, we assume that Assumptions 1-4 are satisfied. 
Let us state first a local linear convergence theorem. 

Theorem 2.1. Let r E (r*, 1). There exist e = e(r) and 3 = 3(r) such that, if 
Ixo - x* I < e and IIEo - E* II < 3 , then the sequence generated by (2.2), (2.3), 
and (2.4) is well defined, converges to x*, and satisfies 

(2 12 Ik 1 - x I 
ow 

rlx - x I 
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for all k = 0, 1, 2, .... Moreover, IlEkil, IBkI, and IB-1I are uniformly 
bounded. 
Proof. The proof of this result is based on bounded deterioration arguments 
(see [9, 4]) and follows by an adaptation of the proof of Theorem 3.2 of [28]. 

We include a detailed proof for the sake of completeness. 
Let I1, 61 > 0 be such that hEll, ko(x, E)I, and Ip(x, E)-1 are uniformly 

bounded and 

(2.13) Ix - (o(x, E)-'F(x) - x* I < rlx - x*I 
for all x, E such that lIx - x* ll < g1 and IIE - E. Ij < 3i . The existence of 61 
and 31 is guaranteed by Theorem 3.1 of [28]. By Corollary 3.1 of [28] there 
exists c > 0 such that 

(2.14) llPxz(E) - E*l ? | IE - E. ll + clx - x*ls 

for all x, E such that Ijx-xI 11 < ?1 and IIE-E* |I < dti, where PXZ PV((x z),xz 
and s = min{p, q}. Let 3 E (0, 61] and e E (0, ej be such that 

3+ces/(l -rs) <3S1. 

We prove that for all k = 0, 1, 2, ... 
(i) xk+l is well defined, 

(ii) IXk+I - x*| < rlXk - X*, 

(iii) lxk+I -x* I < rk+ 1&, 

(iV) IlEk+l -E* || < j + Cgs Ek rsj . 
We prove (i)-(iv) by induction on k. For k = 0, (i)-(iv) follow trivially 

from (2.13) and (2.14). Assume now the inductive hypothesis for k - 1 . Thus, 

k-i 00 Cgs 

llEk -E*ll3 <+ces rsri <+ces rsJ <a+ IrS <do 
j=0 j=O 

Similarly, IlEk+l - E* 11 < b1 . But, by the inductive hypotheses, jxk - x* I < 

rk_ 
< , and jxk-I -x*1 < rk-ig < e. So, by (2.3) and (2.13), xk+l is well 

defined and satisfies (ii). (iii) follows trivially from (ii), and (iv) follows from 
(2.14) and the inductive hypothesis. 

Finally, we deduce from (ii) and (iii) that limk -oc Xk = x*, llxk - x* 11 < 6, 

and IlEk - E* l ?< 1 for all k = 0, 1, 2,....Then, by (2.3) and Theorem 3.1 
of [28], IBkI and IB-711 are uniformly bounded. a 

The following theorem states a Dennis-More condition for convergence of 
the sequence at the ideal rate r* . 

Theorem 2.2. Assume that the sequence generated by (2.2), (2.5), and (2.4) is 
well defined and that, for some r E (r*, 1), we have 

(2.15) |Xk+I - X* I < rxk - x*I 

for k = 0 ,1, 2 . Assume that 

(2.16) lim l[((Xk, Ek) - ((x*, E*)](xk+1 - Xk)l O 
k- .o lXk+l-Xkl 

Then 

(2.17) lim lXk+1 - X*l _ | [I - q'(x*, E*)1J(X*)](Xk - X)l < r. 
IXk -X*l IXk -X*l rI 
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462 J. M. MARTINEZ 

Proof. Observe first that 

lxk-x*B*-IF(Xk)l I (B-1 - Bk-)F(Xk)I 

(2.18) Ixk-x*I |Xk -X*I 
I~k+1 X~I Ix-x*-B*F(Xk)I I(B-1 - B-1)F(Xk)I < IXk+ 1-X* I < IXk-X* ) k 

IXk -X*I IXk -X*I IXk -X*I 

where B* = (o(x*, E*). 
The proof follows repeating the arguments used in the proof of Theorem 3.4 

of [28]. The hypothesis Ix - x*I < rIxk - x*I in [28, Theorem 3.4] is satisfied 
since, in our case, x4 = Xk+1. So, the desired result follows from (2.18) and 
formula (3.36) of [28]. El 

The following theorems report the behavior of the sequence {Ek } under the 
hypothesis of linear convergence. 
Theorem 2.3. Suppose that (2.15) holds for all k = 0, 1 , 2 . Then IIEk is 
uniformly bounded and 

(2.19) lim IIEk+j -EkII = 0. 
k-.oo 

Proof. By (2.10), (2.11), (2.9), and (2.15) we prove, using Lemma 3.1 of [28], 
that 

(2.20) IIEk+j -E*II < (1 + C4IXk _X*lq)II-EkII + c3lxk -X*|I, 
where C3 and C4 are positive constants. Then, by Lemma 3.3 of [12], IIEk-E*I 
is uniformly bounded. So, IIEkII is uniformly bounded. To prove (2.19), we 
repeat the proof of Theorem 3.3 of [28]. In fact, by the uniform boundedness 
of IIEk - E*lI, we have, by (2.20), that there exists c5 > 0 such that 

(2.21) IIEk+ - E* 11 < IIEk -E* 11 + C5 IXk - X* I 

for all k = 0 1, 2, .... So, by (2.15) and (2.21), 

(2.22) IIEk+j - E*II < IIEk - E*II + C6IXk - X*I 

for all k, j = 0, 1, 2, ... , where C6 = C5/(11 - rs). Therefore, by the uniform 
boundedness of IIEk -E*I and IIxk- x*l I, there exists C7 > 0 such that 

(2.23) IIEk+j - E* 112 < IIEk - E*II2 + C7IXk - x*I. 

Inequality (2.23) is inequality (3.25) of [28]. Now, the proof of Theorem 3.3 
of [28] can be completely reproduced replacing the references to Theorem 3.2 
by (2.15) and the reference to (3.25) by (2.23). El 

Theorem 2.4. Assume the hypotheses of Theorem 2.3. Suppose that there exists a 
closed set F c Rn X X such that (Xk , Ek) E F c Q x D for all k = 0 , 1 , 2. 
Then 

(2.24) lim Iq(xk+l, Ek+1)- ((xk, Ek)I = 0 
k- oo 

Proof. From the convergence of {Xk}, the uniform boundedness of {IIEkII } 
and the existence of the closed set F, we deduce that there exists a compact 
set F' c Q x D such that (Xk, Ek) E r for all k = 0. 1 , 2 . Then, (2.24) 
follows from the uniform continuity of (0 on F . El 

In the following theorem it is proved that, if (2.15) is assumed, convergence 
at the ideal rate r* follows from an "asymptotic secant condition." 
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Theorem 2.5. Suppose that (2.15) holds and (Xk, Ek) E F C Q x D for all 
k = 0, 1, 2 ... , where F is a closed subset in Rn x X. Assume that 

(2.25) lim ID.(Xk+1, Ek+1) - p(x*, E*)](xk+l - Xk)I _ 0 
k-*oo IXk+ 1-XkI 

Then, 

lim IXk+1 - X* 
- Im[I - o(X* , E*)1lJ(x*)](xk - x*)j <?r. 

IXk-X*I 1Xk-X*I 

Proof. The desired result follows from Theorems 2.2 and 2.4. 0 

Theorem 2.6. There exist E, 3 > 0 such that, if jxo - x* I < e, IIE0 - E* 11 < 3, 
and (2.25) holds, the sequence generated by (2.2), (2.5), and (2.4) converges to 
x* and satisfies (2.17). 
Proof. The convergence is proved in Theorem 2.1. Using bounded deteriora- 
tion, we prove that, taking 3 small enough, all the Ek's belong to a closed ball 
contained in D. So, the thesis follows from Theorem 2.5 (see Theorem (3.5) 
of [28]). 5 

3. LOCAL CONVERGENCE OF THE DIRECT LEAST-CHANGE 

SECANT UPDATE METHODS 

We are now going to use the preceding theorems to prove the main results of 
Dennis and Walker [15]. The first method introduced by Dennis and Walker 
[ 15] is the "fixed-scale least-change secant update method." In order to introduce 
this method, assume that F E Cl(Q) as in (2.1) and that, for all x E Q. 

(3.1) J(x) = C(x) + N(x), 

where C(x) is continuous in Q. 
Let v c RnXn be a linear manifold, and denote the subspace parallel to v 

by 5". 
For all s, 5 E R , we define 

(3.2) Q(y, s) = {A E RnxnIAs = y}. 

Let 1 * be a norm on Rnxn f associated with some scalar product. The 
projection operator onto a set F c Rnxn with respect to 1 * will be denoted 
PF, * . 

For any A E Rnxn and F c Rnxn we define 

dist*(A, Wi) = inf {j1A - Bjj*}. 
BE? 

For all x, z E Q, we choose y = y(x, z) E Rn. Define 

33) V(x , z) = {A E VIdist* (A, Q(y(x, z), z -x)) 
< dist* (A', Q(y(x, z), z - x)) for all A' E JW} 

Dennis and Schnabel [13] proved that V(x, z) defined by (3.3) is a linear 
manifold and that its parallel subspace is 5" n Q(O, z - x). 

The fixed-scale least-change secant update method proposed by Dennis and 
Walker [ 15] consists of the iteration 

(3.4) Xk+1 = Xk - BJ1F(xk), 
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464 J. M. MARTINEZ 

where 

(3.5) Bk+I E {C(xk)+ Ak, C(Xk+l)+ Ak, C(Xk)+Ak+l, C(Xk+l)+Ak+l} 

and 

(3.6) Ak+I = PV(xk ,xk+l),* 

Now let us state the assumptions which ensure that the sequence generated 
by (3.4)-(3.6) is well defined and converges to a solution of (2.1). The first one 
is Assumption 1 of ?2. 

Assumption DF2. Define A* = PV, * (N(x*)) and B* = C(x*) +A*. We assume 
that B* is nonsingular and 

(3.7) II - B;-J(x*)l < r* < 1. 

Assumption DF3. For all x, z E Q, there exists G = G(x, z) E V(x, z) such 
that 

(3.8) (I - PenQ(o,z-x),*)(A* - G)II* < cla(x, z)P. 

Under Assumptions 1, DF2, and DF3, Dennis and Walker proved the follow- 
ing theorems, which we are also going to prove as particular cases of Theorems 
2.1 and 2.5. 

Theorem 3.1. Let r E (r*, 1) . There exist e = e(r) > O and J = 3(r) > O such 
that, if Ixo-x*I < e and IAo-A*I <3J, the sequence generated by (3.4)-(3.6) 
is well defined, converges to x*, and satisfies 

(3.9) Ixk+1 -x* I < rIxk - X* I 

for all k = O0 1, 2 . Moreover, IBkI and IBr are uniformly bounded. 

Proof. Define X = Rnxn, E* = A*, and 11 IIxz = 11 11 = 11 IIII* for all x, z E 
Q. Let D be an open neighborhood of A* such that (perhaps restricting Q) 
C(x) + E is nonsingular for all x E Q and E E D. Define 

(o(x, E) = C(x) +E 

for all x E Q and E E D. 
With the above definitions, the iteration (3.4)-(3.6) has the form (2.2)-(2.4). 
Assumption 1 is a hypothesis of Theorem 2.2, and Assumption 2 follows 

trivially from Assumption DF2. Moreover, Assumption 4 holds trivially in this 
case. So, in order to prove the theorem, we only need to prove that Assumption 
3 follows from Assumption DF3. 

For x, z E Q, let us define 

G(x, z) = G(x, z) + PenQ(o,Z-x)(A* - G(x, z)). 

Since G(x, z) E V(x, z) and PenQ(o z-x) *(A* - G) E 5? n Q(o, z - x) (the 
subspace parallel to V(x, z)), we have that G(x, z) E V(x, z). 

But, by (3.8), 

IIE* - G(x, z)II = IIA* - G(x, z) - PenQ(oz-x),*(A* - G(x, z))II* 
= II(I - PnQ(o,z-x),*)(A* - G(x, z))Il* < clu(x, z)P. 
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Hence, Assumption 3 holds. Thus, the desired result follows from Theorem 
2.1. n1 

Theorem 3.2. Assume that the sequence generated by (3.4), (3.6), and 

(3.10) Bk+I = C(Xk+l) + Ak+I 

is well defined and that (3.9) holds for all k = 0, 1, 2, . Then 

(3.11) li Ixk~~~l -x - lI|[I - B-IJ(X*,)](Xk X*)I (3.1) li 
-1Xk -X*I _1 Xk -X*I <r*. 

Proof. Define D = RfXf, X, E I, * , I I and (0 as in the proof of Theo- 
rem 3.1. Then, the iteration (3.4), (3.10), (3.6) has the form (2.2), (2.4), (2.5). 
Since D = X, we only need to prove (2.25). Now, for k = 0, ,2,..., 

(I - PRnQ(o,Xk+l-Xk), *)(A* - Ak+ 1) 

(3.12) = (I - PnQ(o, Xk+l-Xk), *)(A* - G(xk, Xk+1)) 

+ (I - PnQ(oXk+IXk) ,*)(G(Xk, Xk+1) - Ak+1). 

But G(xk, Xk+I) and Ak+j belong to V(xk, Xk+I). Hence, G(xk, Xk+I) - 

Ak+I E 91 n Q(0, Xk+I - Xk), and therefore the second term in the right-hand 
side of (3.12) is null. So, by (3.8), by the convergence of the sequence (Xk), 
and by the equivalence of norms on RnXfl 

(3.13) lim I(V - PRnQ(o,Xk+l-Xk),*)(Ak+l - A*)I = 0. 
k -oo 

Now, 

|( A*) (Xk+l -Xk) 

k+I I~~~~~k+I -(Xk1X-Xk 

(3.14) (I - PYnQ(o, xk+, -xk) *)(Ak+ -A*) IXk+l 
- 

XkI 

+ P~nQ(o x~xk,(Ak+I - A*) )(Xk+l Xk) + Xk+I Xk) *(Ak+1 
IXk+ - XkI 

Since PRnQ(O,Xk+l-Xk), *(Ak+l 
- A*) E Q(0, Xk+I - xk), the second term of 

the right-hand side of (3.14) is null, and, by (3.13), the first term tends to zero. 
Therefore, 

( 3. 1 5) klim (Ak+ l-A* ) (Xk+ 
- 
Xk) = ? (3.15) 

~~~k--+oo *+ IXk+1I Xk1 -0 

Finally, 

[q (Xk+l, Ek+1) - (o(x*, E*)](xk+l - Xk)I 

lXk+ -XkI 

I[(C(xk+l) + Ak+l)- (C(x*) + A*)](Xk+l - Xk)I 

IXk+I -XkI 

< IC(Xk+l) -C(X*)I + (Ak+1 A*) (Xk+I 
Xk) 

IXk+I1 Xk1I 

Hence, (2.25) follows from the convergence of (Xk), the continuity of C, 
and (3.15). This completes the proof. El 
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Now we are going to describe the "rescaled least-change secant update" 
method introduced by Dennis and Walker [15]. 

Assume, as in the case of the fixed-scale least-change secant update method, 
that F E C1(Q), J(x) has the form (3.1), C(x) is continuous, v is a linear 
manifold in Rn11 n , and Y is the parallel subspace to -W. 

Given x, z E Q, we choose v = v(x, z) such that (z - x)Tv(x, z) > 0 if 
x $ z, and a positive definite symmetric matrix W(x, z) such that 
(3.16) W(x, z)(z-x) = v(x, z). 

We define the norm I I xz on Rn x n by 

(3.17) IIMIIXz = [tr{W(x, z)-<MW(x, z)-lMT}]l/2. 
Given x, z E Q, we choose y = y(x, z) E 1Rn . Remembering the definition 

(3.2), we define 

(3.18) V(x, z) = {A e W dist, (A, Q(y(x, z), z - x)) 
< distxz(A', Q(y(x, z), z - x)) for all A' E -WI, 

where, for any A E Rnfxfn and W c RnJxfnlf 

(3.19) distxz(A, W) = inf {||A - BIxz} . 
BEF 

As in the previous case, we know by [13] that V(x, z) is a linear manifold 
whose parallel subspace is 5 n Q(0, z - x). 

The projection operator onto a set W c Rnxn with respect to 11 II~ will be 
denoted by Pwxz- 

The "rescaled least-change secant update" method is defined by the iteration 
(3.4)-(3.5), where 

(3.20) Ak+I = PV(Xk ,Xk+l) ,XkXk+I (Ak) 

forall k=0, 1,2,.... 
To prove local convergence of (3.4), (3.5), (3.20), suppose that Assumption 

1 holds, assume that J(x*) is positive definite and symmetric, define 

(3.21) IIMII* = [tr{J(x*)-lMJ(x*)-lMT}]l/2, 
and suppose that Assumption DF2 also holds, where, as always, P? * represents 
the projection with respect to . We also need Assumptions DR3 and DR4 
below. 

Assumption DR3. There exists a, > 0 such that for all x, z E Q, there exists 
G = G(x, z) E V(x, z), which satisfies 

(3.22) 11( - P~nQ(o,z-X),xz)(A* - G)IIxz < ? a(x, z)P. 

Assumption DR4. (a) For all x, z e Q and v = v(x, z), the projection 
PY,xz(M) is independent of the choice of W(x, z) in (3.16). This implies 
(see [15, p. 972]) that the projection PV(x z) xz(M) is determined only by x, z, 
and the choice v (x, z) for all M E Rn x n . 

(b) There exists a2 > 0 such that for all x, z E Q, 
(3.23) Iv(x, z) - J(x*)(z - x)I < ?a2Z - xla(x, z)P . 

Under Assumptions 1, DF2, DR3, and DR4, Dennis and Walker [ 1 5] proved 
the following theorems, which we are also going to prove using Theorems 2.1- 
2.5. 
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LOCAL CONVERGENCE THEORIES FOR SECANT METHODS 467 

Theorem 3.3. Let r e (r., 1). There exist e = e(r) > 0 and 3 = 3(r) > 0 such 
that, if Ixo - xI I < e and IAo - A. I < ?, the sequence generated by (3.4), (3.5), 
and (3.20) is well defined and satisfies 

(3.24) IXk+1 -x* < rIxk - x* 

for all k = 0, 1,2,. Moreover, IBkI and IBr 1I are uniformly bounded. 

Proof. Define X = Rnxn , E* = A*, and 11 X11 = 11 11j* . Let D be an open 
neighborhood of A. such that (perhaps restricting Q) C(x) + E is nonsingular 
for all x E Q and E E D. Define 

(p(x, E) = C(x) + E 

forall x e Q and E e D. 
With the above definitions, the iteration (3.4), (3.5), (3.20) has the form 

(2.2)-(2.4). 
Assumptions 1 and 2 hold trivially as in Theorem 3.1. Let us prove Assump- 

tion 4. 
Given x, zeQ, v=v(x, z),and s=z-x,define 

H( -) J() + (v - J(X*)S)ST + s(v -j(X*)S)T 

(3.25) (v - J(x*)s)TsssT 

(STS)2 

If x = z, we define H(x, z) = J(x*). (H(x, z) is the closest symmetric 
matrix to J(x*) which belongs to Q(v, s) in the Frobenius norm. See [14, p. 
196; 31].) 

By (3.23) and (3.25), we have 

(3.26) IJ(x*) - H(x, z)I < 3a2C7(X, z)P- 

Therefore, there exists Q, c Q, Q1 an open neighborhood of x*, such that 
H(x, z) is positive definite for all x, z E Q, . For simplicity we also denote 
Qi by Q. 

Now, by Assumption DR4(a), the projection PV(X, z) Xz is independent of the 
choice of W(x, z) in (3.16). In particular, since H(x, z)(z-x) = v(x, z), we 
may consider that H(x, z) is the weight matrix which defines the projections, 
that is, we may define 

IIMIIxz = [tr{H(x, z)-lMH(x, z)-lMT}Il/2 

for all ME Rnxn. 
Assume that L(x, z) and L* are lower triangular matrices with positive 

diagonal elements (Cholesky factors) such that for all x, z e Q. 

L(x, z)L(x, Z)T = H(x, z) 

and L*L T = J(x*). Then, for all x, z E Q, 

(3.27) IIMIIxz = IIL(x, z)-'ML(x, z)-TIIF 

and 

(3.28) IIMiI = IIL*-IMLJ-TJIF. 
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The relations (3.26), (3.27), and (3.28) imply that for all x, z E Q, 

(3.29) JIL(x, z) -L*11 < Ka(x, z)P 

and 

(3.30) JIL(x, z)-< - L*- 1I < Kc(x, z)P 

for a suitably defined K > 0. (See [28, proof of Theorem 4.3].) Moreover, 
(3.27), (3.28), and (3.30) lead to (2.10) and (2.11), using straightforward alge- 
braic manipulations. Thus, Assumption 4 is proved. 

Let us now prove Assumption 3. For x, z E Q, define 

G(x, z) = G(x, z) + PenQ(o, z-x), xz (A* - G(x, z)). 

Since G(x, z) E V(x, z) and PenQ(o z-x) xz(A*-G(x, z)) ES9fnQ(O, z-x), 

we have that G(x, z) E V(x, z). 
But, by (3.22), 

-GE*-G(x, z)llxz = - A* G(x, z) - PenQ(oz-x),xz(A* - G(x, z))Hlxz 

= 11(I- PnQ(o,z-x),xz)(A* - G(x, z))Hlxz < aja(x, z)P. 

Therefore, by the already proved Assumption 4, 

JJE* - (x, z)JI < JJE* - (x, Z)llxz(l + C2U(X, z)P) 

< cala(X, z)Pl + C2U(X, z)P) . 

Hence, Assumption 3 follows trivially. Thus, the desired result follows from 
Theorem 2.1. 51 

Theorem 3.4. Assume that the sequence generated by (3.4), (3.20), and 

(3.31) Bk+I = C(xk+l) + Ak+l 

is well defined and that (3.24) holds for all k = 0, 1 , 2,.... Then 

(3.32) lim1Xk+I - X _ I [I - B-IJ(x*)I(xk- x*) ?. 
(3.32) lim 

XkX - =-XI 
lim 

j[ - (*k 
< 

r**. 
Proof. Define D = RfXl, X, E*, 1n, n1, and (0 as in the proof of The- 
orem 3.3. Since D = X, we only need to prove (2.25). 

Since both G(xk, Xk+1) and Ak+I belong to V(xk, Xk+1), we have that 
G(Xk, Xk+1) - Ak+? E 599 n Q(0, Xk+I - Xk). Therefore, by (3.22) and the 
convergence of (Xk), 

(I - IP'nQ(oXk?l-Xk),XkXk+l 
)(A* - Ak+?)HlXkXk+l 

(I - P59?nQ(o Xk+-Xk), XkXk+? )(A* - G(xk , Xk+1)) 

+ (I - 
P9nQ(o,xk+,_xk),xkXk+?)(G(Xk, Xk+1) 

- 
Ak+1)|xkXk+l 

= |(I - PYnQ(oXk+l-Xk) XkXk+ )(A* - G(xk, Xk+1 ))Hlxkxk+ -' 0. 

Therefore, by Assumption 4 proved above and the equivalence of norms in 
Rnxn 

(3.33) lim I(I - PsnQ(o Xk+-Xk) xkXk+?)(Ak+l - A*) = 0. 
k -oo 

Finally, (3.32) follows from (3.33) exactly in the way as it was deduced from 
(3.13) in the proof of Theorem 3.2. o 
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LOCAL CONVERGENCE THEORIES FOR SECANT METHODS 469 

4. LOCAL CONVERGENCE OF THE INVERSE LEAST-CHANGE 

SECANT UPDATE METHODS 

The inverse least-change secant update methods were also introduced by Den- 
nis and Walker [15]. Unlike the direct least-change secant update methods, 
which, at each iteration, update an approximation of a part of the Jacobian ma- 
trix, the inverse least-change secant update methods update, at each iteration, a 
part of the inverse of the Jacobian. 

We begin with describing the fixed-scale inverse least-change secant update 
method. 

As in (2.1), assume that F E Cl(Q), Q an open and convex set of Rn, and 
that, for all x E Q, 

(4.1) J(x)- = C(x) + N(x), 

where C(x) is continuous in Q. 
Let v c Xn n be a linear manifold, and denote by 5 the parallel subspace 

to -S. 
Let 1 be a norm on Rnfnl, associated with some scalar product. The 

projection operator onto a set W c RnXn with respect to 1 will be denoted 
by PF * . 

For all x, z E Q ,we choose w = w(x, z) E Rin and y = y(x, z) E Rn, 
with y(x, z) :$ 0 if x $ z. We also define 

(4.2) V(x, z) = {A E VI dist*(A, Q(w(x, z), y(x, z))) 
< dist*(A', Q(w(x, z), y(x, z))) for all A' E X}, 

where Q and dist* are defined as in (3.2) and (3.3), respectively. 
As in ?3, we know from [13] that V(x, z) is a linear manifold and that the 

parallel subspace to V(x, z) is S n Q(O, y(x, z)) . 
The inverse fixed-scale least-change secant update method proposed by Den- 

nis and Walker [15] consists of the iteration 

(4.3) Xk+1 = Xk - KkF(xk), 

where 

(4.4) Kk+1 e {C(xk) + Ak, C(xk+1 ) + Ak, C(Xk) + Ak+I, C(Xk+1 ) + Ak+ } 

and 

(4.5) Ak+1 = PV(xk,xk+l),* 

The first assumption which we need to prove that the sequence generated by 
(4.3), (4.4), and (4.5) is well defined and converges to a solution of F(x) = 0 
is Assumption 1 of ?2. We also need assumptions IF2 and IF3 below. 

Assumption IF2. Define A* = Px, * (N(x*)) and K* = C(x*) +A*. There exists 
r* E [0, 1) such that 

(4.6) II - K*J(x*)l < r*. 

Since J(x*) is nonsingular by Assumption 1, (4.6) implies that K* is non- 
singular. 
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Assumption IF3. For all x, z E Q, there exists G = G(x, z) e V(x, z) such 
that 

(4.7) - P(I- PnQ(o,y(x,z)))(A* - G)H11 < clu(x, z)P. 

Using Assumptions 1, IF2, and IF3, Dennis and Walker proved the following 
theorems, which we are also going to prove using Theorems 2.1-2.5. 

Theorem 4.1. Let r E (r*, 1). There exist e = e(r) and 3 = 3(r) such that, 
if Ioo - x. < e and IAo - A. < ?3, the sequence generated by (4.3), (4.4), and 
(4.5) is well defined, converges to x* , and satisfies 

(4.8) -Xk+ 
- x* I < rIxk - x I 

for all k = o, 1,2 2. Moreover, IKkI and IKj-7' are uniformly bounded. 

Proof. Define X = Wxn~n, E* = A*, and 11 lII, = 11 X 11 = 11 X II* for all x, z E 
Q. Let D be an open neighborhood of A* such that (perhaps restricting Q) 
C(x) + E is nonsingular for all x E Q and E E D. Define 

(4.9) (o(x, E) = (C(x) + E)- 

for all x E Q and E E D. 
With these definitions, the algorithm (4.3)-(4.5) has the form (2.2)-(2.4). 
Assumption 1 is a hypothesis of this theorem, and Assumption 2 follows 

trivially from Assumption IF2. Clearly, Assumption 4 is also trivially satisfied. 
So, let us prove that Assumption 3 may be deduced from Assumption IF3. 

For all x, z E Q, we define 

G(x, z) = G(x, z) + PenQ(o, y(x, z)), *(A* - G(x, z)). 

Since G(x, z) E V(x, z) and PYnQ(o, y(x, z)), *(A* - G(x, z)) belongs to the 

parallel subspace to V(x, z), we have that G(x, z) E V(x, z) . Now, by (4.7), 

- E*-G(x, z)H = - G(x, z) - PJn Q(oy(xz)),*(A* - G(x, z)) 11* 

? (I - PYnQ(oy(xz)),*)(A* - G(x, z)) * < cla(x, z)P. 

So, Assumption 3 is proved. Hence, the desired result follows from Theorem 
2.1. El 

Theorem 4.2. Assume that the sequence generated by (4.3), (4.5), and 

(4.10) Kk+1 = C(xk+1) + Ak+1 

is well defined and that (4.8) holds for all k = 0, 1, 2 . Additionally, assume 
that 

(4.11) lim IK*y(xk, Xk+1) - (Xk+1 - Xk)I -0 
k-*0o IXk+1-XkI 

and that IKkI and IKj-7' are uniformly bounded. Then 

(4.12) lim - k+ 
- X* lim -( [C(x*) + A*]J(x*))(Xk - ) < rX* . (4.2) im 

Xk-X*l 
li 

Xk -X*I 
* 
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Proof. Let M > 0 be such that IKkI < M and IKj 1' < M for all k = 
0, 1, 2, .... Using the definitions given in the proof of Theorem 4.1, we have 
that, for all k = 0, 1, 2, .... 

(Xk, Ek) E = {(x, E) E Rn x X I 1(x, E)l < M, 1o(x, E)-' < M 
and Ix - x*1 < Ixo - x*1}. 

Clearly, r is a closed set. So, by Theorem 2.5, we only need to prove (2.25). 
Now, for k= 0, 1, 2,... 

(I - P-nQ(, Y(Xk, x )), * )(A*-Ak+ 1) 

(4.13) =(I - PonQ(oy(xkXk+l)),*)(A* - G(xk, Xk+l)) 

+ (I - PYnQ(o,y(xk, Xk+l )), *) (G(Xk, Xk+ 1) - Ak+ 1) 

Since G(Xk, Xk+1 ) - Ak+1 E 9' n Q(O, y(xk, Xk+1 )), the second term of the 
right-hand side of (4.13) is null for all k = 0, 1, 2, .... So, by (4.7), the 
convergence of (Xk), and the equivalence of norms in R1 n , we have 

(4.14) lim (I - P5nQ(o,y(Xkxk+l)), *)(A* - Ak+1) = I0. 
k-*oo 

By (4.11), for large enough k, we have y(xk, xk+1) $ 0. Therefore, by 
(4.14), 

|(Ak 1 A* ) Y (Xk 5 
Xk+I1)| |y(xk, Xk+1)l (k+I - 

I~)Y(Xk 5Xk+I)j 

< (I - P5nQ(o,y(Xk, xk+l)), *) (Ak+I - A*) y(Xk; Xk+I) 

(4.15) + P5nQ(oy(xkxk+l)) *(Ak+l -A*) -y(Xk Xk+1) 

IY(Xk Xk+1)1 

| (I - P5nQ(o,y(Xkxk+l)), *) (Ak+I - A*) y(Xk Xk+?)| 

< I(I-PYnQ(o,y(xk,xk+l)),*)(Ak+1-A*)| -0O ask o-*o. 

Now, by the uniform boundedness of Io (Xk, Ek)I I, 

(4.16) 
I[(C(Xk+l) + Ak+ 1 - (C(x*) + A*)' ]K*y(xk, Xk+1)| 

|K*y(xk, Xk+I)j 

<[C(Xk+l) + Ak+1 1V| [(C(Xk+l) + Ak+I) - (C(x*) + A*)]y(xk , Xk+I)j 

-K*y(xk xk+0)1 

l[(C(Xk+l) + Ak+I) - (C(x*) + A*)]Y(Xk, Xk+1)I 

? -s'|K*y(xk, Xk+I)j 

for a suitably defined constant Ih > 0. 
Therefore, by (4.19), (4.16), and the continuity of C, we have 

(4.17) lim [(O(Xk+l, Ek+l) - (o(x*, E*)]K*y(xk, Xk+)I = -0 
k-*oo IK*y(Xk, Xk+0)1 
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Hence, by (4.11), (4.17), and the uniform boundedness of p 9 (Xk, Ek)l, 

lir I[q(Xk+I, Ek+1 )-q ((x, E*)](Xk+l -Xk)I 
k-*oo IXk+1 -Xk I 

< lim {k 9[f(Xk+I, Ek+1) - Co(x*, E*)][(Xk+l -Xk) -K*y(xk, Xk+I)]| 
k-*oo IK*y(xk, Xk+I)I 

Ik(Xk+I, Ek+1) - fo(x, E*)]K*y(xk, Xk+I)I 

+K*y(xkxk+I)I J 

< lim 1[f (Xk+1, Ek+,) - ((x*, E*)][(xk+l -Xk) -K*y(xk, Xk+1)]| 

k-*oo IXk+ 1-XkI 

IXk+I -XkI 

|K*y(Xk, Xk+1)I 

< iuM [q,(Xk+l, Ek+l )- o(x*, E*)][(Xk+l 
Xk) K*y(Xk, 

Xk+|x1 
k--~oo IXk+I - XkI 

IXk+1-XkI 

|K*y(xk, Xk+1)I 

= 0. 

This completes the proof of (4.12). El 

We finish this section proving convergence of the "inverse rescaled least- 
change secant update" method of Dennis and Walker. 

We assume again that F E C'(Q), J(x)'- has the form (4.1), C is contin- 
uous, V is a linear manifold, and 9' is the parallel subspace to V . 

Given x, z E Q, we choose u(x, z), w(x, z), y(x, z) E Rn such that 
y(x, z) :$ 0 and u(x, Z)Ty(X, z) > 0 if x :$ z. We also choose a positive 
definite symmetric matrix W(x, z) E R nXn such that 

(4.18) W(x, z)y(x, z) = u(x, z). 

We define the norm II, on RnXn by 

JMJfxz = [tr{W(x, z)-'MW(x, z)-1MT}]1/2 

as in (3.17), and 

(4.19) V(x, z) = {A E V I dist, (A, Q(w (x, z), y(x, z))) 
< dist, (A', Q(w(x, z), y(x, z))) for all A' E 9/}. 

As before, remember that Dennis and Schnabel [13] proved that V(x, z) is 
a linear manifold whose parallel subspace is 9' n Q(o, y(x, z)). Denote by 
P, Xz the projection operator onto a set & c RnXn with respect to the norm 
11 Ilxz. 

The "inverse rescaled least-change secant update" method is defined by the 
iteration (4.3)-(4.4), where 

(4.20) Ak+1 = 
Pv(xk,Xk+l),xkXk+l (Ak) 

forall k=0, 1,2,.... 
Suppose that Assumption 1 of ?2 holds, assume that J(x*) is positive definite 

and symmetric, and define 

IIMII* = [tr{J(x*)- 
I 
MJ(x*)- I MT}]1/2 
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for all M E Rnxn . Suppose, further, that Assumption IF2 also holds. To- 
gether with Assumptions 1 and IF2, the following Assumptions IR3 and IR4 
are necessary to prove that the algorithm is well defined and locally convergent. 

Assumption IR3. There exists al > 0 such that for all x, z E Q, there exists 
G = G(x, z) E V(x, z) satisfying 

(4.21) IV- PYnQ(o,y(X,z)),xz)(A* - G)HI~xz < al(x, z)P. 

Assumption IR4. (a) For all x, z E Q, u = u(x, z), and y = y(x, z), the 
projection Py xz(M) is independent of the choice of W(x, z) in (4.18). Then, 
by [15, p. 972], the projection Pv(xz),xz(M) is determined only by x, z, and 
the choices of u(x, z) and y(x, z). 

(b) There exists a2 > 0 such that for all x, z E Q, 

(4.22) Ju(x, z) - J(x*)-ly(x, z) < ?ally(x, z)lk(x, z)P. 

Let us prove now a local convergence theorem for the algorithm defined by 
(4.3), (4.4), and (4.20). We will use Assumptions 1, IF2, IR3, and IR4 for 
placing this algorithm under the hypotheses of Theorem 2.1. 

Theorem 4.3. Let r E (r*, 1). There exist e = e(r) and 3 = 3(r) such that, 
if Ixo - x* I < e and IAO - A* 3 < s, the sequence generated by (4.3), (4.4), and 
(4.20) is welldefined, converges to x*, and satisfies (4.8) for all k = 0, 1, 2. 
Moreover, IKkI and IK7' I are uniformly bounded. 
Proof. Define X = RlnXn, E* = A*, and 11 - 11 = 11 - II* Let D be an open 
neighborhood of A* such that (perhaps restricting Q) C(x) + E is nonsingular 
for all x e Q and E E D. Define 

(o(x, E) = (C(x) + E)-' 

for all x e Q and E e D. 
Now, the algorithm (4.3), (4.4), (4.20) has the form (2.2)-(2.4). Since As- 

sumption 1 is assumed to hold, and Assumption 2 follows from Assumption 
IF2, we need to prove Assumptions 3 and 4. Let us prove Assumption 4. 

Given x, z E Q. x :Az,y=y(x, z), and u= u(x, z), we define 

H(x, z) =J(x) -1 + (u _ J(X*)y)yT + y(u - J(X*)-y)T 

(4.23) (u - J(X*)-ly)TyyyT 

(yTy)2 

If x = z, we define H(x, z) = J(x*)-. 
Since y(x, z) :$ 0, H(x, z) is well defined for all x, z E Q, x $ z. 

(H(x, z) is the closest symmetric matrix to J(xk)-1 in the Frobenius norm 
which satisfies Hy = u.) By (4.22) and (4.23), we have that 

(4.24) IH(x, z) - J(x*)-1' < 3a2U(x, z)Y. 

Therefore, H(x, z) is positive definite if x, z E Q1 c Q, Q1 an open and 
convex set. For simplicity we also denote Q1 by Q. By Assumption IR4(a) 
we may consider that W(x, z) = H(x, z) in (4.18). Finally, Assumption 4 
follows using the arguments used in Theorem 3.3. 
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Let us now prove Assumption 3. For x, z E Q, define 

G(x, z) = G(x, z) + PYnQ(oy(x,z)),xz(A* - G(x, z)). 

Since G(x, z) belongs to V(x, z), we have that G(x, z) belongs to V(x, z) 
and PYnQ(o,y(x,z)),xz(A*-G(x, z)) belongs to the parallel subspace to V(x, z). 

Clearly, by (4.21), 

- E*-G(x, z)H|xz 

(4.25) = HA*-G(x, z) - PYnQ(oy(xz)),xz(A* - G(x, z))Hlxz 

- VIK- PYnQ(oy(xz)),xz)(A* - G(x, z))Hlxz < alu(x, z)P. 

Therefore, Assumption 3 follows from (4.25) and from Assumption 4. Hence, 
the desired result follows from Theorem 2.1. El 

Theorem 4.4. Assume that the sequence generated by (4.3), (4.20), and 

Kk+l = C(Xk+l) + Ak+l 

is well defined and that (4.8) holds for all k = 0, 1, 2, . Additionally, assume 
that 

lim IK*y(xk, Xk+l) -(Xk+l - Xk)- 0 
k-*oo JXk+ 1-Xk1 

and that JKkI and JKj 11 are uniformly bounded. Then 

lim Xk+1 -X*j _ fm |(I - [C(x*) + A*]J(x*))((Xk - X*) < 

JXk-X*J JXk-X* I 

Proof. The desired result is obtained repeating the proof of Theorem 4.2. El 

5. GENERALIZATION OF THE SECANT-FINITE DIFFERENCE METHOD 

The Secant-Finite Difference (SFD) method was introduced by Dennis and 
Li [11]. The objective of this method is to save function evaluations required 
by the discrete Newton method by using the previous iteration properly. 

Assume that the set of column indices I, = { 1, . .. , n } is partitioned into q 
nonvoid disjoint subsets 7r1, ..., . Without loss of generality, assume that 

7rI ={1,, nil}, 7r2={n l+1,, nl+n2}, ... ,7rq ={ njf + l , n} 
Dennis and Li [11 ] suggest partitioning I, using the CPR property [7] together 
with the algorithm of Coleman and More [6]. The integer q is chosen so that 
{f 72, * * *, 7r} is a CPR-partition and 7r1 contains the remaining columns. How- 
ever, our analysis permits a completely arbitrary partition. Given any matrix 
B E Rnxn , let us write B = (B', ... , Bq), where Bi is an n x nj matrix which 
contains the columns corresponding to the indices of 7rj . 

Consider a function F: Q c -n Rn , F E C' (Q), Q an open Euclidean 
ball. For all x E ln , write 

_ (~~~~~~xi) 

where xi = (e M+ x, ..., em+nx)T, m=In,, j = 2, ..., q, ml = 0. 
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For all x E Q, we assume that J(x) = (J,(x), ... , .q(x)) is such that 
Jh(x) E 59? c RnW<nj for i = 1, ... , q, where 59j is a linear manifold. 

Assume that xO E Q and Bo is a nonsingular n x n matrix. The kth iteration 
of the Generalized Secant-Finite Difference (GSFD) method is defined by the 
following algorithm. 

Algorithm 5.1. 
Step 1. Given Xk E Q and Bk = (B' Bq) ,solve 

Bksk=-F(xk), Sk 

and set 

Xk+1 = Xk + Sk 

Step 2. For j= 1, ..., q, solve, for B , 

Minimize IIB - B/ IIF 

(5.1) s.t. Bs= F(.k)-F(Xk ), 

B E ?21, 

where 

*. 

Xk = +l for j =1, ..,q. 
kk 

k 

(So, x0= xk and xk = Xk+ .) 

Step 3. Bk+1 = (BI * Bq+ ). 

If q = n, GSFD is the method described in [30, pp. 196-197, formula (21)]. 
Except for the choice of the partition, Algorithm 5.1 is identical to the SFD 
algorithm of Dennis and Li. Those authors gave a convergence analysis for 
SFD, which does not rely on the Dennis-Walker theory. In what follows, we 
prove local and superlinear convergence of GSFD, under the usual assumptions 
made in these cases by using Martinez's theory in an almost straightforward 
way. 

First, let us formulate GSFD in such a way that it becomes evident that it is 
a particular case of Algorithm 2.2-2.5. 

Define X = Rnxn, x ... x RlXnq (of course, there exists an obvious isomor- 
phism between X and Rnxn , but we feel that the formulation in terms of X 
is more clear), 11(B1, ..., Bq)H1 = (Zq=l IjB' 12 )1/2, 511 = 11 11 for all x, z E 
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Given x, z E Q ,we define the vectors Xj(x, z), j = O, 1, ..., q, by 

( 

zi 
(5.2) 1(x, z) = j 

So, 5o(x, z) = x and Xq(x, z) = z. Since we assumed that Q is a ball, 
Xj(x, z) E Q whenever x, z E Q. 

We define the manifold V(x, z) as the set of (B', ..., Bq) E X such that 

(5.3) 
{ BJ(zJ -xJ) = F(4j(x, z))-F(j_ I(x, z)), 

for j = 1 ,...,q. 
Let us show that V(x, z) $A0 for all x, z E Q. In fact, by (5.2), 

F (4j(x ,z)) - F 4 (x , z)) 

= [I J(1jj (x, z) + t[Ej(x, z) - (jx(x, z)]) dt] 

(5.4) 
*[4y(x , Z) -4y-&x z)] 

= [I' J1(,jl(x, z) +t[Ej(x, z) - 4j_(x, z)])dt] (zj -xj). 

But, since 5'2 is a linear manifold, 

Jj(x, z)= J Jj(}j_1(x, z) + t[4j(x, z) - 4_(x, z)]) dt 

belongs to !'R and hence, by (5.4), 

(5.5) (Ji(x, Z), ..., Jq(X Z)) E V(X, Z). 

With the definition (5.3) for V(x, z), the optimization problem (5.1) is 
clearly equivalent to setting 

(5.6) (B +1, , Bq+) = Pv(xk+l)((Bk, , Bq)) 

and, therefore, GSFD becomes a particular case of the general algorithm pre- 
sented in ?2 (2.2-2.5). 

In the following theorem, we prove local and superlinear convergence of 
GSFD. 

Theorem 5.1. Let F satisfy Assumption 1 of ?2. There exist e, 3 > 0 such that, 
if IxO - x < e and Bo - J(*) I < 3 , the sequence generated by Algorithm 5.1 is 
well defined and converges superlinearly to x* . 
Proof. Define E. = (J1 (x.),..., Jq(x*)). So, Assumption 2 of ?2 is trivially 
satisfied with r* = 0. Assumption 4 is trivial, since 11 IlXZ = 11 - 11 for all 
x, z E Q. Hence, for proving local linear convergence, we only need to verify 
Assumption 3. 
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By (5.5), it is sufficient to prove that there exists cl > 0 such that 

(5.7) 1(J (x, z), ... , q(x, z)) - (J,(x*), ... , J (X*)) 1 < c1o(x, z)Y 

for all x, z E Q. But (5.7) is a straightforward consequence of (2.4). Therefore, 
the convergence of the sequence and (2.9) are proved. 

Now, adding the equalities (5.3) for j = 1, ... , q, we obtain 

Bl(zl-xlI) + + Bq(zq xq) = F(z) - F(x) 

for all (B', ..., Bq) E V(x, z) . Therefore, 

(B 1 Bq)(Z _X) = F(z) -F(x) 

and hence, 
Bk+I(Xk+I - Xk) = F(xk+l) - F(xk) 

forall k=0, 1,2,.... 
Therefore, by (2.4), 

lim [q7(Xk+l , Ek+l) - (X* , E*)](Xk+l -Xk)l 

k-*oo IXk+1 -XkA 

lim F(xk+l) -F(xk) - J(X*)(Xk+l -Xk) - o 
k-*oo 1Xk+ 1-Xk1 

Thus, by Theorem 2.2, superlinear convergence is proved. El 

Remarks. The reason why Theorem 5.1 cannot be proved using the Dennis- 
Walker theory is easy to understand. The manifold V(x, z) cannot be char- 
acterized as the intersection of Q(F(z) - F(x), z - x) with a fixed manifold 
V . In fact, V(x, z) c Q(F(z) - F(x), z - x), but the elements of V(x, z) 
satisfy additional auxiliary secant equations, which represent a variable linear 
manifold close to J(x*) . 

The CPR property which is used in the SFD algorithm of Dennis and Li 
essentially says that for j = 2, ... , q there exists only one matrix in the set 
defined by (5.3). This point suggests a potentially useful generalization of the 
CPR property. Let us say that 7rj satisfies the "CPR (v)-property," 0 < v < n, 
if n - v rows of B' are completely determined by (5.3). Clearly, if v is large, 
we may find partitions with a lower q. We do not know at what point the 
practical performance of GSFD deteriorates when v grows, but some numerical 
study in this direction would be worthwhile. 

6. GENERALIZATION OF THE HART-SOUL ALGORITHM 

Hart and Soul [24] introduced an algorithm for solving nonlinear systems of 
equations which arise from the discretization of nonlinear boundary problems. 
Essentially, they observed that for this class of problems the Jacobian matrix 
has the form 

(6.1) J(x) = M2 + DI (x)MI + Do(x), 

where M2 and M1 are fixed matrices related to the discretization of second 
and first derivatives respectively, and DI (x) and Do(x) are diagonal matrices 
difficult to compute. 
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Consequently, Hart and Soul proposed a quasi-Newton method, which con- 
sists of the iteration 

(6.2) Xk+ = Xk -Bj F(xk), 

where 

(6.3) Bk = M2 + Cl,kMl + Co,kMo 

for k = O, 1, 2, . Here, C1,k and Co,k are diagonal matrices, and Clk+I 
and Co, k+1 are obtained using a secant equation and a variational principle. 
Kelley and Sachs [26] considered an infinite-dimensional extension of the Hart- 
Soul method and proved superlinear convergence in that context. 

The generalization of the Hart-Soul method which we propose in this section 
applies to functions such that the Jacobian matrix has the form 

m-1 
(6.4) J(x) = Mm + E Dj(x)Mj + Do(x), 

j=1 

where Ml1, ..., Mm are fixed matrices (generally originating from discretiza- 
tions of differential operators) and Do(x), . .. , Dm (x) are diagonal matrices. 
The Hart-Soul case corresponds to m = 2. 

As in the Hart-Soul method, we use the iteration (6.2), but we impose that 

m-1 
(6.5) Bk =Mm + E Cj,kMi+CO,k, 

j=1 

where Co,k, ..., 1,k are diagonal matrices. The matrices Cok+I,... 
Cm , k+j are chosen so as to solve the following optimization problem: 

Minimize ICO - CO,kIFI + + IlCm-1 - Cm1,kIIF 
m-1\ 

(6.6) s.t. Mm + 5 CjMj + Co) (Xk+l - Xk) = F(xk+l) - F(xk), 
j=1 

CO, C1,..., Cm-i diagonal. 

We call the algorithm defined by (6.2), (6.5), and (6.6) the Generalized Hart- 
Soul (GHS) method. 

Let us show that the GHS method may be considered a particular case of 
(2.2)-(2.5). Wedefine X = Inxn. xRIx.=nxn =Rnxmm For (Co,..., Cm1) E 

X, define ll(Co , ... , C_-l) = (IICOIIF + _ _ + IICM_l 1i2)1/2 and 1i - II, = 11 *I 
for all x, z e Q . If x, z E Q, we define 

V(x, z) = f(Co, , Cm,) E XICo, ..., Cm-I are diagonal and 

(6.7) 
m-1 1 

Mm + ZCjM + Co (z-x) = F(z)-F(x) . 
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Now, 

F(z) - F(x) = [I J(x + t(z - x)) dt] (z-x) 

1m-1 

(6.8) = mm + E Dj(x + t(z-x))MJ 

+ Do(x + t(z - x))] dt) (z - x)X 

Therefore, 

(6.9) (jDo(x + t(z-x))dt, ... , I Dm-4(x+t(z-x))dt) E V(x, z), 

and hence V(x, z) is nonempty. 
Since 11 11 is obviously associated with a scalar product on X, the GHS 

method has the form (2.2)-(2.3). 
To prove local superlinear convergence of the algorithm, assume that, for all 

x E Q and j = O 1, ..., m- 1, 
(6.10) IDj(x) - Dj(x*)I < L'jxj - x* 1 . 

Theorem 6.1. Let F satisfy Assumption 1 and (6.10). There exist t, s > 0 
such that, if Ixo - x*I < c and ICj,o - Dj(x*)I < 3, j = 0, 1, ... , m - 1, 
the sequence generated by (6.2), (6.5), and (6.6) is well defined and converges 
superlinearly to x*. 
Proof. If E* = (Co(x*), ... , Cm-I (x*)), Assumption 2 of ?2 is trivially satis- 
fied with r* = 0. Assumption 3 is a straightforward consequence of (6.9) and 
(6.10), and Assumption 4 is trivial. Therefore, by an application of Theorems 
2.1 and 2.2, the desired result is proved. f1 
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